-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathinternal_coordinates.py
1146 lines (968 loc) · 45.1 KB
/
internal_coordinates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from collections import deque
from itertools import combinations
from time import perf_counter
import numpy as np
from scipy.spatial import distance_matrix
from AaronTools.utils.utils import proj, perp_vector, unique_combinations
def _xyzzy_cross(v1, v2):
"""quick cross product of two 3-D vectors"""
out = np.zeros(3)
out[0] = v1[1] * v2[2] - v1[2] * v2[1]
out[1] = v1[2] * v2[0] - v1[0] * v2[2]
out[2] = v1[0] * v2[1] - v1[1] * v2[0]
return out
def dist(coords_i, coords_j):
return np.sqrt(sum((coords_i - coords_j)**2))
def e_ij(coords_i, coords_j):
v_ij = coords_j - coords_i
r_ij = np.sqrt(sum(v_ij**2))
return v_ij / r_ij
class Coordinate:
n_values = 1
def value(self, coords):
raise NotImplementedError
def s_vector(self, coords):
raise NotImplementedError
class CartesianCoordinate(Coordinate):
n_values = 3
def __init__(self, atom):
self.atom = atom
def __eq__(self, other):
if not isinstance(other, CartesianCoordinate):
return False
return self.atom == other.atom
def __repr__(self):
return "Cartesian coordinate for atom %i" % self.atom
def value(self, coords):
return coords[self.atom]
def s_vector(self, coords):
s = np.zeros((3, 3 * len(coords)))
for i in range(0, 3):
s[i, 3 * self.atom + i] = 1
return s
class Bond(Coordinate):
def __init__(self, atom1, atom2):
self.atom1 = atom1
self.atom2 = atom2
def __eq__(self, other):
if not isinstance(other, Bond):
return False
if self.atom1 == other.atom1 and self.atom2 == other.atom2:
return True
if self.atom1 == other.atom2 and self.atom2 == other.atom1:
return True
return False
def __repr__(self):
return "bond between atom %i and %i" % (self.atom1, self.atom2)
def value(self, coords):
return dist(coords[self.atom1], coords[self.atom2])
def s_vector(self, coords):
s = np.zeros(3 * len(coords))
e_12 = e_ij(coords[self.atom1], coords[self.atom2])
s[3 * self.atom1 : 3 * self.atom1 + 3] = -e_12
s[3 * self.atom2 : 3 * self.atom2 + 3] = e_12
return s
class InverseBond(Coordinate):
def __init__(self, atom1, atom2):
self.atom1 = atom1
self.atom2 = atom2
def __eq__(self, other):
if not isinstance(other, InverseBond):
return False
if self.atom1 == other.atom1 and self.atom2 == other.atom2:
return True
if self.atom1 == other.atom2 and self.atom2 == other.atom1:
return True
return False
def __repr__(self):
return "inverse bond between atom %i and %i" % (self.atom1, self.atom2)
def value(self, coords):
return 1 / dist(coords[self.atom1], coords[self.atom2])
def s_vector(self, coords):
s = np.zeros(3 * len(coords))
e_12 = e_ij(coords[self.atom1], coords[self.atom2])
s[3 * self.atom1 : 3 * self.atom1 + 3] = -e_12
s[3 * self.atom2 : 3 * self.atom2 + 3] = e_12
return s * self.value(coords)
class Angle(Coordinate):
def __init__(self, atom1, atom2, atom3):
self.atom1 = atom1
self.atom2 = atom2
self.atom3 = atom3
def __eq__(self, other):
if not isinstance(other, Angle):
return False
if self.atom2 != other.atom2:
return False
if self.atom1 == other.atom1 and self.atom3 == other.atom3:
return True
if self.atom1 == other.atom3 and self.atom3 == other.atom1:
return True
return False
def __repr__(self):
return "angle %i-%i-%i" % (
self.atom1,
self.atom2,
self.atom3,
)
def value(self, coords):
return Angle.angle(
