forked from WiseLabAEP/GMMNLSE-Solver-FINAL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalc_mode_coupling_matrix.m
84 lines (71 loc) · 3.28 KB
/
calc_mode_coupling_matrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
function coupling_matrix = calc_mode_coupling_matrix(x1, mode_profiles1, x2, mode_profiles2)
% calc_mode_coupling_matrix Calculate the matrix that couples the fields
% from one fiber's mode basis to another fiber's mode basis.
% x1 - a Nx1 vector with the spatial coordinates for the original fiber
% mode_profiles1 - a (Nx1, Nx1, num_modes1) matrix with the spatial mode profiles for each mode of the original fiber
% x2 - a Nx2 vector with the spatial coordinates for the final fiber
% mode_profiles2 - a (Nx2, Nx2, num_modes2) matrix with the spatial mode profiles for each mode of the final fiber
%
% x1 and x2 should be in the same units, but they do not need to have the
% same extents or the same number of grid points. It is important, however,
% that the 0 point of x1 corresponds to the true center for fiber1, and the
% 0 point of x2 corresponds to the true center for fiber2.
%
% The order of 1 and 2 does matter, the resulting coupling matrix is
% defined such that A2 = T A1, i.e. T is a num_modes2xnum_modes1 matrix
% To go the other way, it will just be the transpose of T
%
% The matrix is calculated by Tij = integral{Fi/Ni*Fj/Nj dxdy}, where Fi
% and Fj are the spatial fields of modes i in the original fiber and j in
% the final fiber, and Ni and Nj are their normalization constants
num_modes1 = size(mode_profiles1, 3);
num_modes2 = size(mode_profiles2, 3);
% The fiber with the larger spatial extents will be used as the default,
% and the one with the smaller spatial extents will be interpolated
if max(x1) > max(x2)
x = x1;
else
x = x2;
end
Nx = length(x);
[X, Y] = meshgrid(x, x);
standard_mode_profiles1 = zeros(Nx, Nx, num_modes1);
standard_mode_profiles2 = zeros(Nx, Nx, num_modes2);
% Interpolate the fields with the smaller spatial extents
if max(x1) > max(x2)
% In this case we keep the original modes the same...
standard_mode_profiles1 = mode_profiles1;
% And interpolate the final modes to fit
[X2, Y2] = meshgrid(x2, x2);
for midx = 1:num_modes2
standard_mode_profiles2(:, :, midx) = interp2(X2, Y2, mode_profiles2(:, :, midx), X, Y);
end
standard_mode_profiles2(isnan(standard_mode_profiles2)) = 0;
else
% In this case we keep the final modes the same...
standard_mode_profiles2 = mode_profiles2;
% And interpolate the original modes to fit
[X1, Y1] = meshgrid(x1, x1);
for midx = 1:num_modes1
standard_mode_profiles1(:, :, midx) = interp2(X1, Y1, mode_profiles1(:, :, midx), X, Y);
end
standard_mode_profiles1(isnan(standard_mode_profiles1)) = 0;
end
% Calculate the normalization constants for both sets of modes
norms1 = zeros(num_modes1, 1);
for midx = 1:num_modes1
norms1(midx) = sqrt(sum(sum(abs(standard_mode_profiles1(:, :, midx)).^2)));
end
norms2 = zeros(num_modes2, 1);
for midx = 1:num_modes2
norms2(midx) = sqrt(sum(sum(abs(standard_mode_profiles2(:, :, midx)).^2)));
end
% Finally, calcaulte the coupling matrix
coupling_matrix = zeros(num_modes2, num_modes1);
for midx1 = 1:num_modes2
for midx2 = 1:num_modes1
coupling_matrix(midx1, midx2) = sum(sum(standard_mode_profiles2(:, :, midx1).*standard_mode_profiles1(:, :, midx2)))/ ...
(norms2(midx1)*norms1(midx2));
end
end
end