-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
256 lines (203 loc) · 9.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Good reference: https://pantip.com
# Data collected on Oct 18, 2021, 8:28 PM
# Data collected from https://pantip.com/tag/มนุษย์เงินเดือน with filter on "คลังกระทู้โปรด" (Favourite posts)
# only collect posts with more than 50 comments.
import datetime
import time
from os import path
import re
import pytz
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.webdriver import WebDriver
MAIN_TAG_URL = 'https://pantip.com/tag/มนุษย์เงินเดือน'
CHROME_DRIVER_PATH = './chromedriver'
COMMENT_COUNT_THRESHOLD = 50
service = Service(CHROME_DRIVER_PATH)
browser = webdriver.Chrome(service=service)
# Text Preprocessing
def pre_process(text):
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F"
u"\U0001F300-\U0001F5FF"
u"\U0001F680-\U0001F6FF"
u"\U0001F1E0-\U0001F1FF"
"]+", flags=re.UNICODE)
url_pattern = re.compile("http\S+")
text = url_pattern.sub(r'', text)
return emoji_pattern.sub(r'', text)
# Utilities
def parse_post_date(raw_date_time: str):
month_dict = {
'มกราคม': 1,
'กุมภาพันธ์': 2,
'มีนาคม': 3,
'เมษายน': 4,
'พฤษภาคม': 5,
'มิถุนายน': 6,
'กรกฎาคม': 7,
'สิงหาคม': 8,
'กันยายน': 9,
'ตุลาคม': 10,
'พฤศจิกายน': 11,
'ธันวาคม': 12
}
date, time_text = raw_date_time.split(' เวลา ')
date_number, month_text, be_year = date.split(' ')
month = month_dict[month_text]
time_24_hr, _ = time_text.split(' ')
hour, minute = time_24_hr.split(':')
return datetime.datetime(int(be_year) - 543, month, int(date_number), int(hour), int(minute), 0, 0,
pytz.timezone('Asia/Bangkok'))
def parse_comment_date(raw_date_time: str):
month_dict = {
'มกราคม': 1,
'กุมภาพันธ์': 2,
'มีนาคม': 3,
'เมษายน': 4,
'พฤษภาคม': 5,
'มิถุนายน': 6,
'กรกฎาคม': 7,
'สิงหาคม': 8,
'กันยายน': 9,
'ตุลาคม': 10,
'พฤศจิกายน': 11,
'ธันวาคม': 12
}
date, time_text = raw_date_time.split(' เวลา ')
date_number, month_text, be_year = date.split(' ')
month = month_dict[month_text]
time_24_hr, _ = time_text.split(' ')
hour, minute, second = time_24_hr.split(':')
return datetime.datetime(int(be_year) - 543, month, int(date_number), int(hour), int(minute), int(second), 0,
pytz.timezone('Asia/Bangkok'))
def execute_javascript(driver: WebDriver, script: str):
driver.execute_script(script)
def scroll_down(driver, pixel: int):
execute_javascript(driver, f'window.scrollTo(0, {pixel})')
def go_to_bottom(driver):
SCROLL_PAUSE_TIME = 0.5
last_height = driver.execute_script("return document.body.scrollHeight")
while True:
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(SCROLL_PAUSE_TIME)
new_height = driver.execute_script("return document.body.scrollHeight")
if new_height == last_height:
break
last_height = new_height
def post_collection():
browser.get(MAIN_TAG_URL)
WebDriverWait(browser, 10).until(
EC.presence_of_element_located((By.CSS_SELECTOR, 'a[data-type="7"]'))
)
scroll_down(browser, 700)
time.sleep(1)
favorite_posts_button = browser.find_element(by=By.CSS_SELECTOR, value='a[data-type="7"]')
favorite_posts_button.click()
time.sleep(2)
for _ in range(50):
go_to_bottom(browser)
time.sleep(1)
post_list = browser.find_elements(by=By.CSS_SELECTOR, value='ul.pt-list > li.pt-list-item')
post_list = post_list[11:]
processed_list = []
for post in post_list:
title_element = post.find_element(by=By.CSS_SELECTOR, value='div.pt-list-item__title > h2 > a')
title = title_element.text
post_url = title_element.get_attribute('href')
post_id = post_url.replace('https://pantip.com/topic/', '')
comment_count_element = post.find_element(by=By.CSS_SELECTOR,
value='div.pt-list-item__stats > span.pt-li_stats-comment')