coords[self.atom1], coords[self.atom2], coords[self.atom3]
)
@staticmethod
def angle(x1, x2, x3):
a2 = sum((x1 - x2)**2)
b2 = sum((x3 - x2)**2)
c2 = sum((x1 - x3)**2)
theta = np.arccos((c2 - a2 - b2) / (-2 * np.sqrt(a2 * b2)))
if np.isnan(theta):
return np.pi
return theta
def s_vector(self, coords):
a = dist(coords[self.atom1], coords[self.atom2])
b = dist(coords[self.atom3], coords[self.atom2])
s = np.zeros(3 * len(coords))
a_ijk = self.value(coords)
e_21 = e_ij(coords[self.atom2], coords[self.atom1])
e_23 = e_ij(coords[self.atom2], coords[self.atom3])
s[3 * self.atom1 : 3 * self.atom1 + 3] = (np.cos(a_ijk) * e_21 - e_23) / (a * np.sin(a_ijk))
s[3 * self.atom3 : 3 * self.atom3 + 3] = (np.cos(a_ijk) * e_23 - e_21) / (b * np.sin(a_ijk))
s[3 * self.atom2 : 3 * self.atom2 + 3] = -s[3 * self.atom1 : 3 * self.atom1 + 3]
s[3 * self.atom2 : 3 * self.atom2 + 3] -= s[3 * self.atom3 : 3 * self.atom3 + 3]
return s
class LinearAngle(Coordinate):
n_values = 2
def __init__(self, atom1, atom2, atom3):
self.atom1 = atom1
self.atom2 = atom2
self.atom3 = atom3
def __eq__(self, other):
if not isinstance(other, LinearAngle):
return False
if self.atom2 != other.atom2:
return False
if self.atom1 == other.atom1 and self.atom3 == other.atom3:
return True
if self.atom1 == other.atom3 and self.atom3 == other.atom1:
return True
return False
def __repr__(self):
return "linear angle %i-%i-%i" % (
self.atom1,
self.atom2,
self.atom3,
)
def value(self, coords):
v = e_ij(coords[self.atom1], coords[self.atom2])
w = e_ij(coords[self.atom3], coords[self.atom2])
return np.dot(v, w)
v2 = _xyzzy_cross(v, coords[self.atom1] - coords[self.atom3])
v2 /= np.linalg.norm(v2)
val1_a = Angle.angle(
coords[self.atom1],
coords[self.atom2],
coords[self.atom2] + v,
)
val1_b = Angle.angle(
coords[self.atom3],
coords[self.atom2],
coords[self.atom2] + v,
)
val2_a = Angle.angle(
coords[self.atom1],
coords[self.atom2],
coords[self.atom2] + v2,
)
val2_b = Angle.angle(
coords[self.atom3],
coords[self.atom2],
coords[self.atom2] + v2,
)
return np.array([val1_a + val1_b, val2_a + val2_b])
def s_vector(self, coords, w=None):
s = np.zeros((2, 3 * len(coords)))
if v is None:
v = perp_vector(e_ij(coords[self.atom1], coords[self.atom2]))
v2 = _xyzzy_cross(v, coords[self.atom1] - coords[self.atom3])
v2 /= np.linalg.norm(v2)
s[0, 3 * self.atom1 : 3 * self.atom1 + 3] = -v / dist(coords[self.atom1], coords[self.atom2])
s[0, 3 * self.atom3 : 3 * self.atom3 + 3] = -v / dist(coords[self.atom2], coords[self.atom3])
s[0, 3 * self.atom2 : 3 * self.atom2 + 3] -= s[0, 3 * self.atom1 : 3 * self.atom1 + 3]
s[0, 3 * self.atom2 : 3 * self.atom2 + 3] -= s[0, 3 * self.atom3 : 3 * self.atom3 + 3]
s[1, 3 * self.atom1 : 3 * self.atom1 + 3] = -v2 / dist(coords[self.atom1], coords[self.atom2])
s[1, 3 * self.atom3 : 3 * self.atom3 + 3] = -v2 / dist(coords[self.atom2], coords[self.atom3])
s[1, 3 * self.atom2 : 3 * self.atom2 + 3] -= s[0, 3 * self.atom1 : 3 * self.atom1 + 3]
s[1, 3 * self.atom2 : 3 * self.atom2 + 3] -= s[0, 3 * self.atom3 : 3 * self.atom3 + 3]
return s
class LinearAngle4(Coordinate):
n_values = 1
def __init__(self, atom1, atom2, atom3, atom4):
self.atom1 = atom1
self.atom2 = atom2
self.atom3 = atom3
self.atom4 = atom4
def __eq__(self, other):
if not isinstance(other, LinearAngle4):
return False
if self.atom2 != other.atom2:
return False
if (
self.atom1 == other.atom1 and
self.atom3 == other.atom3
):
return True
if (
self.atom1 == other.atom3 and
