-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathddpg_agent.py
304 lines (291 loc) · 14.7 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import os
from datetime import datetime
import numpy as np
from mpi4py import MPI
import matplotlib.pyplot as plt
from models import actor, critic
from utils import sync_networks, sync_grads
from replay_buffer import replay_buffer
from normalizer import normalizer
from her import her_sampler
import time
"""
ddpg with HER (MPI-version)
"""
class ddpg_agent:
def __init__(self, args, env, env_params):
self.savetime = 0
self.args = args
self.env = env
self.env_params = env_params
# create the network
self.actor_network = actor(env_params)
self.critic_network = critic(env_params)
# sync the networks across the cpus
sync_networks(self.actor_network)
sync_networks(self.critic_network)
# build up the target network
self.actor_target_network = actor(env_params)
self.critic_target_network = critic(env_params)
# load the weights into the target networks
self.actor_target_network.load_state_dict(self.actor_network.state_dict())
self.critic_target_network.load_state_dict(self.critic_network.state_dict())
# if use gpu
if self.args.cuda:
self.actor_network.cuda()
self.critic_network.cuda()
self.actor_target_network.cuda()
self.critic_target_network.cuda()
# create the optimizer
self.actor_optim = torch.optim.Adam(self.actor_network.parameters(), lr=self.args.lr_actor)
self.critic_optim = torch.optim.Adam(self.critic_network.parameters(), lr=self.args.lr_critic)
# her sampler
self.her_module = her_sampler(self.args.replay_strategy, self.args.replay_k, self.env.compute_reward)
# create the replay buffer
self.buffer = replay_buffer(self.env_params, self.args.buffer_size, self.her_module.sample_her_transitions)
# 是否加入示教数据
if self.args.add_demo:
self._init_demo_buffer() # initialize replay buffer with demonstration
# create the normalizer
self.o_norm = normalizer(size=env_params['obs'], default_clip_range=self.args.clip_range)
self.g_norm = normalizer(size=env_params['goal'], default_clip_range=self.args.clip_range)
# load the data to continue the training
# model_path = "saved_models/bmirobot-v3/125_True12_model.pt"
# # # model_path = args.save_dir + args.env_name + '/' + str(args.seed) + '_' + str(args.add_demo) + '_model.pt'
# # o_mean, o_std, g_mean, g_std, model = torch.load(model_path, map_location=lambda storage, loc: storage)
# self.actor_network.load_state_dict(model)
# self.o_norm.mean=o_mean
# self.o_norm.std=o_std
# self.g_norm.mean=g_mean
# self.g_norm.std=g_std
self.success_rates = [] # 记录每个epoch的成功率
# create the dict for store the model
if MPI.COMM_WORLD.Get_rank() == 0:
if not os.path.exists(self.args.save_dir):
os.mkdir(self.args.save_dir)
# path to save the model
self.model_path = os.path.join(self.args.save_dir, self.args.env_name)
if not os.path.exists(self.model_path):
os.mkdir(self.model_path)
def plot_success_rate(self):
saved_dir = 'test_rates/'
if not os.path.exists(saved_dir):
os.mkdir(saved_dir)
np.save(saved_dir + str(self.args.seed) + '_' + str(self.args.add_demo) + '_success_rates.npy',
np.array(self.success_rates))
plt.plot(self.success_rates)
plt.show()
def _init_demo_buffer(self):
fileName = self.args.demo_name
demo_data = np.load(fileName, allow_pickle=True)
obs, actions = demo_data['obs'], demo_data['acs']
