-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_HkS_data.py
141 lines (135 loc) · 4.68 KB
/
prepare_HkS_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
import os
from collections import OrderedDict
from selection import read_data, read_sentiment, get_item_aspect_sentiments, get_aspect_id_map, get_aspect_opinion_vectors, get_aspect_sentiments, distance
EPS = 1e-9
def parse_arguments():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
"-i",
"--input_dir",
type=str,
default="data/cellphone/result/unified-integer-regression-rs-3-init-integer-regression-rs-3-ld-1-mu-0.1",
)
parser.add_argument(
"-d",
"--data_path",
type=str,
default="data/cellphone/also_bought.txt"
)
parser.add_argument(
"-s", "--sentiment_path", type=str, default=None,
)
parser.add_argument(
"-k",
"--k",
type=int,
default=1,
help="Maximum number of reviews for in selection set",
)
parser.add_argument(
"-ld",
"--ld",
type=float,
default=1.0,
help="Traceoff factor of aspect distance and opinion distance",
)
parser.add_argument("-mu", "--mu", type=float, default=1.0)
parser.add_argument(
"-wt",
"--weight_type",
type=str,
default=""
)
parser.add_argument(
"-t",
"--target",
type=str,
default=None,
help="Target indices of data to perform selection",
)
args = parser.parse_args()
print(args)
return args
def export_weighted_edges(sentiment, input_dir, target_item, k, ld=1.0, mu=1.0, weight_type='aspect_only'):
result_dir = os.path.join(input_dir, "/".join(target_item))
result_path = os.path.join(result_dir, '{}.txt'.format(target_item))
result = OrderedDict()
with open(result_path, 'r') as f:
for line in f:
tokens = line.strip().split(',')
result[tokens[0]] = tokens[1:]
aspect_id_map = get_aspect_id_map(sentiment, list(result.keys()))
target_aspect_vector, _ = get_aspect_opinion_vectors(
aspect_id_map, get_item_aspect_sentiments(sentiment, target_item)
)
aspect_vectors = []
opinion_vectors = []
target_opinion_vectors = []
for inc, (item, selected_reviewers) in enumerate(result.items()):
_, target_opinion_vector = get_aspect_opinion_vectors(
aspect_id_map, get_item_aspect_sentiments(sentiment, item)
)
target_opinion_vectors.append(target_opinion_vector)
aspect_vector, opinion_vector = get_aspect_opinion_vectors(
aspect_id_map, get_aspect_sentiments(sentiment, item, selected_reviewers)
)
aspect_vectors.append(aspect_vector)
opinion_vectors.append(opinion_vector)
# compute distance
pairs = []
distances = []
all_items = list(result.keys())
d_opinions = [
distance(target_opinion_vector, opinion_vectors[i])
for i in range(len(all_items))
]
d_aspects = [
ld * ld * distance(target_aspect_vector, aspect_vectors[i])
for i in range(len(all_items))
]
for i in range(len(all_items) - 1):
for j in range(i+1, len(all_items)):
pairs.append((i, j))
d_ij = distance(aspect_vectors[i], aspect_vectors[j]) if weight_type =='aspect_only' else (
d_opinions[i]
+ d_opinions[j]
+ d_aspects[i]
+ d_aspects[j]
+ mu * mu * distance(aspect_vectors[i], aspect_vectors[j])
)
distances.append(d_ij)
max_distance = max(distances) + EPS
weights = [max_distance - d for d in distances]
ext = '_aspect_only' if weight_type == 'aspect_only' else ''
with open(os.path.join(result_dir, 'edges{}.txt'.format(ext)), 'w') as f:
for (i, j), w in zip(pairs, weights):
f.write('{} {} {}\n'.format(i, j, w))
if __name__ == '__main__':
from joblib import Parallel, delayed
args = parse_arguments()
data = read_data(args.data_path)
sentiment = read_sentiment(args.sentiment_path)
begin_index = 0
end_index = len(data)
if args.target is not None:
tokens = args.target.split('-')
begin_index = int(tokens[0])
if int(tokens[1]) < end_index:
end_index = int(tokens[1])
Parallel(n_jobs=(-1), prefer="threads", backend="multiprocessing", verbose=100)(
(
delayed(export_weighted_edges)(
sentiment,
args.input_dir,
target_item,
args.k,
args.ld,
args.mu,
args.weight_type
)
for inc, (target_item, comparison_items) in enumerate(data.items())
if inc >= begin_index and inc <= end_index
)
)