raw_comment_count = comment_count_element.text.replace('message', '')
if 'K' in raw_comment_count:
comment_count = int(float(raw_comment_count.replace('K', '')) * 1000)
else:
comment_count = int(raw_comment_count)
vote_count_element = post.find_element(by=By.CSS_SELECTOR,
value='div.pt-list-item__stats > span.pt-li_stats-vote')
raw_vote_count = vote_count_element.text.replace('add_box', '')
if 'K' in raw_vote_count:
vote_count = int(float(raw_vote_count.replace('K', '')) * 1000)
else:
vote_count = int(raw_vote_count)
published_date_element = post.find_element(by=By.CSS_SELECTOR, value='div.pt-list-item__info > span')
published_date = parse_post_date(published_date_element.get_attribute('title'))
processed_list.append({
'post_id': post_id,
'title': title,
'url': post_url,
'comment_count': comment_count,
'vote_count': vote_count,
'published_date': published_date.strftime('%Y-%m-%dT%H:%M:%S.%f%z'),
})
filtered_post = list(filter(lambda p: p['comment_count'] > COMMENT_COUNT_THRESHOLD, processed_list))
df = pd.DataFrame(filtered_post)
df.to_csv('posts.csv')
def comment_collection():
posts_df = pd.read_csv('posts.csv')
posts_df.rename(columns={"Unnamed: 0": "index"})
comments = []
for idx, post in posts_df.iterrows():
browser.get(post.url)
time.sleep(1)
go_to_bottom(browser)
time.sleep(1)
isCompleted = False
while not isCompleted:
try:
loading_bar_element = browser.find_element(by=By.CSS_SELECTOR,
value='a.bar-paging-ed')
browser.execute_script("arguments[0].click();", loading_bar_element)
time.sleep(3)
go_to_bottom(browser)
time.sleep(2)
except:
isCompleted = True
post_content_element = browser.find_element(by=By.CSS_SELECTOR, value='.main-post .display-post-story')
post_content = pre_process(post_content_element.text)
published_at_element = browser.find_element(by=By.CSS_SELECTOR,
value='.main-post .display-post-timestamp abbr')
published_at = parse_comment_date(published_at_element.get_attribute('title'))
comments.append({
'comment_id': f'{post.post_id}-0',
'comment_body': post_content,
'collected_at': datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S.%f%z'),
'published_at': published_at.strftime('%Y-%m-%dT%H:%M:%S.%f%z'),
'reply_to': None,
})
comment_element_list = browser.find_elements(by=By.CSS_SELECTOR,
value='.section-comment:not(.sub-comment):not(.hideid):not(.remove-comment)')
for comment_element in comment_element_list:
comment_number_id = comment_element.find_element(by=By.CSS_SELECTOR,
value='span.display-post-number').id
comment_id = f'{post.post_id}-{comment_number_id}'
comment_body_element = comment_element.find_element(by=By.CSS_SELECTOR, value='.display-post-story')
comment_body = pre_process(comment_body_element.text)
comment_published_at_element = comment_element.find_element(by=By.CSS_SELECTOR,
value='.display-post-timestamp abbr')
comment_published_at = parse_comment_date(comment_published_at_element.get_attribute('title'))
comments.append({
'comment_id': comment_id,
'comment_body': comment_body,
'collected_at': datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S.%f%z'),
'published_at': comment_published_at.strftime('%Y-%m-%dT%H:%M:%S.%f%z'),
'reply_to': post.post_id,
})
posts_df.loc[idx, 'comment_count'] = len(comments) - 1
posts_df.loc[idx, 'published_date'] = published_at.strftime('%Y-%m-%dT%H:%M:%S.%f%z')
print(f'{int((idx + 1) / len(posts_df) * 100)}% - Done {idx + 1} post(s) from {len(posts_df)} posts')
posts_df.to_csv('posts.csv')
comments_df = pd.DataFrame(comments)
comments_df.to_csv('comments.csv')
if __name__ == '__main__':
if not path.exists('posts.csv'):
post_collection()
if not path.exists('comments.csv'):
comment_collection()
else:
pass
browser.quit()