diff --git a/.gitignore b/.gitignore index 386583e..537bc22 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ -*.jld \ No newline at end of file +*.jld +*.jld2 \ No newline at end of file diff --git a/Project.toml b/Project.toml index 389f41d..248c789 100644 --- a/Project.toml +++ b/Project.toml @@ -1,25 +1,28 @@ name = "PlanetaryEphemeris" uuid = "d83715d0-7e5f-11e9-1a59-4137b20d8363" authors = ["Jorge A. Pérez Hernández", "Luis Benet"] -version = "0.2.1" +version = "0.3.0" [deps] +ArgParse = "c7e460c6-2fb9-53a9-8c5b-16f535851c63" AutoHashEquals = "15f4f7f2-30c1-5605-9d31-71845cf9641f" Dates = "ade2ca70-3891-5945-98fb-dc099432e06a" DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab" -JLD = "4138dd39-2aa7-5051-a626-17a0bb65d9c8" +JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" Quadmath = "be4d8f0f-7fa4-5f49-b795-2f01399ab2dd" +SnoopPrecompile = "66db9d55-30c0-4569-8b51-7e840670fc0c" TaylorIntegration = "92b13dbe-c966-51a2-8445-caca9f8a7d42" TaylorSeries = "6aa5eb33-94cf-58f4-a9d0-e4b2c4fc25ea" [compat] +ArgParse = "1.1" AutoHashEquals = "0.2" -JLD = "0.12" +JLD2 = "0.4" Quadmath = "0.5" -TaylorIntegration = "0.8" -TaylorSeries = "0.12" +TaylorIntegration = "0.11" +TaylorSeries = "0.14" julia = "1.6" [extras] diff --git a/README.md b/README.md index 2d3256d..174723a 100644 --- a/README.md +++ b/README.md @@ -15,23 +15,22 @@ Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM) ## Installation -The current development version of this package may be installed in Julia via: +The current version of this package may be installed in Julia pkg manager via: ``` -import Pkg -Pkg.add(Pkg.PackageSpec(url="https://github.com/PerezHz/PlanetaryEphemeris.jl.git", rev="main")) +] add PlanetaryEphemeris ``` ## Usage -`PlanetaryEphemeris.propagate` is a high-level function which performs the +`PlanetaryEphemeris.propagate_dense` is a high-level function which performs the numerical integration. The file `integrate_ephemeris.jl` in the `scripts` directory contains an example script. This script may be called as: -`julia --project=@. integrate_ephemeris.jl` +`julia --project integrate_ephemeris.jl --help` `PlanetaryEphemeris.propagate` also supports multi-threading: -`JULIA_NUM_THREADS= julia --project=@. integrate_ephemeris.jl` +`julia -t --project integrate_ephemeris.jl --help` ## Acknowledgments diff --git a/scripts/integrate_ephemeris.jl b/scripts/integrate_ephemeris.jl index c29ab0e..d20e988 100644 --- a/scripts/integrate_ephemeris.jl +++ b/scripts/integrate_ephemeris.jl @@ -1,35 +1,113 @@ -#Multi-threaded: -#JULIA_NUM_THREADS= julia --project=@. integrate_ephemeris.jl -#Single-threaded: -#julia --project=@. integrate_ephemeris.jl - -@show Threads.nthreads() - -using PlanetaryEphemeris -using Dates - -#script parameters (TODO: use ArgParse.jl instead) -const maxsteps = 1000000 -# jd0 = datetime2julian(DateTime(1969,6,28,0,0,0)) #starting time of integration -const jd0 = datetime2julian(DateTime(2000,1,1,12)) #starting time of integration -const nyears = 2031.0 - year(julian2datetime(jd0)) -@show jd0, J2000, jd0-J2000 -const dense = true #false -const dynamics = DE430! -@show dynamics -const nast = 343 #16 # number of asteroid perturbers -const quadmath = false #true # use quadruple precision -###bodyind = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 40, 41, 46, 55, 62, 73, 113, 115, 277, 322] # SS + 25 ast perturbers -const bodyind = 1:(11+16) #1:(11+nast) # body indices in output - -# integration parameters -const order = 25 -const abstol = 1.0E-20 - -#integrator warmup -PlanetaryEphemeris.propagate(1, jd0, nyears, output=false, dense=dense, dynamics=dynamics, nast=nast, quadmath=quadmath, bodyind=bodyind, order=order, abstol=abstol) -println("*** Finished warmup") - -# perform full integration -PlanetaryEphemeris.propagate(maxsteps, jd0, nyears, dense=dense, dynamics=dynamics, nast=nast, quadmath=quadmath, bodyind=bodyind, order=order, abstol=abstol) -println("*** Finished full integration") +using ArgParse, PlanetaryEphemeris, Dates + +function parse_commandline() + + s = ArgParseSettings() + + # Program name (for usage & help screen) + s.prog = "integrate_ephemeris.jl" + # Desciption (for help screen) + s.description = "Integrates JPL DE430 Ephemeris" + + @add_arg_table! s begin + "--maxsteps" + help = "Maximum number of steps during integration" + arg_type = Int + default = 1_000_000 + "--jd0" + help = "Starting time of integration; options are: \"2000-01-01T12:00:00\" or \"1969-06-28T00:00:00\"" + arg_type = DateTime + default = DateTime(2000, 1, 1, 12) # DateTime(1969, 6, 28, 0, 0, 0) + "--nyears" + help = "Number of years" + arg_type = Float64 + default = 31.0 + "--dynamics" + help = "Dynamical model function" + arg_type = Function + default = DE430! + "--nast" + help = "Number of asteroid perturbers" + arg_type = Int + default = 343 # 16 + "--order" + help = "Order of Taylor polynomials expansions during integration" + arg_type = Int + default = 25 + "--abstol" + help = "Absolute tolerance" + arg_type = Float64 + default = 1.0E-20 + "--parse_eqs" + help = "Whether to use the taylorized method of jetcoeffs (a-priori faster) or not" + arg_type = Bool + default = true + "--bodyind" + help = "Body indices in output" + arg_type = UnitRange{Int} + default = 1:(11+16) # 1:(11+nast) + # bodyind = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 30, 40, 41, 46, 55, 62, 73, 113, 115, 277, 322] # SS + 25 ast perturbers + end + + s.epilog = """ + examples:\n + \n + # Multi-threaded\n + julia -t 4 --project integrate_ephemeris.jl --maxsteps 100 --jd0 "2000-01-01T12:00:00"\n + \n + # Single-threaded\n + julia --project integrate_ephemeris.jl --maxsteps 100 --jd0 "2000-01-01T12:00:00"\n + \n + """ + + return parse_args(s) +end + +function main(maxsteps::Int, jd0_datetime::DateTime, nyears::Float64, dynamics::Function, nast::Int, + bodyind::UnitRange{Int}, order::Int, abstol::Float64, parse_eqs::Bool) + + println("*** Integrate Ephemeris ***") + println("Number of threads: ", Threads.nthreads()) + println("Dynamical function: ", dynamics) + + jd0 = datetime2julian(jd0_datetime) + println( "Initial time of integration: ", string(jd0_datetime) ) + println( "Final time of integration: ", string(julian2datetime(jd0 + nyears*yr)) ) + + println("*** Integrator warmup ***") + _ = propagate(1, jd0, nyears, Val(true), dynamics = dynamics, nast = nast, order = order, abstol = abstol, + parse_eqs = parse_eqs) + println("*** Finished warmup ***") + + println("*** Full integration ***") + sol = propagate(maxsteps, jd0, nyears, Val(true), dynamics = dynamics, nast = nast, order = order, abstol = abstol, + parse_eqs = parse_eqs) + println("*** Finished full integration ***") + + # Total number of bodies (Sun + 8 Planets + Moon + Pluto + Asteroids) + N = 11 + nast + + selecteph2jld2(sol, bodyind, nyears, N) + + nothing +end + +function main() + + parsed_args = parse_commandline() + + maxsteps = parsed_args["maxsteps"] :: Int + jd0_datetime = parsed_args["jd0"] :: DateTime + nyears = parsed_args["nyears"] :: Float64 + dynamics = parsed_args["dynamics"] :: Function + nast = parsed_args["nast"] :: Int + bodyind = parsed_args["bodyind"] :: UnitRange{Int} + order = parsed_args["order"] :: Int + abstol = parsed_args["abstol"] :: Float64 + parse_eqs = parsed_args["parse_eqs"] :: Bool + + main(maxsteps, jd0_datetime, nyears, dynamics, nast, bodyind, order, abstol, parse_eqs) + +end + +main() diff --git a/src/PlanetaryEphemeris.jl b/src/PlanetaryEphemeris.jl index 1d71430..45ab23d 100644 --- a/src/PlanetaryEphemeris.jl +++ b/src/PlanetaryEphemeris.jl @@ -2,51 +2,25 @@ module PlanetaryEphemeris # __precompile__(false) -export PE, au, yr, sundofs, earthdofs, - c_au_per_day, μ, NBP_pN_A_J23E_J23M_J2S!, - NBP_pN_A_J23E_J23M_J2S_threads!, DE430!, - semimajoraxis, eccentricity, inclination, - longascnode, argperi, longperi, - trueanomaly, ecanomaly, meananomaly, - timeperipass, lrlvec, eccentricanomaly, - meanan2truean, meanmotion, time2truean, - su, ea, mo, au, yr, daysec, clightkms, - c_au_per_day, c_au_per_sec, c_cm_per_sec, - J2000, R_sun, α_p_sun, δ_p_sun, au, - UJ_interaction, de430_343ast_ids, Rx, Ry, Rz, - ITM_und, ITM1, ITM2, R_moon, τ_M, k_2M, - JSEM, CM, SM, n1SEM, n2M, J2E, J2EDOT, RE, - k_20E, k_21E, k_22E, τ_0p, τ_1p, τ_2p, τ_0, τ_1, τ_2, ω_E, EMRAT, - TaylorInterpolant, selecteph2jld, ssb_posvel_pN, nbodyind +export PE, au, yr, sundofs, earthdofs, c_au_per_day, μ, NBP_pN_A_J23E_J23M_J2S!, NBP_pN_A_J23E_J23M_J2S_threads!, DE430!, + semimajoraxis, eccentricity, inclination, longascnode, argperi, longperi, trueanomaly, ecanomaly, meananomaly, + timeperipass, lrlvec, eccentricanomaly, meanan2truean, meanmotion, time2truean, su, ea, mo, au, yr, daysec, clightkms, + c_au_per_day, c_au_per_sec, c_cm_per_sec, J2000, R_sun, α_p_sun, δ_p_sun, au, UJ_interaction, de430_343ast_ids, Rx, Ry, + Rz, ITM_und, ITM1, ITM2, R_moon, τ_M, k_2M, JSEM, CM, SM, n1SEM, n2M, J2E, J2EDOT, RE, k_20E, k_21E, k_22E, τ_0p, τ_1p, + τ_2p, τ_0, τ_1, τ_2, ω_E, EMRAT, TaylorInterpolant, selecteph2jld, ssb_posvel_pN, nbodyind, propagate, t2c_jpl_de430, + c2t_jpl_de430, pole_rotation, selecteph2jld2, save2jld2andcheck, numberofbodies, kmsec2auday, auday2kmsec using AutoHashEquals using TaylorIntegration, LinearAlgebra using Printf -using Dates: DateTime, julian2datetime, datetime2julian, year +using Dates: DateTime, datetime2julian, year using DelimitedFiles -using JLD +using JLD2 using Quadmath -import Base.reverse - -@doc raw""" - nbodyind(N::Int, i::Int) - nbodyind(N::Int, ivec::AbstractVector{Int}) - -Returns the indexes of the positions and velocities of the `i`-th body (or the -`ivec`-th bodies) in a vector with `N` bodies. The function assumes that the vector has -the form: `3N` positions + `3N` velocities (+ Lunar physical librations + TT-TDB). -""" -nbodyind(N::Int, i::Int) = union(3i-2:3i, 3*(N+i)-2:3*(N+i)) - -function nbodyind(N::Int, ivec::AbstractVector{Int}) - a = Int[] - for i in ivec - i > N && continue - a = union(a, nbodyind(N,i)) - end - return sort(a) -end +import Base: convert, reverse, show, join +import Dates: julian2datetime +import JLD2: writeas include("constants.jl") include("jpl-de-430-431-earth-orientation-model.jl") @@ -58,5 +32,6 @@ include("plephinteg.jl") include("propagation.jl") include("osculating.jl") include("barycenter.jl") +#include("precompile.jl") end # module diff --git a/src/barycenter.jl b/src/barycenter.jl index 448f191..5fd5496 100644 --- a/src/barycenter.jl +++ b/src/barycenter.jl @@ -1,7 +1,7 @@ @doc raw""" μ_star_fun(μ, q, i) -Returns the mass parameter of the `i`-th body with relativistic corrections up to order ``1/c^2`` +Return the mass parameter of the `i`-th body with relativistic corrections up to order ``1/c^2`` ```math \mu_i^* = \mu_i\left(1 + \frac{v_i^2}{2c^2} - \frac{1}{2c^2}\sum_{j\neq i}\frac{\mu_j}{r_{ij}}\right), ``` @@ -51,7 +51,7 @@ end @doc raw""" ssb_posvel_pN(μ, q) -Returns the two sums needed to determine the Solar System Barycenter (SSB) +Return the two sums needed to determine the Solar System Barycenter (SSB) ```math \left\lbrace \begin{array}{l} @@ -102,7 +102,7 @@ end @doc raw""" sun_posvel_pN(μ, q) -Solves +Solve ```math \left\lbrace \begin{array}{l} diff --git a/src/constants.jl b/src/constants.jl index 1f1f0cc..8c3a8a8 100644 --- a/src/constants.jl +++ b/src/constants.jl @@ -1,11 +1,14 @@ # PlanetaryEphemeris abbreviation const PE = PlanetaryEphemeris +# Path to PlanetaryEphemeris src directory +const src_path = dirname(pathof(PlanetaryEphemeris)) + # Integration parameters const order = 30 const abstol = 1.0E-20 -# Important bodies indexes +# Important bodies indices const su = 1 # Sun's index const ea = 4 # Earth's index const mo = 5 # Moon's index @@ -439,6 +442,30 @@ const c_cm_per_sec = 100_000*clightkms # Speed of light in cm per sec const c_p2 = 29979.063823897606 # Speed of light^2 in au^2/day^2 const c_m2 = 3.3356611996764786e-5 # Speed of light^-2 in day^2/au^2 +@doc raw""" + nbodyind(N::Int, i::Int) + nbodyind(N::Int, ivec::AbstractVector{Int}) + +Return the indices of the positions and velocities of the `i`-th body (or the +`ivec`-th bodies) in a vector with `N` bodies. The function assumes that the vector has +the form: `3N` positions + `3N` velocities (+ Lunar physical librations + TT-TDB). +""" +nbodyind(N::Int, i::Int) = union(3i-2:3i, 3*(N+i)-2:3*(N+i)) + +function nbodyind(N::Int, ivec::T) where {T <: AbstractVector{Int}} + a = Vector{Int}(undef, 0) + for i in ivec + i > N && continue + a = union(a, nbodyind(N, i)) + end + + return sort(a) +end + +numberofbodies(L::Int) = (L - 13) ÷ 6 +numberofbodies(v::Vector{T}) where {T} = numberofbodies(length(v)) +numberofbodies(m::Matrix{T}) where {T} = numberofbodies(size(m, 2)) + const sundofs = nbodyind(length(μ), su) # Sun's position and velocity indices const earthdofs = nbodyind(length(μ), ea) # Earth's position and velocity indices @@ -598,6 +625,11 @@ const lnm5 = [2n-1 for n in 1:6] # (2n - 1) const lnm6 = [-(n+1) for n in 1:6] # -(n + 1) const lnm7 = [m for m in 1:6] # m +# Number of bodies in extended-body accelerations +const N_ext = 11 +# Number of bodies used to compute time-delayed tidal interactions +const N_bwd = 11 + # Diagonal elements of undistorted lunar mantle moment of inertia # See equation (37) in page 16 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract const A_T = (2(1-β_L*γ_L)/(2β_L-γ_L+β_L*γ_L))*J2_M_und @@ -650,6 +682,10 @@ const τ_0 = 0.0 # Rotational time-lag for long-period deform const τ_1 = 7.3632190228041890E-03 # Rotational time-lag for diurnal deformation, days const τ_2 = 2.5352978633388720E-03 # Rotational time-lag for semi-diurnal deformation, days +# Tidal acceleration auxiliaries +const μ_mo_div_μ_ea = μ[mo]/μ[ea] # Ratio of Moon and Earth mass parameters +const tid_num_coeff = 1.5*(1.0 + μ_mo_div_μ_ea) # Overall numerical factor in equation (32) + # Standard value of nominal mean angular velocity of Earth (rad/day), # See Explanatory Supplement to the Astronomical Almanac 2014, section 7.4.3.3, # page 296: 7.2921151467e-5 rad/second diff --git a/src/dynamical_model.jl b/src/dynamical_model.jl index 93e72ce..f92da1b 100644 --- a/src/dynamical_model.jl +++ b/src/dynamical_model.jl @@ -19,7 +19,7 @@ less than the one of `a`. See also [`TaylorSeries.differentiate`](@ref). """ -function ordpres_differentiate(a::Taylor1) +function ordpres_differentiate(a::Taylor1{T}) where {T} res = zero(a) for ord in eachindex(res) TaylorSeries.differentiate!