self.atom3 == other.atom1
):
return True
return False
def __repr__(self):
return "linear angle %i-%i-%i (%i)" % (
self.atom1,
self.atom2,
self.atom3,
self.atom4
)
def value(self, coords):
return \
Angle.angle(
coords[self.atom1], coords[self.atom2], coords[self.atom4]
) + Angle.angle(
coords[self.atom4], coords[self.atom2], coords[self.atom3]
)
@staticmethod
def angle(x1, x2, x3):
a2 = sum((x1 - x2)**2)
b2 = sum((x3 - x2)**2)
c2 = sum((x1 - x3)**2)
theta = np.arccos((c2 - a2 - b2) / (-2 * np.sqrt(a2 * b2)))
if np.isnan(theta):
return np.pi
return theta
def s_vector(self, coords):
a = dist(coords[self.atom1], coords[self.atom2])
b = dist(coords[self.atom4], coords[self.atom2])
s = np.zeros(3 * len(coords))
a_ijk = Angle.angle(coords[self.atom1], coords[self.atom2], coords[self.atom4])
e_21 = e_ij(coords[self.atom2], coords[self.atom1])
e_23 = e_ij(coords[self.atom2], coords[self.atom4])
s[3 * self.atom1 : 3 * self.atom1 + 3] = (np.cos(a_ijk) * e_21 - e_23) / (a * np.sin(a_ijk))
s[3 * self.atom4 : 3 * self.atom4 + 3] = (np.cos(a_ijk) * e_23 - e_21) / (b * np.sin(a_ijk))
s[3 * self.atom2 : 3 * self.atom2 + 3] = -s[3 * self.atom1 : 3 * self.atom1 + 3]
s[3 * self.atom2 : 3 * self.atom2 + 3] -= s[3 * self.atom4 : 3 * self.atom4 + 3]
a = dist(coords[self.atom4], coords[self.atom2])
b = dist(coords[self.atom3], coords[self.atom2])
a_ijk = Angle.angle(coords[self.atom4], coords[self.atom2], coords[self.atom3])
e_21 = e_ij(coords[self.atom2], coords[self.atom4])
e_23 = e_ij(coords[self.atom2], coords[self.atom3])
s[3 * self.atom4 : 3 * self.atom4 + 3] += (np.cos(a_ijk) * e_21 - e_23) / (a * np.sin(a_ijk))
s[3 * self.atom3 : 3 * self.atom3 + 3] += (np.cos(a_ijk) * e_23 - e_21) / (b * np.sin(a_ijk))
s[3 * self.atom2 : 3 * self.atom2 + 3] += -s[3 * self.atom4 : 3 * self.atom4 + 3]
s[3 * self.atom2 : 3 * self.atom2 + 3] -= s[3 * self.atom3 : 3 * self.atom3 + 3]
return s
class OutOfPlaneBend(Coordinate):
def __init__(self, central_atom, planar_atoms):
self.central_atom = central_atom
self.planar_atoms = planar_atoms
def __repr__(self):
return "atom %i angle out of %i-%i-%i plane" % (self.central_atom, *self.planar_atoms)
def value(self, coords):
e_23 = e_ij(coords[self.central_atom], coords[self.planar_atoms[1]])
e_24 = e_ij(coords[self.central_atom], coords[self.planar_atoms[2]])
e_12 = e_ij(coords[self.planar_atoms[0]], coords[self.central_atom])
v = _xyzzy_cross(e_23, e_24)
v /= np.linalg.norm(v)
pv = proj(e_12, v)
n = np.linalg.norm(pv)
k = np.arccos(n)
if np.isnan(k):
return 0
return np.pi / 2 - k
def s_vector(self, coords):
s = np.zeros(3 * len(coords))
e_23 = e_ij(coords[self.central_atom], self.planar_atoms[1])
e_24 = e_ij(coords[self.central_atom], self.planar_atoms[2])
e_21 = e_ij(coords[self.central_atom], self.planar_atoms[0])
r_23 = dist(coords[self.central_atom], self.planar_atoms[1])
r_24 = dist(coords[self.central_atom], self.planar_atoms[2])
r_21 = dist(coords[self.central_atom], self.planar_atoms[0])
phi_i = Angle.angle(
coords[self.planar_atoms[2]],
coords[self.central_atom],
coords[self.planar_atoms[1]],
)
phi_k = Angle.angle(
coords[self.planar_atoms[0]],
coords[self.central_atom],
coords[self.planar_atoms[2]],
)
phi_l = Angle.angle(
coords[self.planar_atoms[0]],
coords[self.central_atom],
coords[self.planar_atoms[1]],
)
theta = self.value(coords)
v = _xyzzy_cross(e_23, e_24) / np.sin(phi_i)
