-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
55 lines (38 loc) · 1.37 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import pickle
import torch
SPECIAL_WORDS = {'PADDING': '<PAD>'}
def load_data(path):
"""
Load Dataset from File
"""
input_file = os.path.join(path)
with open(input_file, "r") as f:
data = f.read()
return data
def preprocess_and_save_data(dataset_path, token_lookup, create_lookup_tables):
"""
Preprocess Text Data
"""
text = load_data(dataset_path)
# Ignore notice, since we don't use it for analysing the data
text = text[81:]
token_dict = token_lookup()
for key, token in token_dict.items():
text = text.replace(key, ' {} '.format(token))
text = text.lower()
text = text.split()
vocab_to_int, int_to_vocab = create_lookup_tables(text + list(SPECIAL_WORDS.values()))
int_text = [vocab_to_int[word] for word in text]
pickle.dump((int_text, vocab_to_int, int_to_vocab, token_dict), open('preprocess.p', 'wb'))
def load_preprocess():
"""
Load the Preprocessed Training data and return them in batches of <batch_size> or less
"""
return pickle.load(open('preprocess.p', mode='rb'))
def save_model(filename, decoder):
save_filename = os.path.splitext(os.path.basename(filename))[0] + '.pt'
torch.save(decoder, save_filename)
def load_model(filename):
save_filename = os.path.splitext(os.path.basename(filename))[0] + '.pt'
return torch.load(save_filename)