(res, a, ord) @@ -27,6 +27,20 @@ function ordpres_differentiate(a::Taylor1) return res end +@doc raw""" + special_eval(x::Vector{Taylor1{T}}, t::Taylor1{T}) where {T <: Number} + +Evaluate each element of `x` at time `t`. +""" +function special_eval(x::Vector{Taylor1{T}}, t::Taylor1{T}) where {T <: Number} + res = Vector{Taylor1{T}}(undef, length(x)) + for i in eachindex(res) + res[i] = x[i](t) + end + return res +end + + @doc raw""" NBP_pN_A_J23E_J23M_J2S!(dq, q, params, t) @@ -146,8 +160,7 @@ function NBP_pN_A_J23E_J23M_J2S!(dq, q, params, t) # jd0: initial Julian date local N, jd0 = params local S = eltype(q) # Type of positions/velocities components - local N_ext = 11 # Number of bodies in extended-body accelerations - + local zero_q_1 = zero(q[1]) # Zero of type S local one_t = one(t) # One of the same type as time t local dsj2k = t+(jd0-J2000) # Days since J2000.0 (TDB) @@ -1052,14 +1065,12 @@ Threaded version of `NBP_pN_A_J23E_J23M_J2S!`. See also [`NBP_pN_A_J23E_J23M_J2S!`](@ref). """ NBP_pN_A_J23E_J23M_J2S_threads! - function NBP_pN_A_J23E_J23M_J2S_threads!(dq, q, params, t) # N: number of bodies # jd0: initial Julian date local N, jd0 = params local S = eltype(q) # Type of positions/velocities components - local N_ext = 11 # Number of bodies in extended-body accelerations - + local zero_q_1 = zero(q[1]) # Zero of type S local one_t = one(t) # One of the same type as time t local dsj2k = t+(jd0-J2000) # Days since J2000.0 (TDB) @@ -1991,46 +2002,48 @@ the acceleration of the Moon with respect to Earth, for each tide-raising body. See also [`NBP_pN_A_J23E_J23M_J2S!`](@ref) and [`NBP_pN_A_J23E_J23M_J2S_threads!`](@ref). """ DE430! - function DE430!(dq, q, params, t) # N: number of bodies # jd0: initial Julian date local N, jd0 = params - local S = eltype(q) # Type of positions/velocities components - local N_ext = 11 # Number of bodies in extended-body accelerations + # Time Taylor variable + local __t = Taylor1(t.order) + # Type of positions/velocities components + local S = eltype(q) + # Zero of type S + local zero_q_1 = zero(q[1]) \ + # One of the same type as time t + local one_t = one(t) + # Days since J2000.0 (TDB) + local dsj2k = t+(jd0-J2000) + + # Short backward integration needed to evaluate time-delayed tidal interactions - local N_bwd = 11 # Number of bodies in backward integration - local params_bwd = (N_bwd, jd0) # Parameters for backward integration - # Positions for backward integration - local qq_bwd = Taylor1.(constant_term.( q[ union(nbodyind(N,1:N_bwd),6N+1:6N+13) ]), t.order ) - # Velocities for backward integration + # Parameters + local params_bwd = (N_bwd, jd0) + # Positions + local qq_bwd = Taylor1.(constant_term.( q[ union(nbodyind(N,1:N_bwd),6N+1:6N+13) ]), t.order )::Vector{S} + # Velocities local dqq_bwd = similar(qq_bwd) - # Vector of auxiliaries for backward integration + # Vector of auxiliaries local xaux_bwd = similar(qq_bwd) - # Function for backward integration - # local jc = TaylorIntegration.__jetcoeffs!(Val(false), NBP_pN_A_J23E_J23M_J2S_threads!, t, qq_bwd, dqq_bwd, xaux_bwd, params_bwd) - # local jc = TaylorIntegration.__jetcoeffs!(Val(true), NBP_pN_A_J23E_J23M_J2S_threads!, t, qq_bwd, dqq_bwd, xaux_bwd, params_bwd) + # Backward integration + # TO DO: Used taylorized method instead of default jetcoeffs! local jc = TaylorIntegration.jetcoeffs!(NBP_pN_A_J23E_J23M_J2S_threads!, t, qq_bwd, dqq_bwd, xaux_bwd, params_bwd) - # local jc = TaylorIntegration.jetcoeffs!(Val(NBP_pN_A_J23E_J23M_J2S_threads!), t, qq_bwd, dqq_bwd, params_bwd) - - # Time Taylor variable - local __t = Taylor1(t.order) - # Positions delayed - local q_del_τ_M = qq_bwd(__t-τ_M) # τ_M - local q_del_τ_0 = qq_bwd(__t-τ_0p) # τ_0p - local q_del_τ_1 = qq_bwd(__t-τ_1p) # τ_1p - local q_del_τ_2 = qq_bwd(__t-τ_2p) # τ_2p + + # Evaluation of time-delayed positions + local q_del_τ_M = special_eval(qq_bwd, __t-τ_M) # τ_M + local q_del_τ_0 = special_eval(qq_bwd, __t-τ_0p) # τ_0p + local q_del_τ_1 = special_eval(qq_bwd, __t-τ_1p) # τ_1p + local q_del_τ_2 = special_eval(qq_bwd, __t-τ_2p) # τ_2p # Lunar mantle euler angles delayed τ_M - local eulang_del_τ_M = q_del_τ_M[6N_bwd+1:6N_bwd+3] + local eulang_del_τ_M = q_del_τ_M[6N_bwd+1:6N_bwd+3]::Vector{S} # Lunar mantle angular velocity delayed τ_M - local ω_m_del_τ_M = q_del_τ_M[6N_bwd+4:6N_bwd+6] + local ω_m_del_τ_M = q_del_τ_M[6N_bwd+4:6N_bwd+6]::Vector{S} - local zero_q_1 = zero(q[1]) # Zero of type S - local one_t = one(t) # One of the same type as time t - local dsj2k = t+(jd0-J2000) # Days since J2000.0 (TDB) # Matrix elements of lunar mantle moment of inertia at time t-τ_M (including tidal distortion) # See equations (36) to (41) in pages 16-17 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract - local I_m_t = ITM(q_del_τ_M, eulang_del_τ_M, ω_m_del_τ_M) + local I_m_t = ITM(q_del_τ_M, eulang_del_τ_M, ω_m_del_τ_M)::Matrix{S} local dI_m_t = ordpres_differentiate.(I_m_t) # Time-derivative of lunar mantle I at time t-τ_M local inv_I_m_t = inv(I_m_t) # Inverse of lunar mantle I matrix at time t-τ_M local I_c_t = I_c.*one_t # Lunar core I matrix, see equation (39) @@ -2323,10 +2336,6 @@ function DE430!(dq, q, params, t) See equation (32) in page 14 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract =# - # Tidal acceleration auxiliaries - local μ_mo_div_μ_ea = μ[mo]/μ[ea] # Ratio of Moon and Earth mass parameters - local tid_num_coeff = 1.5*(1.0 + μ_mo_div_μ_ea) # Overall numerical factor in equation (32) - # Time-delayed geocentric Moon position # See equation (31) in page 14 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract local q_ME_τ_0 = q_del_τ_0[3mo-2:3mo] .- q_del_τ_0[3ea-2:3ea] diff --git a/src/initial_conditions.jl b/src/initial_conditions.jl index 99dade2..bd927d7 100644 --- a/src/initial_conditions.jl +++ b/src/initial_conditions.jl @@ -1,7 +1,24 @@ +# Special method for Float128 +julian2datetime(jd::Float128) = julian2datetime(Float64(jd)) + +# Planets (+ Sun & Moon) initial conditions file +const ssic_1969_fname = joinpath( src_path, "ss11ic_1969Jun28.txt" ) +const ssic_1969 = readdlm( ssic_1969_fname ) +# Asteroids initial conditions file +const astic_1969_fname = joinpath( src_path, "ast343ic_1969Jun28.txt" ) +const astic_1969 = readdlm( astic_1969_fname ) + +# Planets (+ Sun & Moon) initial conditions file +const ssic_2000_fname = joinpath( src_path, "ss11ic.txt" ) +const ssic_2000 = readdlm( ssic_2000_fname ) +# Asteroids initial conditions file +const astic_2000_fname = joinpath( src_path, "ast343ic.txt" ) +const astic_2000 = readdlm( astic_2000_fname ) + @doc raw""" initialcond(N, jd0::Float64=datetime2julian(DateTime(1969,6,28,0,0,0))) -Returns a vector with the initial conditions (`3N` positions [au] + `3N` velocities [au/day] + +Return a vector with the initial conditions (`3N` positions [au] + `3N` velocities [au/day] + 3 lunar mantle Euler angles [rad] + 3 mantle angular velocities [rad/day] + 3 lunar core Euler angles [rad] + 3 core angular velocities [rad/day] + DE430 TT-TDB at initial epoch [days]) for the integration. Two possible values of `jd0` @@ -16,19 +33,18 @@ Moon positions and velocities), Table 7 in page 49 (lunar mantle and core librat angles/rates) and Table 13 in pages 60-74 (asteroids positions and velocities) of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract. """ -function initialcond(N, jd0::Float64=datetime2julian(DateTime(1969,6,28,0,0,0))) +function initialcond(N, jd0::T = datetime2julian(DateTime(1969,6,28,0,0,0))) where {T <: Real} # Output from JPL Horizons - q0 = Array{Float64}(undef, 6N+13) # Initial conditions array + q0 = Array{T}(undef, 6N+13) # Initial conditions array dt0 = julian2datetime(jd0) # Convert jd0 to DateTime dt0_1969 = DateTime(1969,6,28,0,0,0) # 1969-Jun-28 (TDB) dt0_2000 = DateTime(2000,1,1,12) # 2000-Jan-1.5 (TDB) # 1969-Jun-28 (TDB) if dt0 == dt0_1969 - println("Initial conditions: 1969-Jun-28.0 (TDB)") - ss_ic_filename = "ss11ic_1969Jun28.txt" # Planets (+ Sun & Moon) initial conditions file - ast_ic_filename = "ast343ic_1969Jun28.txt" # Asteroids initial conditions file + smppic = ssic_1969 + ast343ic = astic_1969 # Initial conditions for lunar mantle and core libration angles/rates # See Table 7 in page 49 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract q0[6N+1:6N+3] .= [0.00512830031411853500, 0.38239278420173690000, 1.29416700274878300000] # Lunar mantle Euler angles @@ -39,9 +55,8 @@ function initialcond(N, jd0::Float64=datetime2julian(DateTime(1969,6,28,0,0,0))) q0[6N+13] = -0.00016266592104301078 # 2000-Jan-1.5 (TDB) elseif dt0 == dt0_2000 - println("Initial conditions: 2000-Jan-1.5 (TDB)") - ss_ic_filename = "ss11ic.txt" # Planets (+ Sun & Moon) initial conditions file - ast_ic_filename = "ast343ic.txt" # Asteroids initial conditions file + smppic = ssic_2000 + ast343ic = astic_2000 # Initial conditions for lunar mantle and core libration angles/rates q0[6N+1:6N+3] .= [-0.05414766382529318, 0.42485573826608863, 2564.2582726674223] # Lunar mantle Euler angles q0[6N+4:6N+6] .= [2.3013404932266894e-6, -6.600217715260397e-5, 0.22999341817950175] # Lunar mantle angular velocity vector (mantle frame) @@ -52,24 +67,24 @@ function initialcond(N, jd0::Float64=datetime2julian(DateTime(1969,6,28,0,0,0))) q0[6N+13] = 9.930292723454279e-5 # Neither 1969-Jun-28 (TDB) or 2000-Jan-1.5 (TDB) else - @assert(false, "Initial time must either correspond to $(dt0_1969) or $(dt0_2000).") + #@assert(false, "Initial time must either correspond to $(dt0_1969) or $(dt0_2000).") + throw(string("Initial time must either correspond to ", dt0_1969, " or ", dt0_2000, ".")) end # Fill initial conditions for Sun, Moon, planets and Pluto # Order is the following: # Sun, Mercury, Venus, Earth-Moon barycenter, Moon (wrt geocenter), Mars, Jupiter, Saturn, Uranus, Neptune, Pluto - smppic = readdlm( joinpath(dirname(pathof(PlanetaryEphemeris)), ss_ic_filename) ) for i in 1:11 ith_body_ind = nbodyind(N, i) # Indices of the i-th body - q0[ith_body_ind[1:3]] .= smppic[i, 1:3] # Position vector - q0[ith_body_ind[4:6]] .= smppic[i, 4:6] # Velocity vector + q0[ith_body_ind[1:3]] = smppic[i, 1:3] # Position vector + q0[ith_body_ind[4:6]] = smppic[i, 4:6] # Velocity vector end + # Fill initial conditions for 343 asteroids used in integration of JPL DE430 ephemeris - ast343ic = readdlm( joinpath(dirname(pathof(PlanetaryEphemeris)), ast_ic_filename) ) for i in 12:N ith_body_ind = nbodyind(N, i) # Indices of the i-th body - q0[ith_body_ind[1:3]] .= ast343ic[i-11, 1:3] # Position vector - q0[ith_body_ind[4:6]] .= ast343ic[i-11, 4:6] # Velocity vector + q0[ith_body_ind[1:3]] = ast343ic[i-11, 1:3] # Position vector + q0[ith_body_ind[4:6]] = ast343ic[i-11, 4:6] # Velocity vector end return q0 diff --git a/src/interpolation.jl b/src/interpolation.jl index 9f3637c..55bbe86 100644 --- a/src/interpolation.jl +++ b/src/interpolation.jl @@ -1,7 +1,7 @@ # This file is part of the TaylorIntegration.jl package; MIT licensed @doc raw""" - TaylorInterpolant{T,U,N} + TaylorInterpolant{T, U, N} Collection of Taylor polynomials that interpolate a dependent variable as a function of an independent variable. For example, the ``x``-axis position of the Earth as a function of @@ -11,37 +11,57 @@ time ``x(t)``; or a lunar core Euler angle as a function of time ``\theta_c(t)`` - `t0::T`: Start time. - `t::AbstractVector{T}`: Vector of time instances when the timespan of the ``i``-th element of `x` ends and the ``(i+1)``-th element of `x` starts being valid. -- `x::AbstractArray{Taylor1{U},N}`: Vector of Taylor polynomials that interpolate the dependent variable as a function of the independent variable. +- `x::AbstractArray{Taylor1{U},N}`: Array of Taylor polynomials that interpolate the dependent variable as a function of the independent variable. """ -@auto_hash_equals struct TaylorInterpolant{T,U,N} +@auto_hash_equals struct TaylorInterpolant{T, U, N} t0::T t::AbstractVector{T} - x::AbstractArray{Taylor1{U},N} + x::AbstractArray{Taylor1{U}, N} # Inner constructor - function TaylorInterpolant{T,U,N}( - t0::T, - t::AbstractVector{T}, - x::AbstractArray{Taylor1{U},N} - ) where {T<:Real, U<:Number, N} + function TaylorInterpolant{T, U, N}(t0::T, t::AbstractVector{T}, x::AbstractArray{Taylor1{U}, N}) where {T <: Real, U <: Number, N} @assert size(x)[1] == length(t)-1 - @assert issorted(t) || issorted(t, rev=true) - return new{T,U,N}(t0, t, x) + @assert issorted(t) || issorted(t, rev = true) + return new{T, U, N}(t0, t, x) end end -# Outer constructor -function TaylorInterpolant(t0::T, t::AbstractVector{T}, - x::AbstractArray{Taylor1{U},N}) where {T<:Real, U<:Number, N} - return TaylorInterpolant{T,U,N}(t0, t, x) +# Outer constructors +function TaylorInterpolant(t0::T, t::AbstractVector{T}, x::AbstractArray{Taylor1{U}, N}) where {T <: Real, U <: Number, N} + return TaylorInterpolant{T, U, N}(t0, t, x) end +function TaylorInterpolant(t0::T, t::SubArray{T, 1}, x::SubArray{Taylor1{U}, N}) where {T <: Real, U <: Number, N} + return TaylorInterpolant{T, U, N}(t0, t.parent[t.indices...], x.parent[x.indices...]) +end + +# Custom print +function show(io::IO, interp::TaylorInterpolant{T, U, 2}) where {T, U} + t_range = minmax(interp.t0 + interp.t[1], interp.t0 + interp.t[end]) + N = size(interp.x, 2) + S = eltype(interp.x) + print(io, "t: ", t_range, ", x: ", N, " ", S, " variables") +end + +@doc raw""" + convert(::Type{T}, interp::TaylorInterpolant) where {T <: Real} + +Convert `inter.t0`, `inter.t` and coefficients of `interp.x` to type `T`. +""" +function convert(::Type{T}, interp::TaylorInterpolant) where {T <: Real} + return TaylorInterpolant( + T(interp.t0), + T.(interp.t), + map( x -> Taylor1( T.