a_goals, d_goals = demo_data['ag'], demo_data['g']
mb_obs, mb_actions = np.array(obs), np.array(actions)
mb_ag, mb_g = np.array(a_goals), np.array(d_goals)
self.buffer.store_episode([mb_obs, mb_ag, mb_g, mb_actions])
def learn(self):
"""
train the network
"""
print("initial buffer size:", self.buffer.current_size)
# start to collect samples
for epoch in range(self.args.n_epochs):
start_time = time.time()
for cycles_times in range(self.args.n_cycles): # 13.23
mb_obs, mb_ag, mb_g, mb_actions = [], [], [], []
for rollouts_times in range(self.args.num_rollouts_per_mpi):
# reset the rollouts
ep_obs, ep_ag, ep_g, ep_actions = [], [], [], []
# reset the environment
observation = self.env.reset()
obs = observation['observation']
ag = observation['achieved_goal']
g = observation['desired_goal']
# start to collect samples
for t in range(int(self.env_params['max_timesteps'])):
with torch.no_grad(): # 强制之后的内容不进行计算图构建,因为后续要用replay buffer 来更新
input_tensor = self._preproc_inputs(obs, g)
pi = self.actor_network(input_tensor)
action = self._select_actions(pi)
# feed the actions into the environment
if epoch >= 100:
action = np.clip(action, -0.15, 0.15)
observation_new, _, _, info = self.env.step(action)
obs_new = observation_new['observation']
ag_new = observation_new['achieved_goal']
# append rollouts
ep_obs.append(obs.copy())
ep_ag.append(ag.copy())
ep_g.append(g.copy())
ep_actions.append(action.copy())
# re-assign the observation
obs = obs_new
ag = ag_new
ep_obs.append(obs.copy())
ep_ag.append(ag.copy())
mb_obs.append(ep_obs)
mb_ag.append(ep_ag)
mb_g.append(ep_g)
mb_actions.append(ep_actions)
# convert them into arrays
mb_obs = np.array(mb_obs)
mb_ag = np.array(mb_ag)
mb_g = np.array(mb_g)
mb_actions = np.array(mb_actions)
# store the episodes
self.buffer.store_episode([mb_obs, mb_ag, mb_g, mb_actions])
self._update_normalizer([mb_obs, mb_ag, mb_g, mb_actions])
for _ in range(self.args.n_batches):
# train the network
self._update_network()
# soft update
self._soft_update_target_network(self.actor_target_network, self.actor_network)
self._soft_update_target_network(self.critic_target_network, self.critic_network)
print(str(time.time() - start_time))
# start to do the evaluation
success_rate = self._eval_agent()
self.success_rates.append(success_rate)
if MPI.COMM_WORLD.Get_rank() == 0:
print('[{}] epoch is: {}, eval success rate is: {:.3f}'.format(datetime.now(), epoch, success_rate))
self.savetime += 1
torch.save([self.o_norm.mean, self.o_norm.std, self.g_norm.mean, self.g_norm.std,
self.actor_network.state_dict()],
self.model_path + '/' + str(self.args.seed) + '_' + str(self.args.add_demo) + str(
self.savetime) + '_model.pt')
# pre_process the inputs
def _preproc_inputs(self, obs, g):
obs_norm = self.o_norm.normalize(obs)
g_norm = self.g_norm.normalize(g)
# concatenate the stuffs
inputs = np.concatenate([obs_norm, g_norm])
inputs = torch.tensor(inputs, dtype=torch.float32).unsqueeze(0)
if self.args.cuda:
inputs = inputs.cuda()
return inputs
# this function will choose action for the agent and do the exploration
def _select_actions(self, pi):
action = pi.cpu().numpy().squeeze()
# add the gaussian
action += self.args.noise_eps * self.env_params['action_max'] * np.random.randn(*action.shape)
action = np.clip(action, -self.env_params['action_max'], self.env_params['action_max'])
