-
Notifications
You must be signed in to change notification settings - Fork 76
/
add_pca.py
203 lines (149 loc) · 8.12 KB
/
add_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python
'''
MIT License
Copyright (c) 2021 Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford and Tobias Fischer
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
Trains a PCA model and adds a WPCA layer to an existing checkpoint.
'''
from __future__ import print_function
import argparse
import configparser
import os
import random
from os.path import join, isfile
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, SubsetRandomSampler
import numpy as np
from patchnetvlad.training_tools.tools import pca
from patchnetvlad.tools.datasets import input_transform
from patchnetvlad.models.models_generic import get_backend, get_model, Flatten, L2Norm
from patchnetvlad.tools import PATCHNETVLAD_ROOT_DIR
from tqdm.auto import tqdm
from patchnetvlad.training_tools.msls import MSLS, ImagesFromList
from patchnetvlad.tools.datasets import PlaceDataset
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Patch-NetVLAD-add-pca')
parser.add_argument('--config_path', type=str, default=join(PATCHNETVLAD_ROOT_DIR, 'configs/train.ini'),
help='File name (with extension) to an ini file that stores most of the configuration data for patch-netvlad')
parser.add_argument('--resume_path', type=str, default='',
help='Full path and name (with extension) to load checkpoint from, for resuming training.')
parser.add_argument('--dataset_root_dir', type=str, default='/work/qvpr/data/raw/Mapillary_Street_Level_Sequences',
help='Root directory of dataset')
parser.add_argument('--dataset_choice', type=str, default='mapillary', help='choice of mapillary or pitts, for PCA',
choices=['mapillary', 'pitts'])
parser.add_argument('--threads', type=int, default=6, help='Number of threads for each data loader to use')
parser.add_argument('--nocuda', action='store_true', help='If true, use CPU only. Else use GPU.')
opt = parser.parse_args()
print(opt)
configfile = opt.config_path
assert os.path.isfile(configfile)
config = configparser.ConfigParser()
config.read(configfile)
cuda = not opt.nocuda
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run with --nocuda")
device = torch.device("cuda" if cuda else "cpu")
random.seed(int(config['train']['seed']))
np.random.seed(int(config['train']['seed']))
torch.manual_seed(int(config['train']['seed']))
if cuda:
# noinspection PyUnresolvedReferences
torch.cuda.manual_seed(int(config['train']['seed']))
print('===> Building model')
encoder_dim, encoder = get_backend()
if opt.resume_path: # must resume for PCA
if isfile(opt.resume_path):
print("=> loading checkpoint '{}'".format(opt.resume_path))
checkpoint = torch.load(opt.resume_path, map_location=lambda storage, loc: storage)
config['global_params']['num_clusters'] = str(checkpoint['state_dict']['pool.centroids'].shape[0])
model = get_model(encoder, encoder_dim, config['global_params'], append_pca_layer=False)
model.load_state_dict(checkpoint['state_dict'])
opt.start_epoch = checkpoint['epoch']
print("=> loaded checkpoint '{}'".format(opt.resume_path, ))
else:
raise FileNotFoundError("=> no checkpoint found at '{}'".format(opt.resume_path))
else:
raise ValueError("Need an existing checkpoint in order to run PCA")
isParallel = False
if int(config['global_params']['nGPU']) > 1 and torch.cuda.device_count() > 1:
model.encoder = nn.DataParallel(model.encoder)
model.pool = nn.DataParallel(model.pool)
isParallel = True
model = model.to(device)
pool_size = encoder_dim
if config['global_params']['pooling'].lower() == 'netvlad':
pool_size *= int(config['global_params']['num_clusters'])
print('===> Loading PCA dataset(s)')
nFeatures = 10000
if opt.dataset_choice == 'mapillary':
exlude_panos_training = not config['train'].getboolean('includepanos')
pca_train_set = MSLS(opt.dataset_root_dir, mode='test', cities='train',
transform=input_transform(),
bs=int(config['train']['cachebatchsize']), threads=opt.threads,
margin=float(config['train']['margin']),
exclude_panos=exlude_panos_training)
pca_train_images = pca_train_set.dbImages
elif opt.dataset_choice == 'pitts':
dataset_file_path = join(PATCHNETVLAD_ROOT_DIR, 'dataset_imagenames', 'pitts30k_imageNames_index.txt')
pca_train_set = PlaceDataset(None, dataset_file_path, opt.dataset_root_dir, None, config['train'])
pca_train_images = pca_train_set.images
else:
raise ValueError('Unknown dataset choice: ' + opt.dataset_choice)
if nFeatures > len(pca_train_images):
nFeatures = len(pca_train_images)
sampler = SubsetRandomSampler(np.random.choice(len(pca_train_images), nFeatures, replace=False))
data_loader = DataLoader(
dataset=ImagesFromList(pca_train_images, transform=input_transform()),
num_workers=opt.threads, batch_size=int(config['train']['cachebatchsize']), shuffle=False,
pin_memory=cuda,
sampler=sampler)
print('===> Do inference to extract features and save them.')
model.eval()
with torch.no_grad():
tqdm.write('====> Extracting Features')
dbFeat = np.empty((len(data_loader.sampler), pool_size))
print('Compute', len(dbFeat), 'features')
for iteration, (input_data, indices) in enumerate(tqdm(data_loader)):
input_data = input_data.to(device)
image_encoding = model.encoder(input_data)
vlad_encoding = model.pool(image_encoding)
out_vectors = vlad_encoding.detach().cpu().numpy()
# this allows for randomly shuffled inputs
for idx, out_vector in enumerate(out_vectors):
dbFeat[iteration * data_loader.batch_size + idx, :] = out_vector
del input_data, image_encoding, vlad_encoding
print('===> Compute PCA, takes a while')
num_pcs = int(config['global_params']['num_pcs'])
u, lams, mu = pca(dbFeat, num_pcs)
u = u[:, :num_pcs]
lams = lams[:num_pcs]
print('===> Add PCA Whiten')
u = np.matmul(u, np.diag(np.divide(1., np.sqrt(lams + 1e-9))))
pca_str = 'WPCA'
utmu = np.matmul(u.T, mu)
pca_conv = nn.Conv2d(pool_size, num_pcs, kernel_size=(1, 1), stride=1, padding=0)
# noinspection PyArgumentList
pca_conv.weight = nn.Parameter(torch.from_numpy(np.expand_dims(np.expand_dims(u.T, -1), -1)))
# noinspection PyArgumentList
pca_conv.bias = nn.Parameter(torch.from_numpy(-utmu))
model.add_module(pca_str, nn.Sequential(*[pca_conv, Flatten(), L2Norm(dim=-1)]))
save_path = opt.resume_path.replace(".pth.tar", "_WPCA" + str(num_pcs) + ".pth.tar")
torch.save({'num_pcs': num_pcs, 'state_dict': model.state_dict()}, save_path)
torch.cuda.empty_cache() # garbage clean GPU memory, a bug can occur when Pytorch doesn't automatically clear the
# memory after runs
print('Done')