(x.coeffs) ), interp.x) + ) +end + @doc raw""" getinterpindex(tinterp::TaylorInterpolant{T,U,N}, t::V) where {T<:Real, U<:Number, V<:Number, N} -Returns the index of `tinterp.t` corresponding to `t` and the time elapsed from `tinterp.t0` +Return the index of `tinterp.t` corresponding to `t` and the time elapsed from `tinterp.t0` to `t`. """ -function getinterpindex(tinterp::TaylorInterpolant{T,U,N}, t::V) where {T<:Real, U<:Number, V<:Number, N} +function getinterpindex(tinterp::TaylorInterpolant{T, U, N}, t::V) where {T<:Real, U<:Number, V<:Number, N} t00 = constant_term(constant_term(t)) # Current time tmin, tmax = minmax(tinterp.t[end], tinterp.t[1]) # Min and max time in tinterp Δt = t-tinterp.t0 # Time since start of tinterp @@ -61,13 +81,17 @@ function getinterpindex(tinterp::TaylorInterpolant{T,U,N}, t::V) where {T<:Real, return ind, Δt end +numberofbodies(interp::TaylorInterpolant{T, U, 2}) where {T, U} = numberofbodies(size(interp.x, 2)) + # Function-like (callability) methods @doc raw""" (tinterp::TaylorInterpolant{T,U,1})(t::V) where {T<:Real, U<:Number, V<:Number} (tinterp::TaylorInterpolant{T,U,2})(t::V) where {T<:Real, U<:Number, V<:Number} + (tinterp::TaylorInterpolant{T,U,2})(target::Int, t::V) where {T<:Real, U<:Number, V<:Number} + (tinterp::TaylorInterpolant{T,U,2})(target::Int, observer::Int, t::V) where {T<:Real, U<:Number, V<:Number} -Evaluates `tinterp.x` at time `t`. +Evaluate `tinterp.x` at time `t`. See also [`getinterpindex`](@ref). """ @@ -89,10 +113,25 @@ function (tinterp::TaylorInterpolant{T,U,2})(t::V) where {T<:Real, U<:Number, V< return tinterp.x[ind,:](δt) end +function (tinterp::TaylorInterpolant{T,U,2})(target::Int, observer::Int, t::V) where {T<:Real, U<:Number, V<:Number} + # Number of bodies in tinterp + N = numberofbodies(tinterp) + # Ephemeris at time t + eph_t = tinterp(t) + # Relative state vector + if observer == 0 + return eph_t[nbodyind(N, target)] + else + return eph_t[nbodyind(N, target)] - eph_t[nbodyind(N, observer)] + end +end + +(tinterp::TaylorInterpolant{T,U,2})(target::Int, t::V) where {T<:Real, U<:Number, V<:Number} = tinterp(target, 0, t) + @doc raw""" reverse(tinterp::TaylorInterpolant{T,U,N}) where {T<:Real, U<:Number, N} -Returns a `TaylorInterpolant` object with the same information as `tinterp` but +Return a `TaylorInterpolant` object with the same information as `tinterp` but the independent variable reversed. See also [`TaylorInterpolant`](@ref). @@ -107,3 +146,39 @@ function reverse(tinterp::TaylorInterpolant{T,U,N}) where {T<:Real, U<:Number, N # Return reversed TaylorInterpolant return TaylorInterpolant(tinterp_rev_t0, tinterp_rev_t, tinterp_rev_x) end + +function join(bwd::TaylorInterpolant{T, U, 2}, fwd::TaylorInterpolant{T, U, 2}) where {T, U} + @assert bwd.t0 == fwd.t0 "Initial time must be the same for both TaylorInterpolant" + order_bwd = get_order(bwd.x[1, 1]) + order_fwd = get_order(fwd.x[1, 1]) + @assert order_bwd == order_fwd "Expansion order must be the same for both TaylorInterpolant" + + t0 = bwd.t0 + bwd.t[end] + t_1 = abs.(bwd.t) + t = vcat(t_1, t_1[end] .+ fwd.t[2:end]) + x = vcat(reverse(bwd.x, dims = 1), fwd.x) + + return TaylorInterpolant(t0, t, x) +end + +@doc raw""" + kmsec2auday(pv) +Convert a `[x, y, z, v_x, v_y, v_z]` state vector from km, km/sec to au, au/day. +See also [`auday2kmsec`](@ref). +""" +function kmsec2auday(pv) + pv /= au # (km, km/sec) -> (au, au/sec) + pv[4:6] *= daysec # (au, au/sec) -> (au, au/day) + return pv +end + +@doc raw""" + auday2kmsec(pv) +Convert a `[x, y, z, v_x, v_y, v_z]` state vector from au, au/day to km, km/sec. +See also [`kmsec2auday`](@ref). +""" +function auday2kmsec(pv) + pv *= au # (au, au/day) -> (km, km/day) + pv[4:6] /= daysec # (km, km/day) -> (km, km/sec) + return pv +end diff --git a/src/jetcoeffs.jl b/src/jetcoeffs.jl index 887879b..a10d5af 100644 --- a/src/jetcoeffs.jl +++ b/src/jetcoeffs.jl @@ -1,21 +1,20 @@ # DO NOT MODIFY THIS FILE BY HAND -# Methods of TaylorIntegration.jetcoeffs! generated by @taylorize for the functions in +# Methods of TaylorIntegration.jetcoeffs! and TaylorIntegration._allocate_jetcoeffs! generated by @taylorize for the functions in # src/dynamical_model.jl # To update the functions do the following: # 1.- Update the corresponding function in src/dynamical_model.jl # 2.- using TaylorIntegration # 2.- ex = :(paste here the modified function) -# 3.- x = TaylorIntegration._make_parsed_coeffs(ex) -# 4.- Paste x in this file +# 3.- x, y = TaylorIntegration._make_parsed_coeffs(ex) +# 4.- Paste x and y in this file -# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S! -function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} +# TaylorIntegration._allocate_jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S! +function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} order = t.order local (N, jd0) = params local S = eltype(q) - local N_ext = 11 local zero_q_1 = zero(q[1]) local one_t = one(t) local dsj2k = t + (jd0 - J2000) @@ -161,151 +160,151 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp1165 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1899 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1166 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1900 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1167 = Taylor1(constant_term(tmp1165) * constant_term(tmp1166), order) - tmp1168 = Taylor1(cos(constant_term(θ_m)), order) - tmp1901 = Taylor1(sin(constant_term(θ_m)), order) - tmp1169 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1902 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1170 = Taylor1(constant_term(tmp1168) * constant_term(tmp1169), order) - tmp1171 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1903 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1172 = Taylor1(constant_term(tmp1170) * constant_term(tmp1171), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp1167) - constant_term(tmp1172), order) - tmp1174 = Taylor1(cos(constant_term(θ_m)), order) - tmp1904 = Taylor1(sin(constant_term(θ_m)), order) - tmp1175 = Taylor1(-(constant_term(tmp1174)), order) - tmp1176 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1905 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1177 = Taylor1(constant_term(tmp1175) * constant_term(tmp1176), order) - tmp1178 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1906 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1179 = Taylor1(constant_term(tmp1177) * constant_term(tmp1178), order) - tmp1180 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1907 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1181 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1908 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1182 = Taylor1(constant_term(tmp1180) * constant_term(tmp1181), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp1179) - constant_term(tmp1182), order) - tmp1184 = Taylor1(sin(constant_term(θ_m)), order) - tmp1909 = Taylor1(cos(constant_term(θ_m)), order) - tmp1185 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1910 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp1184) * constant_term(tmp1185), order) - tmp1187 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1911 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1188 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1912 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1189 = Taylor1(constant_term(tmp1187) * constant_term(tmp1188), order) - tmp1190 = Taylor1(cos(constant_term(θ_m)), order) - tmp1913 = Taylor1(sin(constant_term(θ_m)), order) - tmp1191 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1914 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1192 = Taylor1(constant_term(tmp1190) * constant_term(tmp1191), order) - tmp1193 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1915 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1194 = Taylor1(constant_term(tmp1192) * constant_term(tmp1193), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp1189) + constant_term(tmp1194), order) - tmp1196 = Taylor1(cos(constant_term(θ_m)), order) - tmp1916 = Taylor1(sin(constant_term(θ_m)), order) - tmp1197 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1917 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1198 = Taylor1(constant_term(tmp1196) * constant_term(tmp1197), order) - tmp1199 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1918 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1200 = Taylor1(constant_term(tmp1198) * constant_term(tmp1199), order) - tmp1201 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1919 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1202 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1920 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1203 = Taylor1(constant_term(tmp1201) * constant_term(tmp1202), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp1200) - constant_term(tmp1203), order) - tmp1205 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp1921 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp1206 = Taylor1(-(constant_term(tmp1205)), order) - tmp1207 = Taylor1(sin(constant_term(θ_m)), order) - tmp1922 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp1206) * constant_term(tmp1207), order) - tmp1209 = Taylor1(sin(constant_term(θ_m)), order) - tmp1923 = Taylor1(cos(constant_term(θ_m)), order) - tmp1210 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1924 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp1209) * constant_term(tmp1210), order) - tmp1212 = Taylor1(cos(constant_term(ψ_m)), order) - tmp1925 = Taylor1(sin(constant_term(ψ_m)), order) - tmp1213 = Taylor1(sin(constant_term(θ_m)), order) - tmp1926 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp1212) * constant_term(tmp1213), order) + tmp1220 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1954 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1221 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1955 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1222 = Taylor1(constant_term(tmp1220) * constant_term(tmp1221), order) + tmp1223 = Taylor1(cos(constant_term(θ_m)), order) + tmp1956 = Taylor1(sin(constant_term(θ_m)), order) + tmp1224 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1957 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1225 = Taylor1(constant_term(tmp1223) * constant_term(tmp1224), order) + tmp1226 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1958 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1227 = Taylor1(constant_term(tmp1225) * constant_term(tmp1226), order) + RotM[1, 1, mo] = Taylor1(constant_term(tmp1222) - constant_term(tmp1227), order) + tmp1229 = Taylor1(cos(constant_term(θ_m)), order) + tmp1959 = Taylor1(sin(constant_term(θ_m)), order) + tmp1230 = Taylor1(-(constant_term(tmp1229)), order) + tmp1231 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1960 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1232 = Taylor1(constant_term(tmp1230) * constant_term(tmp1231), order) + tmp1233 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1961 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1234 = Taylor1(constant_term(tmp1232) * constant_term(tmp1233), order) + tmp1235 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1962 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1236 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1963 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1237 = Taylor1(constant_term(tmp1235) * constant_term(tmp1236), order) + RotM[2, 1, mo] = Taylor1(constant_term(tmp1234) - constant_term(tmp1237), order) + tmp1239 = Taylor1(sin(constant_term(θ_m)), order) + tmp1964 = Taylor1(cos(constant_term(θ_m)), order) + tmp1240 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1965 = Taylor1(cos(constant_term(ϕ_m)), order) + RotM[3, 1, mo] = Taylor1(constant_term(tmp1239) * constant_term(tmp1240), order) + tmp1242 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1966 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1243 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1967 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1244 = Taylor1(constant_term(tmp1242) * constant_term(tmp1243), order) + tmp1245 = Taylor1(cos(constant_term(θ_m)), order) + tmp1968 = Taylor1(sin(constant_term(θ_m)), order) + tmp1246 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1969 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1247 = Taylor1(constant_term(tmp1245) * constant_term(tmp1246), order) + tmp1248 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1970 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1249 = Taylor1(constant_term(tmp1247) * constant_term(tmp1248), order) + RotM[1, 2, mo] = Taylor1(constant_term(tmp1244) + constant_term(tmp1249), order) + tmp1251 = Taylor1(cos(constant_term(θ_m)), order) + tmp1971 = Taylor1(sin(constant_term(θ_m)), order) + tmp1252 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1972 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1253 = Taylor1(constant_term(tmp1251) * constant_term(tmp1252), order) + tmp1254 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1973 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1255 = Taylor1(constant_term(tmp1253) * constant_term(tmp1254), order) + tmp1256 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1974 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1257 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1975 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1258 = Taylor1(constant_term(tmp1256) * constant_term(tmp1257), order) + RotM[2, 2, mo] = Taylor1(constant_term(tmp1255) - constant_term(tmp1258), order) + tmp1260 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp1976 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp1261 = Taylor1(-(constant_term(tmp1260)), order) + tmp1262 = Taylor1(sin(constant_term(θ_m)), order) + tmp1977 = Taylor1(cos(constant_term(θ_m)), order) + RotM[3, 2, mo] = Taylor1(constant_term(tmp1261) * constant_term(tmp1262), order) + tmp1264 = Taylor1(sin(constant_term(θ_m)), order) + tmp1978 = Taylor1(cos(constant_term(θ_m)), order) + tmp1265 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1979 = Taylor1(cos(constant_term(ψ_m)), order) + RotM[1, 3, mo] = Taylor1(constant_term(tmp1264) * constant_term(tmp1265), order) + tmp1267 = Taylor1(cos(constant_term(ψ_m)), order) + tmp1980 = Taylor1(sin(constant_term(ψ_m)), order) + tmp1268 = Taylor1(sin(constant_term(θ_m)), order) + tmp1981 = Taylor1(cos(constant_term(θ_m)), order) + RotM[2, 3, mo] = Taylor1(constant_term(tmp1267) * constant_term(tmp1268), order) RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp1927 = Taylor1(sin(constant_term(θ_m)), order) + tmp1982 = Taylor1(sin(constant_term(θ_m)), order) mantlef2coref = Array{S}(undef, 3, 3) ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp1216 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1928 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1217 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp1216), order) - tmp1218 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1929 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1219 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1218), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp1217) + constant_term(tmp1219), order) - tmp1221 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp1222 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1930 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1223 = Taylor1(constant_term(tmp1221) * constant_term(tmp1222), order) - tmp1224 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1931 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1225 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1224), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp1223) + constant_term(tmp1225), order) + tmp1271 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1983 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1272 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp1271), order) + tmp1273 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1984 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1274 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1273), order) + mantlef2coref[1, 1] = Taylor1(constant_term(tmp1272) + constant_term(tmp1274), order) + tmp1276 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) + tmp1277 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1985 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1278 = Taylor1(constant_term(tmp1276) * constant_term(tmp1277), order) + tmp1279 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1986 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1280 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp1279), order) + mantlef2coref[2, 1] = Taylor1(constant_term(tmp1278) + constant_term(tmp1280), order) mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp1227 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1932 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1228 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp1227), order) - tmp1229 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1933 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1230 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1229), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp1228) + constant_term(tmp1230), order) - tmp1232 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) - tmp1233 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1934 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1234 = Taylor1(constant_term(tmp1232) * constant_term(tmp1233), order) - tmp1235 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1935 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1236 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1235), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp1234) + constant_term(tmp1236), order) + tmp1282 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1987 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1283 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp1282), order) + tmp1284 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1988 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1285 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1284), order) + mantlef2coref[1, 2] = Taylor1(constant_term(tmp1283) + constant_term(tmp1285), order) + tmp1287 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp1288 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1989 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1289 = Taylor1(constant_term(tmp1287) * constant_term(tmp1288), order) + tmp1290 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1990 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1291 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp1290), order) + mantlef2coref[2, 2] = Taylor1(constant_term(tmp1289) + constant_term(tmp1291), order) mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp1238 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1936 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1239 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp1238), order) - tmp1240 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1937 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1241 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1240), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp1239) + constant_term(tmp1241), order) - tmp1243 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) - tmp1244 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1938 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1245 = Taylor1(constant_term(tmp1243) * constant_term(tmp1244), order) - tmp1246 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp1939 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp1247 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1246), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp1245) + constant_term(tmp1247), order) + tmp1293 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1991 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1294 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp1293), order) + tmp1295 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1992 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1296 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1295), order) + mantlef2coref[1, 3] = Taylor1(constant_term(tmp1294) + constant_term(tmp1296), order) + tmp1298 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp1299 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1993 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1300 = Taylor1(constant_term(tmp1298) * constant_term(tmp1299), order) + tmp1301 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp1994 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp1302 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp1301), order) + mantlef2coref[2, 3] = Taylor1(constant_term(tmp1300) + constant_term(tmp1302), order) mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp1249 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp1250 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp1251 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp1252 = Taylor1(constant_term(tmp1250) + constant_term(tmp1251), order) - ω_c_CE_1 = Taylor1(constant_term(tmp1249) + constant_term(tmp1252), order) - tmp1254 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp1255 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp1256 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp1257 = Taylor1(constant_term(tmp1255) + constant_term(tmp1256), order) - ω_c_CE_2 = Taylor1(constant_term(tmp1254) + constant_term(tmp1257), order) - tmp1259 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp1260 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp1261 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp1262 = Taylor1(constant_term(tmp1260) + constant_term(tmp1261), order) - ω_c_CE_3 = Taylor1(constant_term(tmp1259) + constant_term(tmp1262), order) + tmp1304 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) + tmp1305 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) + tmp1306 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) + tmp1307 = Taylor1(constant_term(tmp1305) + constant_term(tmp1306), order) + ω_c_CE_1 = Taylor1(constant_term(tmp1304) + constant_term(tmp1307), order) + tmp1309 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) + tmp1310 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) + tmp1311 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) + tmp1312 = Taylor1(constant_term(tmp1310) + constant_term(tmp1311), order) + ω_c_CE_2 = Taylor1(constant_term(tmp1309) + constant_term(tmp1312), order) + tmp1314 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) + tmp1315 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) + tmp1316 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) + tmp1317 = Taylor1(constant_term(tmp1315) + constant_term(tmp1316), order) + ω_c_CE_3 = Taylor1(constant_term(tmp1314) + constant_term(tmp1317), order) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t J2_t = Array{S}(undef, 5) @@ -326,60 +325,60 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp1271 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1271 .= Taylor1(zero(_S), order) - tmp1273 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1273 .= Taylor1(zero(_S), order) - tmp1276 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1276 .= Taylor1(zero(_S), order) - tmp1278 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1278 .= Taylor1(zero(_S), order) - tmp1281 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1281 .= Taylor1(zero(_S), order) - tmp1283 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1283 .= Taylor1(zero(_S), order) + tmp1382 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1382 .= Taylor1(zero(_S), order) + tmp1384 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1384 .= Taylor1(zero(_S), order) + tmp1385 = Array{Taylor1{_S}}(undef, size(tmp1382)) + tmp1385 .= Taylor1(zero(_S), order) + tmp1387 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1387 .= Taylor1(zero(_S), order) + tmp1326 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1326 .= Taylor1(zero(_S), order) + tmp1328 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1328 .= Taylor1(zero(_S), order) + tmp1331 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1331 .= Taylor1(zero(_S), order) + tmp1333 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1333 .= Taylor1(zero(_S), order) + tmp1336 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1336 .= Taylor1(zero(_S), order) + tmp1338 = Array{Taylor1{_S}}(undef, size(dq)) + tmp1338 .= Taylor1(zero(_S), order) pn2x = Array{Taylor1{_S}}(undef, size(X)) pn2x .= Taylor1(zero(_S), order) pn2y = Array{Taylor1{_S}}(undef, size(Y)) pn2y .= Taylor1(zero(_S), order) pn2z = Array{Taylor1{_S}}(undef, size(Z)) pn2z .= Taylor1(zero(_S), order) - tmp1291 = Array{Taylor1{_S}}(undef, size(UU)) - tmp1291 .= Taylor1(zero(_S), order) - tmp1294 = Array{Taylor1{_S}}(undef, size(X)) - tmp1294 .= Taylor1(zero(_S), order) - tmp1296 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1296 .= Taylor1(zero(_S), order) - tmp1297 = Array{Taylor1{_S}}(undef, size(tmp1294)) - tmp1297 .= Taylor1(zero(_S), order) - tmp1299 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1299 .= Taylor1(zero(_S), order) - tmp1307 = Array{Taylor1{_S}}(undef, size(pn2x)) - tmp1307 .= Taylor1(zero(_S), order) - tmp1308 = Array{Taylor1{_S}}(undef, size(tmp1307)) - tmp1308 .= Taylor1(zero(_S), order) - tmp1319 = Array{Taylor1{_S}}(undef, size(X)) - tmp1319 .= Taylor1(zero(_S), order) - temp_001 = Array{Taylor1{_S}}(undef, size(tmp1319)) + tmp1346 = Array{Taylor1{_S}}(undef, size(UU)) + tmp1346 .= Taylor1(zero(_S), order) + tmp1349 = Array{Taylor1{_S}}(undef, size(X)) + tmp1349 .= Taylor1(zero(_S), order) + tmp1351 = Array{Taylor1{_S}}(undef, size(Y)) + tmp1351 .= Taylor1(zero(_S), order) + tmp1352 = Array{Taylor1{_S}}(undef, size(tmp1349)) + tmp1352 .= Taylor1(zero(_S), order) + tmp1354 = Array{Taylor1{_S}}(undef, size(Z)) + tmp1354 .= Taylor1(zero(_S), order) + tmp1362 = Array{Taylor1{_S}}(undef, size(pn2x)) + tmp1362 .= Taylor1(zero(_S), order) + tmp1363 = Array{Taylor1{_S}}(undef, size(tmp1362)) + tmp1363 .= Taylor1(zero(_S), order) + tmp1374 = Array{Taylor1{_S}}(undef, size(X)) + tmp1374 .= Taylor1(zero(_S), order) + temp_001 = Array{Taylor1{_S}}(undef, size(tmp1374)) temp_001 .= Taylor1(zero(_S), order) - tmp1321 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1321 .= Taylor1(zero(_S), order) - temp_002 = Array{Taylor1{_S}}(undef, size(tmp1321)) + tmp1376 = Array{Taylor1{_S}}(undef, size(Y)) + tmp1376 .= Taylor1(zero(_S), order) + temp_002 = Array{Taylor1{_S}}(undef, size(tmp1376)) temp_002 .= Taylor1(zero(_S), order) - tmp1323 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1323 .= Taylor1(zero(_S), order) - temp_003 = Array{Taylor1{_S}}(undef, size(tmp1323)) + tmp1378 = Array{Taylor1{_S}}(undef, size(Z)) + tmp1378 .= Taylor1(zero(_S), order) + temp_003 = Array{Taylor1{_S}}(undef, size(tmp1378)) temp_003 .= Taylor1(zero(_S), order) temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) temp_004 .= Taylor1(zero(_S), order) - tmp1327 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1327 .= Taylor1(zero(_S), order) - tmp1329 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1329 .= Taylor1(zero(_S), order) - tmp1330 = Array{Taylor1{_S}}(undef, size(tmp1327)) - tmp1330 .= Taylor1(zero(_S), order) - tmp1332 = Array{Taylor1{_S}}(undef, size(dq)) - tmp1332 .