-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.py
82 lines (65 loc) · 2.49 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import uvicorn
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
# Import the necessary methods from your Model module
from Model import initialize_llm, load_data, process_hf_dataset, process_prompt
# Initialize FastAPI app
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize the language model when the app starts
llm = initialize_llm()
@app.get("/")
def check():
return {"message": "Hello World!"}
# Define request body models
class TrainModelRequest(BaseModel):
dataset_name: str
page_content_column: str
name: str
# Class for processing prompts
class ProcessPromptRequest(BaseModel):
prompt: str
# Define endpoint to train model with dataset name
@app.post("/train_model/")
async def train_model(request: TrainModelRequest):
try:
# Call method to process dataset
global conversation_retrieval_chain # Access global variable for chain
name = ''
if(request.name == "0"):
name = None
else:
name = request.name
conversation_retrieval_chain = process_hf_dataset(request.dataset_name, page_content_column=request.page_content_column, name=name, llm=llm)
conversation_retrieval_chain = conversation_retrieval_chain # Update in prompt processor
return {"message": f"Model trained with dataset: {request.dataset_name}, page_content_column: {request.page_content_column}, and name: {request.name}"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/loadData")
async def process_user_prompt():
try:
# Call method to process user prompt using the class
load_data()
return {"success": 'Loaded data'}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Define endpoint for processing user prompt using the class
@app.post("/process_prompt/")
async def process_user_prompt(request: ProcessPromptRequest):
try:
# Call method to process user prompt using the class
print(request.prompt)
response = process_prompt(request.prompt)
return {"response": response}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")