s[3 * self.planar_atoms[0] : 3 * self.planar_atoms[0] + 3] = 1 / r_21
s[3 * self.planar_atoms[0] : 3 * self.planar_atoms[0] + 3] *= v
s[3 * self.planar_atoms[0] : 3 * self.planar_atoms[0] + 3] /= np.cos(theta)
s[3 * self.planar_atoms[0] : 3 * self.planar_atoms[0] + 3] -= np.tan(theta) * e_21
s[3 * self.planar_atoms[1] : 3 * self.planar_atoms[1] + 3] = 1 / r_23
s[3 * self.planar_atoms[1] : 3 * self.planar_atoms[1] + 3] *= v
s[3 * self.planar_atoms[1] : 3 * self.planar_atoms[1] + 3] /= np.cos(theta) * np.sin(phi_i) ** 2
s[3 * self.planar_atoms[1] : 3 * self.planar_atoms[1] + 3] *= np.cos(phi_i) * np.cos(phi_k) - np.cos(phi_l)
s[3 * self.planar_atoms[2] : 3 * self.planar_atoms[2] + 3] = 1 / r_24
s[3 * self.planar_atoms[2] : 3 * self.planar_atoms[2] + 3] *= v
s[3 * self.planar_atoms[2] : 3 * self.planar_atoms[2] + 3] /= np.cos(theta) * np.sin(phi_i) ** 2
s[3 * self.planar_atoms[2] : 3 * self.planar_atoms[2] + 3] *= np.cos(phi_i) * np.cos(phi_l) - np.cos(phi_k)
for i in self.planar_atoms:
s[3 * self.central_atom : 3 * self.central_atom + 3] -= s[3 * i : 3 * i + 3]
return s
class Torsion(Coordinate):
def __init__(self, group1, atom1, atom2, group2, improper=False):
self.group1 = group1
self.atom1 = atom1
self.atom2 = atom2
self.group2 = group2
self.improper = improper
def __repr__(self):
out = "torsional angle ("
out += ",".join(str(i) for i in self.group1)
out += ")-%i-%i-(" % (self.atom1, self.atom2)
out += ",".join(str(i) for i in self.group2)
out += ")"
return out
def __eq__(self, other):
if not isinstance(other, Torsion):
return False
if self.improper:
if self.group2[0] != other.group2[0]:
return False
self_plane = set([self.atom1, self.atom2, *self.group1])
other_plane = set([other.atom1, other.atom2, *other.group1])
if self_plane != other_plane:
return False
return True
if (
self.atom1 != other.atom1 and self.atom2 != other.atom2
) and (
self.atom1 != other.atom2 and self.atom2 != other.atom1
):
return False
for a1 in self.group1:
if a1 not in other.group1 or a1 not in other.group2:
return False
for a2 in self.group2:
if a2 not in other.group2 or a2 not in other.group1:
return False
return True
def value(self, coords):
e_i1 = e_ij(coords[self.group1[0]], coords[self.atom1])
e_12 = e_ij(coords[self.atom1], coords[self.atom2])
e_2l = e_ij(coords[self.atom2], coords[self.group2[0]])
v1 = _xyzzy_cross(e_i1, e_12)
v2 = _xyzzy_cross(e_12, e_2l)
angle = _xyzzy_cross(v1, v2)
angle = np.dot(angle, e_12)
angle = np.arctan2(
angle,
np.dot(v1, v2),
)
return angle
def s_vector(self, coords):
s = np.zeros(3 * len(coords))
e_12 = e_ij(coords[self.atom1], coords[self.atom2])
r_12 = dist(coords[self.atom1], coords[self.atom2])
for i in self.group1:
e_i1 = e_ij(coords[i], coords[self.atom1])
a_i12 = Angle.angle(coords[i], coords[self.atom1], coords[self.atom2])
r_i1 = dist(coords[i], coords[self.atom1])
s[3 * i : 3 * i + 3] = -1 / len(self.group1)
s[3 * i : 3 * i + 3] *= _xyzzy_cross(e_i1, e_12) / r_i1
s[3 * i : 3 * i + 3] /= np.sin(a_i12) ** 2
s[3 * self.atom1 : 3 * self.atom1 + 3] += (
(r_12 - r_i1 * np.cos(a_i12)) / (r_i1 * r_12 * np.sin(a_i12) ** 2)
) * _xyzzy_cross(e_i1, e_12) / len(self.group1)
s[3 * self.atom2 : 3 * self.atom2 + 3] += (
(np.cos(a_i12) / (r_12 * np.sin(a_i12) ** 2))
) * _xyzzy_cross(e_i1, e_12) / len(self.group1)
for l in self.group2:
e_l2 = e_ij(coords[l], coords[self.atom2])
a_l21 = Angle.angle(coords[l], coords[self.atom2], coords[self.atom1])