= Taylor1(zero(_S), order) for j = 1:N for i = 1:N if i == j @@ -391,35 +390,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp1271[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp1273[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp1271[3j - 2]) - constant_term(tmp1273[3i - 2]), order) - tmp1276[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp1278[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp1276[3j - 1]) - constant_term(tmp1278[3i - 1]), order) - tmp1281[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp1283[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp1281[3j]) - constant_term(tmp1283[3i]), order) + tmp1326[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) + tmp1328[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) + _4U_m_3X[i, j] = Taylor1(constant_term(tmp1326[3j - 2]) - constant_term(tmp1328[3i - 2]), order) + tmp1331[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) + tmp1333[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) + _4V_m_3Y[i, j] = Taylor1(constant_term(tmp1331[3j - 1]) - constant_term(tmp1333[3i - 1]), order) + tmp1336[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) + tmp1338[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) + _4W_m_3Z[i, j] = Taylor1(constant_term(tmp1336[3j]) - constant_term(tmp1338[3i]), order) pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp1291[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp1291[i, j]) + constant_term(WW[i, j]), order) - tmp1294[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp1296[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp1297[i, j] = Taylor1(constant_term(tmp1294[i, j]) + constant_term(tmp1296[i, j]), order) - tmp1299[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp1297[i, j]) + constant_term(tmp1299[i, j]), order) + tmp1346[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) + vi_dot_vj[i, j] = Taylor1(constant_term(tmp1346[i, j]) + constant_term(WW[i, j]), order) + tmp1349[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp1351[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp1352[i, j] = Taylor1(constant_term(tmp1349[i, j]) + constant_term(tmp1351[i, j]), order) + tmp1354[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + r_p2[i, j] = Taylor1(constant_term(tmp1352[i, j]) + constant_term(tmp1354[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp1307[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp1308[i, j] = Taylor1(constant_term(tmp1307[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp1308[i, j]), order) + tmp1362[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) + tmp1363[i, j] = Taylor1(constant_term(tmp1362[i, j]) + constant_term(pn2z[i, j]), order) + pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp1363[i, j]), order) newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) @@ -428,304 +427,304 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp1319[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp1319[i, j]), order) + tmp1374[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp1374[i, j]), order) newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp1321[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp1321[i, j]), order) + tmp1376[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp1376[i, j]), order) newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp1323[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp1323[i, j]), order) + tmp1378[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp1378[i, j]), order) newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) end end - tmp1327[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp1329[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp1330[3j - 2] = Taylor1(constant_term(tmp1327[3j - 2]) + constant_term(tmp1329[3j - 1]), order) - tmp1332[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp1330[3j - 2]) + constant_term(tmp1332[3j]), order) + tmp1382[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp1384[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp1385[3j - 2] = Taylor1(constant_term(tmp1382[3j - 2]) + constant_term(tmp1384[3j - 1]), order) + tmp1387[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + v2[j] = Taylor1(constant_term(tmp1385[3j - 2]) + constant_term(tmp1387[3j]), order) end - tmp1334 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp1336 = Taylor1(constant_term(tmp1334) / constant_term(2), order) - tmp1337 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp1336), order) - J2M_t = Taylor1(constant_term(tmp1337) / constant_term(μ[mo]), order) - tmp1339 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp1340 = Taylor1(constant_term(tmp1339) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp1340) / constant_term(4), order) - tmp1343 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp1343) / constant_term(μ[mo]), order) - tmp1345 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp1345) / constant_term(μ[mo]), order) - tmp1347 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp1348 = Taylor1(constant_term(tmp1347) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp1348) / constant_term(2), order) + tmp1389 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) + tmp1391 = Taylor1(constant_term(tmp1389) / constant_term(2), order) + tmp1392 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp1391), order) + J2M_t = Taylor1(constant_term(tmp1392) / constant_term(μ[mo]), order) + tmp1394 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) + tmp1395 = Taylor1(constant_term(tmp1394) / constant_term(μ[mo]), order) + C22M_t = Taylor1(constant_term(tmp1395) / constant_term(4), order) + tmp1398 = Taylor1(-(constant_term(I_M_t[1, 3])), order) + C21M_t = Taylor1(constant_term(tmp1398) / constant_term(μ[mo]), order) + tmp1400 = Taylor1(-(constant_term(I_M_t[3, 2])), order) + S21M_t = Taylor1(constant_term(tmp1400) / constant_term(μ[mo]), order) + tmp1402 = Taylor1(-(constant_term(I_M_t[2, 1])), order) + tmp1403 = Taylor1(constant_term(tmp1402) / constant_term(μ[mo]), order) + S22M_t = Taylor1(constant_term(tmp1403) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp1360 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - tmp1360 .= Taylor1(zero(_S), order) - tmp1362 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - tmp1362 .= Taylor1(zero(_S), order) - tmp1364 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - tmp1364 .= Taylor1(zero(_S), order) - tmp1368 = Array{Taylor1{_S}}(undef, size(X_bf)) - tmp1368 .= Taylor1(zero(_S), order) - tmp1370 = Array{Taylor1{_S}}(undef, size(Y_bf)) - tmp1370 .= Taylor1(zero(_S), order) - tmp1371 = Array{Taylor1{_S}}(undef, size(tmp1368)) - tmp1371 .= Taylor1(zero(_S), order) - tmp1376 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1376 .= Taylor1(zero(_S), order) - tmp1377 = Array{Taylor1{_S}}(undef, size(tmp1376)) - tmp1377 .= Taylor1(zero(_S), order) - tmp1378 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1378 .= Taylor1(zero(_S), order) - tmp1380 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp1380 .= Taylor1(zero(_S), order) - tmp1381 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1381 .= Taylor1(zero(_S), order) - tmp1386 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1386 .= Taylor1(zero(_S), order) - tmp1387 = Array{Taylor1{_S}}(undef, size(tmp1386)) - tmp1387 .= Taylor1(zero(_S), order) - tmp1389 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp1389 .= Taylor1(zero(_S), order) - tmp1390 = Array{Taylor1{_S}}(undef, size(tmp1389)) - tmp1390 .= Taylor1(zero(_S), order) - tmp1391 = Array{Taylor1{_S}}(undef, size(tmp1390)) - tmp1391 .= Taylor1(zero(_S), order) - tmp1393 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp1393 .= Taylor1(zero(_S), order) - tmp1394 = Array{Taylor1{_S}}(undef, size(tmp1393)) - tmp1394 .= Taylor1(zero(_S), order) - tmp1395 = Array{Taylor1{_S}}(undef, size(tmp1394)) - tmp1395 .= Taylor1(zero(_S), order) - tmp1397 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp1397 .= Taylor1(zero(_S), order) - tmp1398 = Array{Taylor1{_S}}(undef, size(tmp1397)) - tmp1398 .= Taylor1(zero(_S), order) - tmp1399 = Array{Taylor1{_S}}(undef, size(tmp1398)) - tmp1399 .= Taylor1(zero(_S), order) - tmp1400 = Array{Taylor1{_S}}(undef, size(tmp1399)) - tmp1400 .= Taylor1(zero(_S), order) - tmp1403 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1403 .= Taylor1(zero(_S), order) - tmp1404 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1404 .= Taylor1(zero(_S), order) - tmp1406 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1406 .= Taylor1(zero(_S), order) - tmp1407 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1407 .= Taylor1(zero(_S), order) - tmp1409 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1409 .= Taylor1(zero(_S), order) - tmp1412 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1412 .= Taylor1(zero(_S), order) - tmp1414 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1414 .= Taylor1(zero(_S), order) - tmp1416 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1416 .= Taylor1(zero(_S), order) - tmp1417 = Array{Taylor1{_S}}(undef, size(tmp1416)) + tmp1415 = Array{Taylor1{_S}}(undef, size(X_bf_1)) + tmp1415 .= Taylor1(zero(_S), order) + tmp1417 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) tmp1417 .= Taylor1(zero(_S), order) - tmp1418 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1418 .= Taylor1(zero(_S), order) - tmp1421 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1421 .= Taylor1(zero(_S), order) - tmp1422 = Array{Taylor1{_S}}(undef, size(tmp1421)) - tmp1422 .= Taylor1(zero(_S), order) - tmp1423 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1419 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) + tmp1419 .= Taylor1(zero(_S), order) + tmp1423 = Array{Taylor1{_S}}(undef, size(X_bf)) tmp1423 .= Taylor1(zero(_S), order) - tmp1425 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp1425 = Array{Taylor1{_S}}(undef, size(Y_bf)) tmp1425 .= Taylor1(zero(_S), order) - tmp1426 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp1426 = Array{Taylor1{_S}}(undef, size(tmp1423)) tmp1426 .= Taylor1(zero(_S), order) - tmp1427 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1427 .= Taylor1(zero(_S), order) - tmp1428 = Array{Taylor1{_S}}(undef, size(tmp1426)) - tmp1428 .= Taylor1(zero(_S), order) - tmp1429 = Array{Taylor1{_S}}(undef, size(tmp1425)) - tmp1429 .= Taylor1(zero(_S), order) - tmp1430 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp1430 .= Taylor1(zero(_S), order) - tmp1431 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1431 .= Taylor1(zero(_S), order) - tmp1432 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1432 .= Taylor1(zero(_S), order) - tmp1433 = Array{Taylor1{_S}}(undef, size(tmp1431)) - tmp1433 .= Taylor1(zero(_S), order) - tmp1434 = Array{Taylor1{_S}}(undef, size(tmp1430)) - tmp1434 .= Taylor1(zero(_S), order) - tmp1435 = Array{Taylor1{_S}}(undef, size(tmp1429)) - tmp1435 .= Taylor1(zero(_S), order) - tmp1437 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1437 .= Taylor1(zero(_S), order) - tmp1438 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1438 .= Taylor1(zero(_S), order) - tmp1439 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp1439 .= Taylor1(zero(_S), order) - tmp1440 = Array{Taylor1{_S}}(undef, size(tmp1438)) - tmp1440 .= Taylor1(zero(_S), order) - tmp1441 = Array{Taylor1{_S}}(undef, size(tmp1437)) + tmp1441 = Array{Taylor1{_S}}(undef, size(P_n)) tmp1441 .= Taylor1(zero(_S), order) - tmp1442 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1442 = Array{Taylor1{_S}}(undef, size(tmp1441)) tmp1442 .= Taylor1(zero(_S), order) - tmp1443 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp1443 .= Taylor1(zero(_S), order) - tmp1444 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp1444 = Array{Taylor1{_S}}(undef, size(dP_n)) tmp1444 .= Taylor1(zero(_S), order) - tmp1445 = Array{Taylor1{_S}}(undef, size(tmp1443)) + tmp1445 = Array{Taylor1{_S}}(undef, size(tmp1444)) tmp1445 .= Taylor1(zero(_S), order) - tmp1446 = Array{Taylor1{_S}}(undef, size(tmp1442)) + tmp1446 = Array{Taylor1{_S}}(undef, size(tmp1445)) tmp1446 .= Taylor1(zero(_S), order) - tmp1447 = Array{Taylor1{_S}}(undef, size(tmp1441)) - tmp1447 .= Taylor1(zero(_S), order) - tmp1449 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp1543 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp1543 .= Taylor1(zero(_S), order) + tmp1546 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp1546 .= Taylor1(zero(_S), order) + tmp1548 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1548 .= Taylor1(zero(_S), order) + tmp1549 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1549 .= Taylor1(zero(_S), order) + tmp1550 = Array{Taylor1{_S}}(undef, size(tmp1548)) + tmp1550 .= Taylor1(zero(_S), order) + tmp1551 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1551 .= Taylor1(zero(_S), order) + tmp1553 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1553 .= Taylor1(zero(_S), order) + tmp1554 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1554 .= Taylor1(zero(_S), order) + tmp1555 = Array{Taylor1{_S}}(undef, size(tmp1553)) + tmp1555 .= Taylor1(zero(_S), order) + tmp1556 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1556 .= Taylor1(zero(_S), order) + tmp1558 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1558 .= Taylor1(zero(_S), order) + tmp1559 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1559 .= Taylor1(zero(_S), order) + tmp1560 = Array{Taylor1{_S}}(undef, size(tmp1558)) + tmp1560 .= Taylor1(zero(_S), order) + tmp1561 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1561 .= Taylor1(zero(_S), order) + tmp1563 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1563 .= Taylor1(zero(_S), order) + tmp1564 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1564 .= Taylor1(zero(_S), order) + tmp1565 = Array{Taylor1{_S}}(undef, size(tmp1563)) + tmp1565 .= Taylor1(zero(_S), order) + tmp1566 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1566 .= Taylor1(zero(_S), order) + tmp1568 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1568 .= Taylor1(zero(_S), order) + tmp1569 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1569 .= Taylor1(zero(_S), order) + tmp1570 = Array{Taylor1{_S}}(undef, size(tmp1568)) + tmp1570 .= Taylor1(zero(_S), order) + tmp1571 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1571 .= Taylor1(zero(_S), order) + tmp1573 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1573 .= Taylor1(zero(_S), order) + tmp1574 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1574 .= Taylor1(zero(_S), order) + tmp1575 = Array{Taylor1{_S}}(undef, size(tmp1573)) + tmp1575 .= Taylor1(zero(_S), order) + tmp1576 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1576 .