# random actions...
random_actions = np.random.uniform(low=-self.env_params['action_max'], high=self.env_params['action_max'],
size=self.env_params['action'])
# choose if use the random actions
action += np.random.binomial(1, self.args.random_eps, 1)[0] * (random_actions - action)
return action
# update the normalizer
def _update_normalizer(self, episode_batch):
mb_obs, mb_ag, mb_g, mb_actions = episode_batch
# 这里的数据形式要看一下
mb_obs_next = mb_obs[:, 1:, :]
mb_ag_next = mb_ag[:, 1:, :]
# get the number of normalization transitions
num_transitions = mb_actions.shape[1]
# create the new buffer to store them
buffer_temp = {'obs': mb_obs,
'ag': mb_ag,
'g': mb_g,
'actions': mb_actions,
'obs_next': mb_obs_next,
'ag_next': mb_ag_next,
}
transitions = self.her_module.sample_her_transitions(buffer_temp, num_transitions)
obs, g = transitions['obs'], transitions['g']
# pre process the obs and g
transitions['obs'], transitions['g'] = self._preproc_og(obs, g)
# update
self.o_norm.update(transitions['obs'])
self.g_norm.update(transitions['g'])
# recompute the stats
self.o_norm.recompute_stats()
self.g_norm.recompute_stats()
def _preproc_og(self, o, g):
o = np.clip(o, -self.args.clip_obs, self.args.clip_obs)
g = np.clip(g, -self.args.clip_obs, self.args.clip_obs)
return o, g
# soft update
def _soft_update_target_network(self, target, source):
for target_param, param in zip(target.parameters(), source.parameters()):
target_param.data.copy_((1 - self.args.polyak) * param.data + self.args.polyak * target_param.data)
# update the network
def _update_network(self):
# sample the episodes
transitions = self.buffer.sample(self.args.batch_size)
# pre-process the observation and goal
o, o_next, g = transitions['obs'], transitions['obs_next'], transitions['g']
transitions['obs'], transitions['g'] = self._preproc_og(o, g)
transitions['obs_next'], transitions['g_next'] = self._preproc_og(o_next, g)
# start to do the update
obs_norm = self.o_norm.normalize(transitions['obs'])
g_norm = self.g_norm.normalize(transitions['g'])
inputs_norm = np.concatenate([obs_norm, g_norm], axis=1)
obs_next_norm = self.o_norm.normalize(transitions['obs_next'])
g_next_norm = self.g_norm.normalize(transitions['g_next'])
inputs_next_norm = np.concatenate([obs_next_norm, g_next_norm], axis=1)
# transfer them into the tensor
inputs_norm_tensor = torch.tensor(inputs_norm, dtype=torch.float32)
inputs_next_norm_tensor = torch.tensor(inputs_next_norm, dtype=torch.float32)
actions_tensor = torch.tensor(transitions['actions'], dtype=torch.float32)
r_tensor = torch.tensor(transitions['r'], dtype=torch.float32)
if self.args.cuda:
inputs_norm_tensor = inputs_norm_tensor.cuda()
inputs_next_norm_tensor = inputs_next_norm_tensor.cuda()
actions_tensor = actions_tensor.cuda()
r_tensor = r_tensor.cuda()
# calculate the target Q value function
with torch.no_grad():
# do the normalization
# concatenate the stuffs
actions_next = self.actor_target_network(inputs_next_norm_tensor)
q_next_value = self.critic_target_network(inputs_next_norm_tensor, actions_next)
q_next_value = q_next_value.detach()
target_q_value = r_tensor + self.args.gamma * q_next_value
target_q_value = target_q_value.detach()
# clip the q value
clip_return = 1 / (1 - self.args.gamma)
target_q_value = torch.clamp(target_q_value, -clip_return, 0)
# the q loss
real_q_value = self.critic_network(inputs_norm_tensor, actions_tensor)
critic_loss = (target_q_value - real_q_value).pow(2).mean()
# the actor loss
actions_real = self.actor_network(inputs_norm_tensor)
actor_loss = -self.critic_network(inputs_norm_tensor, actions_real).mean()
actor_loss += self.args.action_l2 * (actions_real / self.env_params['action_max']).pow(2).mean()
# start to update the network
self.actor_optim.zero_grad()
actor_loss.backward()
sync_grads(self.actor_network)
self.actor_optim.step()
# update the critic_network
self.critic_optim.zero_grad()
critic_loss.backward()
sync_grads(self.critic_network)
self.critic_optim.step()
# do the evaluation
def _eval_agent(self):
total_success_rate = []
for _ in range(self.args.n_test_rollouts):
per_success_rate = []
observation = self.env.reset()
obs = observation['observation']
g = observation['desired_goal']
for _ in range(self.env_params['max_timesteps']):
with torch.no_grad():
input_tensor = self._preproc_inputs(obs, g)
pi = self.actor_network(input_tensor)
# convert the actions
actions = pi.detach().cpu().numpy().squeeze()
observation_new, _, _, info = self.env.step(actions)
obs = observation_new['observation']
g = observation_new['desired_goal']
try:
per_success_rate.append(info['is_success'])
except:
pass
total_success_rate.append(per_success_rate)
total_success_rate = np.array(total_success_rate)
local_success_rate = np.mean(total_success_rate[:, -1])
global_success_rate = MPI.COMM_WORLD.allreduce(local_success_rate, op=MPI.SUM)
return global_success_rate / MPI.COMM_WORLD.Get_size()