r_l2 = dist(coords[l], coords[self.atom2])
s[3 * l : 3 * l + 3] = -1 / len(self.group2)
s[3 * l : 3 * l + 3] *= _xyzzy_cross(e_l2, -e_12) / r_l2
s[3 * l : 3 * l + 3] /= np.sin(a_l21) ** 2
s[3 * self.atom2 : 3 * self.atom2 + 3] += (
(r_12 - r_l2 * np.cos(a_l21)) / (r_l2 * r_12 * np.sin(a_l21) ** 2)
) * _xyzzy_cross(e_l2, -e_12) / len(self.group2)
s[3 * self.atom1 : 3 * self.atom1 + 3] += (
np.cos(a_l21) / (r_12 * np.sin(a_l21) ** 2)
) * _xyzzy_cross(e_l2, -e_12) / len(self.group2)
return s
class InternalCoordinateSet:
def __init__(
self,
geometry,
use_improper_torsions=True,
use_inverse_bonds=False,
torsion_type="combine-similar",
oop_type="none",
):
self.geometry = geometry.copy(copy_atoms=True)
geometry = self.geometry
self.coordinates = {
"bonds": [],
"inverse bonds": [],
"angles": [],
"linear angles": [],
"torsions": [],
"out of plane bends": [],
}
fragments = []
start = perf_counter()
for atom in geometry.atoms:
if not any(atom in fragment for fragment in fragments):
new_fragment = geometry.get_fragment(atom, stop=atom)
fragments.append(new_fragment)
# TODO: prioritize H-bonds
while len(fragments) > 1:
min_d = None
closest_ndx = None
for i, frag1 in enumerate(fragments):
coords1 = geometry.coordinates(frag1)
for frag2 in fragments[:i]:
coords2 = geometry.coordinates(frag2)
dist = distance_matrix(coords1, coords2)
this_closest = np.min(dist)
if min_d is None or this_closest < min_d:
k = dist.argmin()
min_d = this_closest
ndx = np.where(dist == np.min(dist))
closest_ndx = (frag1, frag2, [ndx[0][0], ndx[1][0]])
frag1, frag2, ndx = closest_ndx
frag1[ndx[0]].connected.add(frag2[ndx[1]])
frag2[ndx[1]].connected.add(frag1[ndx[0]])
frag1.extend(frag2)
fragments.remove(frag2)
stop = perf_counter()
self.determine_coordinates(
self.geometry,
use_improper_torsions=use_improper_torsions,
use_inverse_bonds=use_inverse_bonds,
torsion_type=torsion_type,
oop_type=oop_type,
)
self.supplement_missing(geometry.coords)
@property
def n_dimensions(self):
n = 0
for coord_type in self.coordinates:
for coord in self.coordinates[coord_type]:
n += coord.n_values
return n
def remove_equivalent_coords(self):
"""
removes angles for which there are equivalent linear angles
"""
remove_coords = []
for i, coord1 in enumerate(self.coordinates["angles"]):
if not isinstance(coord1, Angle):
continue
for coord2 in self.coordinates["linear angles"]:
try:
if coord1.atom2 != coord2.atom2:
continue
except AttributeError:
continue
if coord1.atom1 == coord2.atom1 and coord1.atom3 == coord2.atom3:
remove_coords.append(i)
if coord1.atom3 == coord2.atom1 and coord1.atom1 == coord2.atom3:
remove_coords.append(i)
print("removing", len(remove_coords), "coordinates")
for i in remove_coords[::-1]:
self.coordinates["angles"].pop(i)
def determine_coordinates(
self,
geometry,
use_improper_torsions=True,
use_inverse_bonds=False,
torsion_type="combine-similar",
oop_type="none",
):
"""
determines the (redundant) internal coordinate set for the
given AaronTools geometry
use_improper_torsions: use improper torsional angles instead of
out of plane bend angle
"""
coords = geometry.coords
ndx = {a: i for i, a in enumerate(geometry.atoms)}
added_coords = False
BondClass = Bond
bond_type = "bonds"
if use_inverse_bonds:
BondClass = InverseBond
bond_type = "inverse bonds"
ranks = geometry.canonical_rank(break_ties=False)
for atom1 in geometry.atoms:
# TODO: replace the planarity check with SVD/eigenvalue decomp
# of the inner product of these atoms coordinates with themselves
# a small singular value would indicate planarity
# might have to do unit vectors instead of coordinates
# relative to atom1
if oop_type != "none":
if len(atom1.connected) > 2:
vsepr, _ = atom1.get_vsepr()
# print(atom1, vsepr)
if vsepr and "planar" in vsepr:
for trio in combinations(atom1.connected, 3):
trio_ndx = [ndx[a] for a in trio]
if not use_improper_torsions:
oop_bend = OutOfPlaneBend(
ndx[atom1], [ndx[a] for a in trio]
)
else:
oop_bend = Torsion(
[trio_ndx[0]], trio_ndx[1], trio_ndx[2], [ndx[atom1]],
improper=True,
)
if not any(coord == oop_bend for coord in self.coordinates["out of plane bends"]):
added_coords = True
self.coordinates["out of plane bends"].append(oop_bend)
# print("added oop bend:")
# print("\t", atom1.name)
# print("\t", [a.name for a in trio])
for atom2 in atom1.connected:
new_bond = BondClass(ndx[atom1], ndx[atom2])
if not any(coord == new_bond for coord in self.coordinates[bond_type]):
added_coords = True
self.coordinates[bond_type].append(new_bond)
# print("new bond:")
# print("\t", atom1.name)
# print("\t", atom2.name)
# we need to skip linear things when adding torsions
# consider allene:
# H1 H4
# \ /
# C1=C2=C3
# / \
# H2 H3
# we don't want to define a torsion involving C1-C2-C3
# because those are linear
# we should instead add torsions for H1-C1-C3-H4 etc.
# also for C1-C2-C3, this should be a linear bend and not
# a regular angle
# if atom1 or atom2 is C2, keep branching out until
# we find an atom with bonds that aren't colinear
# do this for atom1 and atom2
nonlinear_atoms_1 = []
linear_atoms_1 = []
exclude_atoms = [atom1, atom2]
stack = deque(list(atom1.connected - set(exclude_atoms)))
next_stack = deque([])
while stack:
next_connected = stack.popleft()
connected = next_connected.connected - set(exclude_atoms)
next_stack.extend(connected)
if abs(atom1.angle(next_connected, atom2) - np.pi) < (np.pi / 12):
linear_atoms_1.append(next_connected)
else:
nonlinear_atoms_1.append(next_connected)
if not stack and not nonlinear_atoms_1:
stack = next_stack
next_stack = deque([])
nonlinear_atoms_2 = []
linear_atoms_2 = []
exclude_atoms.extend(nonlinear_atoms_1)
stack = deque(list(atom2.connected - set(exclude_atoms)))
next_stack = deque([])
while stack:
next_connected = stack.popleft()
connected = next_connected.connected - set(exclude_atoms)
next_stack.extend(connected)
if abs(atom2.angle(next_connected, atom1) - np.pi) < (np.pi / 12):
linear_atoms_2.append(next_connected)
else:
nonlinear_atoms_2.append(next_connected)
if not stack and not nonlinear_atoms_2:
stack = next_stack
next_stack = deque([])
if nonlinear_atoms_1 and nonlinear_atoms_2:
# print("non linear groups", nonlinear_atoms_1, nonlinear_atoms_2)
central_atom1 = atom1
central_atom2 = atom2
for atom in linear_atoms_1:
if atom in nonlinear_atoms_1[0].connected:
central_atom1 = atom
for atom in linear_atoms_2:
if atom in nonlinear_atoms_2[0].connected:
central_atom2 = atom
if torsion_type == "combine-similar":
nonlinear_groups_1 = []
for atom in nonlinear_atoms_1:
for group in nonlinear_groups_1:
if ranks[ndx[group[0]]] == ranks[ndx[atom]]:
group.append(atom)
break
else:
nonlinear_groups_1.append([atom])
nonlinear_groups_2 = []
for atom in nonlinear_atoms_2:
for group in nonlinear_groups_2:
if ranks[ndx[group[0]]] == ranks[ndx[atom]]:
group.append(atom)
break
else:
nonlinear_groups_2.append([atom])