= Taylor1(zero(_S), order) + tmp1578 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1578 .= Taylor1(zero(_S), order) + tmp1579 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1579 .= Taylor1(zero(_S), order) + tmp1580 = Array{Taylor1{_S}}(undef, size(tmp1578)) + tmp1580 .= Taylor1(zero(_S), order) + tmp1581 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1581 .= Taylor1(zero(_S), order) + tmp1583 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1583 .= Taylor1(zero(_S), order) + tmp1584 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1584 .= Taylor1(zero(_S), order) + tmp1585 = Array{Taylor1{_S}}(undef, size(tmp1583)) + tmp1585 .= Taylor1(zero(_S), order) + tmp1586 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1586 .= Taylor1(zero(_S), order) + tmp1588 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1588 .= Taylor1(zero(_S), order) + tmp1589 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1589 .= Taylor1(zero(_S), order) + tmp1590 = Array{Taylor1{_S}}(undef, size(tmp1588)) + tmp1590 .= Taylor1(zero(_S), order) + tmp1591 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1591 .= Taylor1(zero(_S), order) + tmp1593 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1593 .= Taylor1(zero(_S), order) + tmp1594 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1594 .= Taylor1(zero(_S), order) + tmp1595 = Array{Taylor1{_S}}(undef, size(tmp1593)) + tmp1595 .= Taylor1(zero(_S), order) + tmp1596 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1596 .= Taylor1(zero(_S), order) + tmp1598 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1598 .= Taylor1(zero(_S), order) + tmp1599 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1599 .= Taylor1(zero(_S), order) + tmp1600 = Array{Taylor1{_S}}(undef, size(tmp1598)) + tmp1600 .= Taylor1(zero(_S), order) + tmp1601 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1601 .= Taylor1(zero(_S), order) + tmp1603 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1603 .= Taylor1(zero(_S), order) + tmp1604 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1604 .= Taylor1(zero(_S), order) + tmp1605 = Array{Taylor1{_S}}(undef, size(tmp1603)) + tmp1605 .= Taylor1(zero(_S), order) + tmp1606 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp1606 .= Taylor1(zero(_S), order) + tmp1431 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp1431 .= Taylor1(zero(_S), order) + tmp1432 = Array{Taylor1{_S}}(undef, size(tmp1431)) + tmp1432 .= Taylor1(zero(_S), order) + tmp1433 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp1433 .= Taylor1(zero(_S), order) + tmp1435 = Array{Taylor1{_S}}(undef, size(dP_n)) + tmp1435 .= Taylor1(zero(_S), order) + tmp1436 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp1436 .= Taylor1(zero(_S), order) + tmp1448 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp1448 .= Taylor1(zero(_S), order) + tmp1449 = Array{Taylor1{_S}}(undef, size(tmp1448)) tmp1449 .= Taylor1(zero(_S), order) - tmp1450 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp1450 = Array{Taylor1{_S}}(undef, size(tmp1449)) tmp1450 .= Taylor1(zero(_S), order) - tmp1451 = Array{Taylor1{_S}}(undef, size(tmp1449)) - tmp1451 .= Taylor1(zero(_S), order) - tmp1452 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + tmp1452 = Array{Taylor1{_S}}(undef, size(dP_n)) tmp1452 .= Taylor1(zero(_S), order) - tmp1453 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp1453 = Array{Taylor1{_S}}(undef, size(tmp1452)) tmp1453 .= Taylor1(zero(_S), order) - tmp1454 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp1454 = Array{Taylor1{_S}}(undef, size(tmp1453)) tmp1454 .= Taylor1(zero(_S), order) - tmp1455 = Array{Taylor1{_S}}(undef, size(tmp1453)) + tmp1455 = Array{Taylor1{_S}}(undef, size(tmp1454)) tmp1455 .= Taylor1(zero(_S), order) - tmp1456 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp1456 .= Taylor1(zero(_S), order) - tmp1457 = Array{Taylor1{_S}}(undef, size(tmp1452)) - tmp1457 .= Taylor1(zero(_S), order) - tmp1463 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp1463 .= Taylor1(zero(_S), order) - tmp1464 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp1464 .= Taylor1(zero(_S), order) - tmp1465 = Array{Taylor1{_S}}(undef, size(tmp1463)) - tmp1465 .= Taylor1(zero(_S), order) - tmp1466 = Array{Taylor1{_S}}(undef, size(tmp1465)) - tmp1466 .= Taylor1(zero(_S), order) - tmp1468 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp1468 .= Taylor1(zero(_S), order) - tmp1469 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - tmp1469 .= Taylor1(zero(_S), order) - tmp1470 = Array{Taylor1{_S}}(undef, size(tmp1468)) - tmp1470 .= Taylor1(zero(_S), order) - tmp1471 = Array{Taylor1{_S}}(undef, size(tmp1470)) - tmp1471 .= Taylor1(zero(_S), order) - tmp1473 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp1473 .= Taylor1(zero(_S), order) - tmp1474 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp1474 .= Taylor1(zero(_S), order) - tmp1475 = Array{Taylor1{_S}}(undef, size(tmp1474)) - tmp1475 .= Taylor1(zero(_S), order) - tmp1477 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - tmp1477 .= Taylor1(zero(_S), order) - tmp1478 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - tmp1478 .= Taylor1(zero(_S), order) - tmp1481 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + tmp1480 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp1480 .= Taylor1(zero(_S), order) + tmp1481 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp1481 .= Taylor1(zero(_S), order) - tmp1482 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + tmp1482 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp1482 .= Taylor1(zero(_S), order) - tmp1488 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp1483 = Array{Taylor1{_S}}(undef, size(tmp1481)) + tmp1483 .= Taylor1(zero(_S), order) + tmp1484 = Array{Taylor1{_S}}(undef, size(tmp1480)) + tmp1484 .= Taylor1(zero(_S), order) + tmp1485 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp1485 .= Taylor1(zero(_S), order) + tmp1486 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp1486 .= Taylor1(zero(_S), order) + tmp1487 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp1487 .= Taylor1(zero(_S), order) + tmp1488 = Array{Taylor1{_S}}(undef, size(tmp1486)) tmp1488 .= Taylor1(zero(_S), order) - tmp1491 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp1491 .= Taylor1(zero(_S), order) - tmp1493 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1489 = Array{Taylor1{_S}}(undef, size(tmp1485)) + tmp1489 .= Taylor1(zero(_S), order) + tmp1490 = Array{Taylor1{_S}}(undef, size(tmp1484)) + tmp1490 .= Taylor1(zero(_S), order) + tmp1492 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1492 .= Taylor1(zero(_S), order) + tmp1493 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp1493 .= Taylor1(zero(_S), order) - tmp1494 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1494 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp1494 .= Taylor1(zero(_S), order) tmp1495 = Array{Taylor1{_S}}(undef, size(tmp1493)) tmp1495 .= Taylor1(zero(_S), order) - tmp1496 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1496 = Array{Taylor1{_S}}(undef, size(tmp1492)) tmp1496 .= Taylor1(zero(_S), order) - tmp1498 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1497 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1497 .= Taylor1(zero(_S), order) + tmp1498 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp1498 .= Taylor1(zero(_S), order) - tmp1499 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1499 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp1499 .= Taylor1(zero(_S), order) tmp1500 = Array{Taylor1{_S}}(undef, size(tmp1498)) tmp1500 .= Taylor1(zero(_S), order) - tmp1501 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1501 = Array{Taylor1{_S}}(undef, size(tmp1497)) tmp1501 .= Taylor1(zero(_S), order) - tmp1503 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1503 .= Taylor1(zero(_S), order) - tmp1504 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1502 = Array{Taylor1{_S}}(undef, size(tmp1496)) + tmp1502 .= Taylor1(zero(_S), order) + tmp1504 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp1504 .= Taylor1(zero(_S), order) - tmp1505 = Array{Taylor1{_S}}(undef, size(tmp1503)) + tmp1505 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp1505 .= Taylor1(zero(_S), order) - tmp1506 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1506 = Array{Taylor1{_S}}(undef, size(tmp1504)) tmp1506 .= Taylor1(zero(_S), order) - tmp1508 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1507 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + tmp1507 .= Taylor1(zero(_S), order) + tmp1508 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp1508 .= Taylor1(zero(_S), order) - tmp1509 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1509 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp1509 .= Taylor1(zero(_S), order) tmp1510 = Array{Taylor1{_S}}(undef, size(tmp1508)) tmp1510 .= Taylor1(zero(_S), order) - tmp1511 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1511 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) tmp1511 .= Taylor1(zero(_S), order) - tmp1513 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1513 .= Taylor1(zero(_S), order) - tmp1514 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1514 .= Taylor1(zero(_S), order) - tmp1515 = Array{Taylor1{_S}}(undef, size(tmp1513)) - tmp1515 .= Taylor1(zero(_S), order) - tmp1516 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1516 .= Taylor1(zero(_S), order) - tmp1518 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1512 = Array{Taylor1{_S}}(undef, size(tmp1507)) + tmp1512 .= Taylor1(zero(_S), order) + tmp1532 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) + tmp1532 .= Taylor1(zero(_S), order) + tmp1533 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + tmp1533 .= Taylor1(zero(_S), order) + tmp1536 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + tmp1536 .= Taylor1(zero(_S), order) + tmp1537 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + tmp1537 .= Taylor1(zero(_S), order) + tmp1458 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp1458 .= Taylor1(zero(_S), order) + tmp1459 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp1459 .= Taylor1(zero(_S), order) + tmp1461 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp1461 .= Taylor1(zero(_S), order) + tmp1462 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp1462 .= Taylor1(zero(_S), order) + tmp1464 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1464 .= Taylor1(zero(_S), order) + tmp1467 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1467 .= Taylor1(zero(_S), order) + tmp1476 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1476 .= Taylor1(zero(_S), order) + tmp1477 = Array{Taylor1{_S}}(undef, size(tmp1476)) + tmp1477 .= Taylor1(zero(_S), order) + tmp1478 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1478 .= Taylor1(zero(_S), order) + tmp1469 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1469 .= Taylor1(zero(_S), order) + tmp1471 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1471 .= Taylor1(zero(_S), order) + tmp1472 = Array{Taylor1{_S}}(undef, size(tmp1471)) + tmp1472 .= Taylor1(zero(_S), order) + tmp1473 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp1473 .= Taylor1(zero(_S), order) + tmp1518 = Array{Taylor1{_S}}(undef, size(P_nm)) tmp1518 .= Taylor1(zero(_S), order) - tmp1519 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1519 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) tmp1519 .= Taylor1(zero(_S), order) tmp1520 = Array{Taylor1{_S}}(undef, size(tmp1518)) tmp1520 .= Taylor1(zero(_S), order) - tmp1521 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1521 = Array{Taylor1{_S}}(undef, size(tmp1520)) tmp1521 .= Taylor1(zero(_S), order) - tmp1523 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1523 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) tmp1523 .= Taylor1(zero(_S), order) - tmp1524 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1524 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) tmp1524 .= Taylor1(zero(_S), order) tmp1525 = Array{Taylor1{_S}}(undef, size(tmp1523)) tmp1525 .= Taylor1(zero(_S), order) - tmp1526 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1526 = Array{Taylor1{_S}}(undef, size(tmp1525)) tmp1526 .= Taylor1(zero(_S), order) - tmp1528 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1528 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) tmp1528 .= Taylor1(zero(_S), order) - tmp1529 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp1529 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) tmp1529 .= Taylor1(zero(_S), order) - tmp1530 = Array{Taylor1{_S}}(undef, size(tmp1528)) + tmp1530 = Array{Taylor1{_S}}(undef, size(tmp1529)) tmp1530 .= Taylor1(zero(_S), order) - tmp1531 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1531 .= Taylor1(zero(_S), order) - tmp1533 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1533 .= Taylor1(zero(_S), order) - tmp1534 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1534 .= Taylor1(zero(_S), order) - tmp1535 = Array{Taylor1{_S}}(undef, size(tmp1533)) - tmp1535 .= Taylor1(zero(_S), order) - tmp1536 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp1536 .= Taylor1(zero(_S), order) - tmp1538 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1538 .= Taylor1(zero(_S), order) - tmp1539 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1539 .= Taylor1(zero(_S), order) - tmp1540 = Array{Taylor1{_S}}(undef, size(tmp1538)) - tmp1540 .= Taylor1(zero(_S), order) - tmp1541 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1541 .= Taylor1(zero(_S), order) - tmp1543 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1543 .= Taylor1(zero(_S), order) - tmp1544 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1544 .= Taylor1(zero(_S), order) - tmp1545 = Array{Taylor1{_S}}(undef, size(tmp1543)) - tmp1545 .= Taylor1(zero(_S), order) - tmp1546 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1546 .= Taylor1(zero(_S), order) - tmp1548 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1548 .