Skip to content

Latest commit

 

History

History
68 lines (57 loc) · 4.07 KB

README.md

File metadata and controls

68 lines (57 loc) · 4.07 KB

Documentation Status PyPI

SPACEL: characterizing spatial transcriptome architectures by deep-learning

SPACEL (SPatial Architecture Characterization by dEep Learning) is a Python package of deep-learning-based methods for ST data analysis. SPACEL consists of three modules:

  • Spoint embedded a multiple-layer perceptron with a probabilistic model to deconvolute cell type composition for each spot on single ST slice.
  • Splane employs a graph convolutional network approach and an adversarial learning algorithm to identify uniform spatial domains that are transcriptomically and spatially coherent across multiple ST slices.
  • Scube automatically transforms the spatial coordinate systems of consecutive slices and stacks them together to construct a three-dimensional (3D) alignment of the tissue.

Getting started

Read the documentation for more information.

Latest updates

Version 1.1.8 2024-07-23

Fixed Bugs

  • Fixed the conflict between optax version and phthon 3.8.

Version 1.1.7 2024-01-16

Fixed Bugs

  • Fixed a variable reference error in function identify_spatial_domain. Thanks to @tobias-zehnde for the contribution.

Version 1.1.6 2023-07-27

Fixed Bugs

  • Fixed a bug regarding the similarity loss weight hyperparameter simi_l, which in the previous version did not affect the loss value.

Requirements

Note: The current version of SPACEL only supports Linux and MacOS, not Windows platform.

To install SPACEL, you need to install PyTorch with GPU support first. If you don't need GPU acceleration, you can just skip the installation for cudnn and cudatoolkit.

  • Create conda environment for SPACEL:
conda env create -f environment.yml

or

conda create -n SPACEL -c conda-forge -c default cudatoolkit=10.2 python=3.8 rpy2 r-base r-fitdistrplus

You must choose correct PyTorch, cudnn and cudatoolkit version dependent on your graphic driver version.

Note: If you want to run 3D expression GPR model in Scube, you need to install the Open3D python library first.

Installation

  • Install SPACEL:
pip install SPACEL
  • Test if PyTorch for GPU available:
python
>>> import torch
>>> torch.cuda.is_available()

If these command line have not return True, please check your gpu driver version and cudatoolkit version. For more detail, look at CUDA Toolkit Major Component Versions.