for group1, group2 in unique_combinations(
nonlinear_groups_1, nonlinear_groups_2
):
new_torsion = Torsion(
[ndx[a] for a in group1],
ndx[central_atom1],
ndx[central_atom2],
[ndx[a] for a in group2],
)
if not any(new_torsion == coord for coord in self.coordinates["torsions"]):
added_coords = True
self.coordinates["torsions"].append(new_torsion)
elif torsion_type == "combine-all":
new_torsion = Torsion(
[ndx[a] for a in nonlinear_atoms_1],
ndx[central_atom1],
ndx[central_atom2],
[ndx[a] for a in nonlinear_atoms_2],
)
if not any(new_torsion == coord for coord in self.coordinates["torsions"]):
added_coords = True
self.coordinates["torsions"].append(new_torsion)
elif torsion_type == "all":
for a1, a2 in unique_combinations(
nonlinear_atoms_1, nonlinear_atoms_2
):
# print(a1, a2)
# print(central_atom1, central_atom2)
new_torsion = Torsion(
[ndx[a1]], ndx[central_atom1], ndx[central_atom2], [ndx[a2]],
)
if not any(new_torsion == coord for coord in self.coordinates["torsions"]):
added_coords = True
self.coordinates["torsions"].append(new_torsion)
# print("new torsion:")
# print("\t", [a.name for a in nonlinear_atoms_1])
# print("\t", central_atom1.name)
# print("\t", central_atom2.name)
# print("\t", [a.name for a in nonlinear_atoms_2])
else:
raise NotImplementedError("torsion_type not known: %s" % torsion_type)
# else:
# print("not adding torsions - not enough bonds to either", atom1, atom2)
for atom3 in set(nonlinear_atoms_1).intersection(atom1.connected):
if atom3 is atom2:
continue
new_angle = Angle(ndx[atom3], ndx[atom1], ndx[atom2])
if not any(coord == new_angle for coord in self.coordinates["angles"]):
added_coords = True
self.coordinates["angles"].append(new_angle)
# print("new angle:")
# print("\t", atom3.name)
# print("\t", atom1.name)
# print("\t", atom2.name)
if linear_atoms_1:
added_angles = []
for atom3 in geometry.get_fragment(atom1, stop=atom2):
if atom3 in linear_atoms_1:
continue
if (
atom3 is atom1 or
atom3 is atom2
):
continue
# print(1, atom2, atom1, atom3)
angle = atom1.angle(atom2, atom3)
if angle > 0.1 and angle < 0.9 * np.pi:
# print("angle is not linear", added_angles)
for angle in added_angles:
if angle.atom2 != ndx[atom1]:
continue
a_ij = e_ij(coords[angle.atom2, :], coords[angle.atom1, :])
a_jk = e_ij(coords[angle.atom2, :], coords[angle.atom3, :])
va = _xyzzy_cross(a_ij, a_jk)
b_ij = e_ij(atom1.coords, atom2.coords)
b_jk = e_ij(atom1.coords, atom3.coords)
vb = _xyzzy_cross(b_ij, b_jk)
# print(va, vb)
d = np.dot(va, vb)
if abs(d) > 0.8 or abs(d) < 0.2:
# print("angle in plane already added")
break
else:
# print("angle is not in same plane as", angle, d)
pass
else:
new_angle = Angle(ndx[atom2], ndx[atom1], ndx[atom3])
if not any(coord == new_angle for coord in self.coordinates["linear angles"]):
added_coords = True
self.coordinates["linear angles"].append(new_angle)
added_angles.append(new_angle)
# print("1 added linear angle half", new_angle)
else:
# print("angle exists")
pass
else:
# print("angle is linear", angle)
pass
for atom3 in set(nonlinear_atoms_2).intersection(atom2.connected):
if atom3 is atom1:
continue
new_angle = Angle(ndx[atom3], ndx[atom2], ndx[atom1])
if not any(coord == new_angle for coord in self.coordinates["angles"]):
added_coords = True
self.coordinates["angles"].append(new_angle)
# print("new angle:")
# print("\t", atom3.name)
# print("\t", atom2.name)
# print("\t", atom1.name)
if linear_atoms_2:
added_angles = []
for atom3 in geometry.get_fragment(atom2, stop=atom1):
if atom3 in linear_atoms_1:
continue
if (
atom3 is atom1 or
atom3 is atom2
):
continue
# print(2, atom1, atom2, atom3)
angle = atom2.angle(atom1, atom3)
if angle > 0.1 and angle < 0.9 * np.pi:
for angle in added_angles:
if angle.atom2 != ndx[atom2]:
continue
a_ij = e_ij(coords[angle.atom2, :], coords[angle.atom1, :])
a_jk = e_ij(coords[angle.atom2, :], coords[angle.atom3, :])
va = _xyzzy_cross(a_ij, a_jk)
b_ij = e_ij(atom2.coords, atom1.coords)
b_jk = e_ij(atom2.coords, atom3.coords)
vb = _xyzzy_cross(b_ij, b_jk)
d = np.dot(va, vb)
# print(va, vb)
if abs(d) > 0.8 or abs(d) < 0.2:
# print("angle in plane already added")
break
else:
# print("angle is not in same plane as", angle, d)
pass
else:
new_angle = Angle(ndx[atom1], ndx[atom2], ndx[atom3])
if not any(coord == new_angle for coord in self.coordinates["linear angles"]):
added_coords = True
self.coordinates["linear angles"].append(new_angle)
added_angles.append(new_angle)
# print("2 added linear angle half", new_angle)
else:
# print("angle exists")
pass
else:
# print("angle is linear", angle)
pass
print("there are %i internal coordinates" % self.n_dimensions)
print("there would be %i cartesian coordinates" % (3 * len(geometry.atoms)))
# print(len(self.coordinates["torsions"]))
# asdf
return added_coords
def supplement_missing(self, coords):
"""adds cartesian coordinates to atoms where the internal coordinates don't work well"""
# try displacing every cartesian coordinate
# transform the displacement from cartesian to internal
# transform the internal back to cartesian
# the original and transformed cartesian displacements
# are aligned and compared
# if they differ significantly, a cartesian coordinate
# is added for that atom
B = self.B_matrix(coords)
B_inv = np.linalg.pinv(B)
x_step = 1e-2
dx = np.zeros(np.prod(coords.shape))
bad_spots = set()
for i in range(0, len(coords)):
for j in range(0, 3):
dx[3 * i + j] += x_step
dq = np.matmul(B, dx)
dx_back = np.matmul(B_inv, dq)
dx_r = np.reshape(dx, (len(coords), 3))
dx_back_r = np.reshape(dx_back, (len(coords), 3))
dx_r_com = np.mean(dx_r, axis=0)
dx_r -= dx_r_com
dx_back_r_com = np.mean(dx_back_r, axis=0)
dx_back_r -= dx_back_r_com
H = np.matmul(dx_r.T, dx_back_r)
u, w, vh = np.linalg.svd(H)
e = np.eye(3)
if np.linalg.det(u) * np.linalg.det(vh) < 0:
e[2, 2] = -1
R = np.matmul(np.matmul(u, e), vh)
dx_m = np.matmul(dx_r, R)
diff = np.reshape(dx_back_r - dx_m, -1)
dx[3 * i + j] = 0
for k, x in enumerate(diff):
if abs(x) > x_step / 2:
# print(k // 3, k - 3 * (k // 3), x)
bad_spots.add(k // 3)
for k in bad_spots:
# print("adding cartesian for", k)
self.coordinates.setdefault("cartesian", [])
self.coordinates["cartesian"].append(CartesianCoordinate(k))
def B_matrix(self, coords):
"""
returns the B matrix (B_ij = dq_i/dx_j)
"""
B = np.zeros((self.n_dimensions, 3 * len(coords)))
i = 0
for coord_type in self.coordinates:
for coord in self.coordinates[coord_type]:
B[i: i + coord.n_values] = coord.s_vector(coords)
i += coord.n_values
return B
def values(self, coords):
"""
returns vector with the values of internal coordinates for the
given Cartesian coordinates (coords)
"""
q = np.zeros(self.n_dimensions)
i = 0
for coord_type in self.coordinates:
for coord in self.coordinates[coord_type]:
q[i: i + coord.n_values] = coord.value(coords)
i += coord.n_values
return q