= Taylor1(zero(_S), order) - tmp1549 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1549 .= Taylor1(zero(_S), order) - tmp1550 = Array{Taylor1{_S}}(undef, size(tmp1548)) - tmp1550 .= Taylor1(zero(_S), order) - tmp1551 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp1551 .= Taylor1(zero(_S), order) for j = 1:N_ext for i = 1:N_ext if i == j @@ -741,17 +740,17 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp1360[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp1360[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp1362[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp1362[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp1364[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp1364[i, j]) + constant_term(Z_bf_3[i, j]), order) + tmp1415[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) + X_bf[i, j] = Taylor1(constant_term(tmp1415[i, j]) + constant_term(X_bf_3[i, j]), order) + tmp1417[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) + Y_bf[i, j] = Taylor1(constant_term(tmp1417[i, j]) + constant_term(Y_bf_3[i, j]), order) + tmp1419[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) + Z_bf[i, j] = Taylor1(constant_term(tmp1419[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp1368[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp1370[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp1371[i, j] = Taylor1(constant_term(tmp1368[i, j]) + constant_term(tmp1370[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp1371[i, j])), order) + tmp1423[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp1425[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp1426[i, j] = Taylor1(constant_term(tmp1423[i, j]) + constant_term(tmp1425[i, j]), order) + r_xy[i, j] = Taylor1(sqrt(constant_term(tmp1426[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) @@ -760,35 +759,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) for n = 2:n1SEM[j] - tmp1376[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp1377[i, j, n] = Taylor1(constant_term(tmp1376[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp1378[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp1377[i, j, n]) - constant_term(tmp1378[i, j, n - 1]), order) - tmp1380[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp1381[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp1380[i, j, n]) + constant_term(tmp1381[i, j, n]), order) + tmp1431[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp1432[i, j, n] = Taylor1(constant_term(tmp1431[i, j, n]) * constant_term(fact1_jsem[n]), order) + tmp1433[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) + P_n[i, j, n + 1] = Taylor1(constant_term(tmp1432[i, j, n]) - constant_term(tmp1433[i, j, n - 1]), order) + tmp1435[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp1436[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) + dP_n[i, j, n + 1] = Taylor1(constant_term(tmp1435[i, j, n]) + constant_term(tmp1436[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp1386[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp1387[i, j, 3] = Taylor1(constant_term(tmp1386[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp1387[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp1389[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp1390[i, j, 3] = Taylor1(constant_term(tmp1389[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp1391[i, j, 3] = Taylor1(constant_term(tmp1390[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp1391[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp1441[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) + tmp1442[i, j, 3] = Taylor1(constant_term(tmp1441[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ξ[i, j] = Taylor1(constant_term(tmp1442[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp1444[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) + tmp1445[i, j, 3] = Taylor1(constant_term(tmp1444[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) + tmp1446[i, j, 3] = Taylor1(constant_term(tmp1445[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ζ[i, j] = Taylor1(constant_term(tmp1446[i, j, 3]) / constant_term(r_p4[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) for n = 3:n1SEM[j] - tmp1393[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp1394[i, j, n + 1] = Taylor1(constant_term(tmp1393[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp1395[i, j, n + 1] = Taylor1(constant_term(tmp1394[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp1395[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp1397[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp1398[i, j, n + 1] = Taylor1(constant_term(tmp1397[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp1399[i, j, n + 1] = Taylor1(constant_term(tmp1398[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp1400[i, j, n + 1] = Taylor1(constant_term(tmp1399[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp1400[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) + tmp1448[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) + tmp1449[i, j, n + 1] = Taylor1(constant_term(tmp1448[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp1450[i, j, n + 1] = Taylor1(constant_term(tmp1449[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjξ[i, j, n] = Taylor1(constant_term(tmp1450[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) + tmp1452[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) + tmp1453[i, j, n + 1] = Taylor1(constant_term(tmp1452[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) + tmp1454[i, j, n + 1] = Taylor1(constant_term(tmp1453[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp1455[i, j, n + 1] = Taylor1(constant_term(tmp1454[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjζ[i, j, n] = Taylor1(constant_term(tmp1455[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) end @@ -801,69 +800,69 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) else - tmp1403[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp1404[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp1403[i, j, m - 1]) + constant_term(tmp1404[i, j, m - 1]), order) - tmp1406[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp1407[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp1406[i, j, m - 1]) - constant_term(tmp1407[i, j, m - 1]), order) - tmp1409[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp1409[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) + tmp1458[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + tmp1459[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + sin_mλ[i, j, m] = Taylor1(constant_term(tmp1458[i, j, m - 1]) + constant_term(tmp1459[i, j, m - 1]), order) + tmp1461[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + tmp1462[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + cos_mλ[i, j, m] = Taylor1(constant_term(tmp1461[i, j, m - 1]) - constant_term(tmp1462[i, j, m - 1]), order) + tmp1464[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) + secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp1464[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp1412[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp1412[i, j, m, m]) * constant_term(lnm3[m]), order) + tmp1467[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) + cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp1467[i, j, m, m]) * constant_term(lnm3[m]), order) end for n = m + 1:n1SEM[mo] if n == m + 1 - tmp1414[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1414[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp1469[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1469[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) else - tmp1416[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp1417[i, j, n - 1, m] = Taylor1(constant_term(tmp1416[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp1418[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1417[i, j, n - 1, m]) + constant_term(tmp1418[i, j, n - 2, m]), order) + tmp1471[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + tmp1472[i, j, n - 1, m] = Taylor1(constant_term(tmp1471[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp1473[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp1472[i, j, n - 1, m]) + constant_term(tmp1473[i, j, n - 2, m]), order) end P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp1421[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp1422[i, j, n, m] = Taylor1(constant_term(tmp1421[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp1423[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp1422[i, j, n, m]) + constant_term(tmp1423[i, j, n - 1, m]), order) + tmp1476[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) + tmp1477[i, j, n, m] = Taylor1(constant_term(tmp1476[i, j, n, m]) * constant_term(lnm3[n]), order) + tmp1478[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) + cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp1477[i, j, n, m]) + constant_term(tmp1478[i, j, n - 1, m]), order) end end - tmp1425[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp1426[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp1427[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp1428[i, j, 1] = Taylor1(constant_term(tmp1426[i, j, 1]) + constant_term(tmp1427[i, j, 1]), order) - tmp1429[i, j, 2, 1] = Taylor1(constant_term(tmp1425[i, j, 2, 1]) * constant_term(tmp1428[i, j, 1]), order) - tmp1430[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp1431[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp1432[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp1433[i, j, 2] = Taylor1(constant_term(tmp1431[i, j, 2]) + constant_term(tmp1432[i, j, 2]), order) - tmp1434[i, j, 2, 2] = Taylor1(constant_term(tmp1430[i, j, 2, 2]) * constant_term(tmp1433[i, j, 2]), order) - tmp1435[i, j, 2, 1] = Taylor1(constant_term(tmp1429[i, j, 2, 1]) + constant_term(tmp1434[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp1435[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp1437[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp1438[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp1439[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp1440[i, j, 1] = Taylor1(constant_term(tmp1438[i, j, 1]) - constant_term(tmp1439[i, j, 1]), order) - tmp1441[i, j, 2, 1] = Taylor1(constant_term(tmp1437[i, j, 2, 1]) * constant_term(tmp1440[i, j, 1]), order) - tmp1442[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp1443[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp1444[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp1445[i, j, 2] = Taylor1(constant_term(tmp1443[i, j, 2]) - constant_term(tmp1444[i, j, 2]), order) - tmp1446[i, j, 2, 2] = Taylor1(constant_term(tmp1442[i, j, 2, 2]) * constant_term(tmp1445[i, j, 2]), order) - tmp1447[i, j, 2, 1] = Taylor1(constant_term(tmp1441[i, j, 2, 1]) + constant_term(tmp1446[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp1447[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp1449[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp1450[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp1451[i, j, 1] = Taylor1(constant_term(tmp1449[i, j, 1]) + constant_term(tmp1450[i, j, 1]), order) - tmp1452[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1451[i, j, 1]), order) - tmp1453[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp1454[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp1455[i, j, 2] = Taylor1(constant_term(tmp1453[i, j, 2]) + constant_term(tmp1454[i, j, 2]), order) - tmp1456[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1455[i, j, 2]), order) - tmp1457[i, j, 2, 1] = Taylor1(constant_term(tmp1452[i, j, 2, 1]) + constant_term(tmp1456[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp1457[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp1480[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) + tmp1481[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp1482[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp1483[i, j, 1] = Taylor1(constant_term(tmp1481[i, j, 1]) + constant_term(tmp1482[i, j, 1]), order) + tmp1484[i, j, 2, 1] = Taylor1(constant_term(tmp1480[i, j, 2, 1]) * constant_term(tmp1483[i, j, 1]), order) + tmp1485[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) + tmp1486[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp1487[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp1488[i, j, 2] = Taylor1(constant_term(tmp1486[i, j, 2]) + constant_term(tmp1487[i, j, 2]), order) + tmp1489[i, j, 2, 2] = Taylor1(constant_term(tmp1485[i, j, 2, 2]) * constant_term(tmp1488[i, j, 2]), order) + tmp1490[i, j, 2, 1] = Taylor1(constant_term(tmp1484[i, j, 2, 1]) + constant_term(tmp1489[i, j, 2, 2]), order) + F_CS_ξ[i, j] = Taylor1(constant_term(tmp1490[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp1492[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) + tmp1493[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp1494[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp1495[i, j, 1] = Taylor1(constant_term(tmp1493[i, j, 1]) - constant_term(tmp1494[i, j, 1]), order) + tmp1496[i, j, 2, 1] = Taylor1(constant_term(tmp1492[i, j, 2, 1]) * constant_term(tmp1495[i, j, 1]), order) + tmp1497[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) + tmp1498[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp1499[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp1500[i, j, 2] = Taylor1(constant_term(tmp1498[i, j, 2]) - constant_term(tmp1499[i, j, 2]), order) + tmp1501[i, j, 2, 2] = Taylor1(constant_term(tmp1497[i, j, 2, 2]) * constant_term(tmp1500[i, j, 2]), order) + tmp1502[i, j, 2, 1] = Taylor1(constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1501[i, j, 2, 2]), order) + F_CS_η[i, j] = Taylor1(constant_term(tmp1502[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp1504[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp1505[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp1506[i, j, 1] = Taylor1(constant_term(tmp1504[i, j, 1]) + constant_term(tmp1505[i, j, 1]), order) + tmp1507[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1506[i, j, 1]), order) + tmp1508[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp1509[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp1510[i, j, 