-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_SDMClimate_grid.r
executable file
·66 lines (48 loc) · 2.79 KB
/
get_SDMClimate_grid.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Prepare SDM climate grid
# Date: February 9th, 2015
# This script prepare grid of the SDM climate for the study area.
## ---------------------------------------------
# First step: The North america SDM climate grid is clipped with a convexHull of the location plots.
# Second step: The average of the climatic variables are compute on the clipped raster and the range of time expected
## Variable selected for the SDM (see 0-SDM_explo_vars in STModel-Calibration model)
## ---------------------------------------------
## Get grid from quicc-for database
## ---------------------------------------------
# Database connection
source('./con_quicc_db.r')
#source('./con_quicc_db_local.r')
#Load librairies
require('reshape2')
# Query
query_SDMClimate_grid <- "SELECT ST_X(geom) as lon, ST_Y(geom) as lat, val, biovar FROM (
SELECT biovar, (ST_PixelAsCentroids(rasters)).* FROM (
SELECT biovar, ST_Union(ST_Clip(ST_Resample(rast,ref_rast),env_stm.env_plots),'MEAN') as rasters
FROM
(SELECT rast, biovar,year_clim FROM clim_rs.past_clim_allbiovars
WHERE year_clim >= 1970 AND year_clim <= 2000) AS rast_noram,
(SELECT ST_Transform(ST_GeomFromText('POLYGON((-79.95454 43.04572,-79.95454 50.95411,-60.04625 50.95411,-60.04625 43.04572,-79.95454 43.04572))',4326),4269) as env_plots) AS env_stm,
(SELECT ST_Union(rast) as ref_rast FROM clim_rs.past_clim_allbiovars WHERE biovar = 'annual_mean_temp' AND year_clim=2010) as ref
WHERE ST_Intersects(rast_noram.rast,env_stm.env_plots)
GROUP BY biovar) AS union_query
) AS points_query;"
## Send the query to the database
res_SDMClimate_grid <- dbGetQuery(con, query_SDMClimate_grid)
## Time: Approx. 5-15 minutes
# Reshaping and writing grid dataset
## ---------------------------------------------
SDMClimate_grid = res_SDMClimate_grid
## Reshape
SDMClimate_grid$biovar <- as.factor(SDMClimate_grid$biovar)
SDMClimate_grid <- dcast(SDMClimate_grid,lon+lat ~ biovar, value.var="val")
#Conversion unit
SDMClimate_grid$mean_diurnal_range <- SDMClimate_grid$mean_diurnal_range/10
SDMClimate_grid$mean_temp_wettest_quarter <- SDMClimate_grid$mean_temp_wettest_quarter/10
SDMClimate_grid$mean_temp_driest_quarter <- SDMClimate_grid$mean_temp_driest_quarter/10
SDMClimate_grid$max_temp_warmest_period <- SDMClimate_grid$max_temp_warmest_period/10
SDMClimate_grid$mean_temp_coldest_quarter <- SDMClimate_grid$mean_temp_coldest_quarter/10
SDMClimate_grid$mean_temp_warmest_quarter <- SDMClimate_grid$mean_temp_warmest_quarter/10
SDMClimate_grid$min_temp_coldest_period <- SDMClimate_grid$min_temp_coldest_period/10
SDMClimate_grid$temp_annual_range <- SDMClimate_grid$temp_annual_range/10
SDMClimate_grid$temp_seasonality <- SDMClimate_grid$temp_seasonality/100
## Write
write.table(SDMClimate_grid, file="out_files/SDMClimate_grid.csv", sep=',', row.names=FALSE)