-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathweb_demo.py
84 lines (64 loc) · 2.98 KB
/
web_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import json
import torch
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
st.set_page_config(page_title="360智脑大模型")
st.title("360智脑大模型")
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
@st.cache_resource
def load_model_tokenizer():
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
use_fast=False,
trust_remote_code=True
)
generation_config = GenerationConfig.from_pretrained(MODEL_NAME_OR_PATH)
return model, tokenizer, generation_config
def clear_chat_messages():
del st.session_state.messages
def init_chat_messages():
with st.chat_message("assistant", avatar='🤖'):
st.markdown("您好,我是360智脑大模型,很高兴为您服务😄")
if "messages" in st.session_state:
for message in st.session_state.messages:
avatar = "🧑💻" if message["role"] == "user" else "🤖"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
else:
st.session_state.messages = []
return st.session_state.messages
max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 2048, 512, step=1)
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
top_k = st.sidebar.slider("top_k", 0, 100, 50, step=1)
temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01)
do_sample = st.sidebar.checkbox("do_sample", value=True)
def main():
model, tokenizer, generation_config = load_model_tokenizer()
messages = init_chat_messages()
if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"):
with st.chat_message("user", avatar='🧑💻'):
st.markdown(prompt)
with st.chat_message("assistant", avatar='🤖'):
placeholder = st.empty()
messages.append({"role": "user", "content": prompt})
generation_config.max_new_tokens = max_new_tokens
generation_config.top_p = top_p
generation_config.top_k = top_k
generation_config.temperature = temperature
generation_config.do_sample = do_sample
print("generation_config: ", generation_config)
for response in model.chat(tokenizer=tokenizer, messages=messages, stream=True, generation_config=generation_config):
placeholder.markdown(response)
if torch.backends.mps.is_available():
torch.mps.empty_cache()
messages.append({"role": "assistant", "content": response})
print("messages: ", json.dumps(messages, ensure_ascii=False), flush=True)
st.button("清空对话", on_click=clear_chat_messages)
if __name__ == "__main__":
main()