2] = Taylor1(constant_term(tmp1508[i, j, 2]) + constant_term(tmp1509[i, j, 2]), order) + tmp1511[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1510[i, j, 2]), order) + tmp1512[i, j, 2, 1] = Taylor1(constant_term(tmp1507[i, j, 2, 1]) + constant_term(tmp1511[i, j, 2, 2]), order) + F_CS_ζ[i, j] = Taylor1(constant_term(tmp1512[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -873,32 +872,32 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp1463[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp1464[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp1465[i, j, n, m] = Taylor1(constant_term(tmp1463[i, j, n, m]) * constant_term(tmp1464[i, j, n, m]), order) - tmp1466[i, j, n, m] = Taylor1(constant_term(tmp1465[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp1466[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp1468[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp1469[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp1470[i, j, n, m] = Taylor1(constant_term(tmp1468[i, j, n, m]) * constant_term(tmp1469[i, j, n, m]), order) - tmp1471[i, j, n, m] = Taylor1(constant_term(tmp1470[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp1471[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp1473[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp1474[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1473[i, j, n, m]), order) - tmp1475[i, j, n, m] = Taylor1(constant_term(tmp1474[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp1475[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) + tmp1518[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) + tmp1519[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp1520[i, j, n, m] = Taylor1(constant_term(tmp1518[i, j, n, m]) * constant_term(tmp1519[i, j, n, m]), order) + tmp1521[i, j, n, m] = Taylor1(constant_term(tmp1520[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp1521[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) + tmp1523[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) + tmp1524[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) + tmp1525[i, j, n, m] = Taylor1(constant_term(tmp1523[i, j, n, m]) * constant_term(tmp1524[i, j, n, m]), order) + tmp1526[i, j, n, m] = Taylor1(constant_term(tmp1525[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp1526[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) + tmp1528[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp1529[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1528[i, j, n, m]), order) + tmp1530[i, j, n, m] = Taylor1(constant_term(tmp1529[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp1530[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) end end - tmp1477[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp1478[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp1477[i, j]) + constant_term(tmp1478[i, j]), order) + tmp1532[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) + tmp1533[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) + F_JCS_ξ[i, j] = Taylor1(constant_term(tmp1532[i, j]) + constant_term(tmp1533[i, j]), order) F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp1481[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp1482[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp1481[i, j]) + constant_term(tmp1482[i, j]), order) + tmp1536[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) + tmp1537[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) + F_JCS_ζ[i, j] = Taylor1(constant_term(tmp1536[i, j]) + constant_term(tmp1537[i, j]), order) else F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -906,184 +905,184 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 end Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp1488[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp1488[i, j]) * constant_term(cos_λ[i, j]), order) + tmp1543[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp1543[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp1491[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp1491[i, j]) * constant_term(sin_λ[i, j]), order) + tmp1546[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp1546[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp1493[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp1494[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp1495[i, j, 1, 1] = Taylor1(constant_term(tmp1493[i, j, 1, 1]) + constant_term(tmp1494[i, j, 1, 2]), order) - tmp1496[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp1495[i, j, 1, 1]) + constant_term(tmp1496[i, j, 1, 3]), order) - tmp1498[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp1499[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp1500[i, j, 2, 1] = Taylor1(constant_term(tmp1498[i, j, 2, 1]) + constant_term(tmp1499[i, j, 2, 2]), order) - tmp1501[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp1500[i, j, 2, 1]) + constant_term(tmp1501[i, j, 2, 3]), order) - tmp1503[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp1504[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp1505[i, j, 3, 1] = Taylor1(constant_term(tmp1503[i, j, 3, 1]) + constant_term(tmp1504[i, j, 3, 2]), order) - tmp1506[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp1505[i, j, 3, 1]) + constant_term(tmp1506[i, j, 3, 3]), order) - tmp1508[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp1509[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) - tmp1510[i, j, 1, 1] = Taylor1(constant_term(tmp1508[i, j, 1, 1]) + constant_term(tmp1509[i, j, 1, 2]), order) - tmp1511[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp1510[i, j, 1, 1]) + constant_term(tmp1511[i, j, 1, 3]), order) - tmp1513[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp1514[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) - tmp1515[i, j, 2, 1] = Taylor1(constant_term(tmp1513[i, j, 2, 1]) + constant_term(tmp1514[i, j, 2, 2]), order) - tmp1516[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp1515[i, j, 2, 1]) + constant_term(tmp1516[i, j, 2, 3]), order) - tmp1518[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp1519[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) - tmp1520[i, j, 3, 1] = Taylor1(constant_term(tmp1518[i, j, 3, 1]) + constant_term(tmp1519[i, j, 3, 2]), order) - tmp1521[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp1520[i, j, 3, 1]) + constant_term(tmp1521[i, j, 3, 3]), order) - tmp1523[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp1524[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) - tmp1525[i, j, 1, 1] = Taylor1(constant_term(tmp1523[i, j, 1, 1]) + constant_term(tmp1524[i, j, 1, 2]), order) - tmp1526[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp1525[i, j, 1, 1]) + constant_term(tmp1526[i, j, 1, 3]), order) - tmp1528[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp1529[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) - tmp1530[i, j, 2, 1] = Taylor1(constant_term(tmp1528[i, j, 2, 1]) + constant_term(tmp1529[i, j, 2, 2]), order) - tmp1531[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp1530[i, j, 2, 1]) + constant_term(tmp1531[i, j, 2, 3]), order) - tmp1533[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp1534[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) - tmp1535[i, j, 3, 1] = Taylor1(constant_term(tmp1533[i, j, 3, 1]) + constant_term(tmp1534[i, j, 3, 2]), order) - tmp1536[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp1535[i, j, 3, 1]) + constant_term(tmp1536[i, j, 3, 3]), order) - tmp1538[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp1539[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp1540[i, j, 1, 1] = Taylor1(constant_term(tmp1538[i, j, 1, 1]) + constant_term(tmp1539[i, j, 2, 1]), order) - tmp1541[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp1540[i, j, 1, 1]) + constant_term(tmp1541[i, j, 3, 1]), order) - tmp1543[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp1544[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp1545[i, j, 1, 2] = Taylor1(constant_term(tmp1543[i, j, 1, 2]) + constant_term(tmp1544[i, j, 2, 2]), order) - tmp1546[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp1545[i, j, 1, 2]) + constant_term(tmp1546[i, j, 3, 2]), order) - tmp1548[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp1549[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp1550[i, j, 1, 3] = Taylor1(constant_term(tmp1548[i, j, 1, 3]) + constant_term(tmp1549[i, j, 2, 3]), order) - tmp1551[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp1550[i, j, 1, 3]) + constant_term(tmp1551[i, j, 3, 3]), order) + tmp1548[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) + tmp1549[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) + tmp1550[i, j, 1, 1] = Taylor1(constant_term(tmp1548[i, j, 1, 1]) + constant_term(tmp1549[i, j, 1, 2]), order) + tmp1551[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp1550[i, j, 1, 1]) + constant_term(tmp1551[i, j, 1, 3]), order) + tmp1553[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) + tmp1554[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) + tmp1555[i, j, 2, 1] = Taylor1(constant_term(tmp1553[i, j, 2, 1]) + constant_term(tmp1554[i, j, 2, 2]), order) + tmp1556[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp1555[i, j, 2, 1]) + constant_term(tmp1556[i, j, 2, 3]), order) + tmp1558[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) + tmp1559[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) + tmp1560[i, j, 3, 1] = Taylor1(constant_term(tmp1558[i, j, 3, 1]) + constant_term(tmp1559[i, j, 3, 2]), order) + tmp1561[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp1560[i, j, 3, 1]) + constant_term(tmp1561[i, j, 3, 3]), order) + tmp1563[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) + tmp1564[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) + tmp1565[i, j, 1, 1] = Taylor1(constant_term(tmp1563[i, j, 1, 1]) + constant_term(tmp1564[i, j, 1, 2]), order) + tmp1566[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp1565[i, j, 1, 1]) + constant_term(tmp1566[i, j, 1, 3]), order) + tmp1568[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) + tmp1569[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) + tmp1570[i, j, 2, 1] = Taylor1(constant_term(tmp1568[i, j, 2, 1]) + constant_term(tmp1569[i, j, 2, 2]), order) + tmp1571[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp1570[i, j, 2, 1]) + constant_term(tmp1571[i, j, 2, 3]), order) + tmp1573[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) + tmp1574[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) + tmp1575[i, j, 3, 1] = Taylor1(constant_term(tmp1573[i, j, 3, 1]) + constant_term(tmp1574[i, j, 3, 2]), order) + tmp1576[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp1575[i, j, 3, 1]) + constant_term(tmp1576[i, j, 3, 3]), order) + tmp1578[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) + tmp1579[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp1580[i, j, 1, 1] = Taylor1(constant_term(tmp1578[i, j, 1, 1]) + constant_term(tmp1579[i, j, 1, 2]), order) + tmp1581[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp1580[i, j, 1, 1]) + constant_term(tmp1581[i, j, 1, 3]), order) + tmp1583[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) + tmp1584[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp1585[i, j, 2, 1] = Taylor1(constant_term(tmp1583[i, j, 2, 1]) + constant_term(tmp1584[i, j, 2, 2]), order) + tmp1586[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp1585[i, j, 2, 1]) + constant_term(tmp1586[i, j, 2, 3]), order) + tmp1588[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) + tmp1589[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp1590[i, j, 3, 1] = Taylor1(constant_term(tmp1588[i, j, 3, 1]) + constant_term(tmp1589[i, j, 3, 2]), order) + tmp1591[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp1590[i, j, 3, 1]) + constant_term(tmp1591[i, j, 3, 3]), order) + tmp1593[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) + tmp1594[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) + tmp1595[i, j, 1, 1] = Taylor1(constant_term(tmp1593[i, j, 1, 1]) + constant_term(tmp1594[i, j, 2, 1]), order) + tmp1596[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) + F_JCS_x[i, j] = Taylor1(constant_term(tmp1595[i, j, 1, 1]) + constant_term(tmp1596[i, j, 3, 1]), order) + tmp1598[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) + tmp1599[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) + tmp1600[i, j, 1, 2] = Taylor1(constant_term(tmp1598[i, j, 1, 2]) + constant_term(tmp1599[i, j, 2, 2]), order) + tmp1601[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) + F_JCS_y[i, j] = Taylor1(constant_term(tmp1600[i, j, 1, 2]) + constant_term(tmp1601[i, j, 3, 2]), order) + tmp1603[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) + tmp1604[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) + tmp1605[i, j, 1, 3] = Taylor1(constant_term(tmp1603[i, j, 1, 3]) + constant_term(tmp1604[i, j, 2, 3]), order) + tmp1606[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) + F_JCS_z[i, j] = Taylor1(constant_term(tmp1605[i, j, 1, 3]) + constant_term(tmp1606[i, j, 3, 3]), order) end end end end - tmp1553 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp1553 .= Taylor1(zero(_S), order) - tmp1555 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp1555 .= Taylor1(zero(_S), order) - tmp1557 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp1557 .= Taylor1(zero(_S), order) - tmp1559 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp1559 .= Taylor1(zero(_S), order) - tmp1561 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp1561 .= Taylor1(zero(_S), order) - tmp1563 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp1563 .= Taylor1(zero(_S), order) - tmp1565 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1565 .= Taylor1(zero(_S), order) - tmp1566 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1566 .= Taylor1(zero(_S), order) - tmp1567 = Array{Taylor1{_S}}(undef, size(tmp1565)) - tmp1567 .= Taylor1(zero(_S), order) - tmp1569 = Array{Taylor1{_S}}(undef, size(Z)) - tmp1569 .= Taylor1(zero(_S), order) - tmp1570 = Array{Taylor1{_S}}(undef, size(X)) - tmp1570 .= Taylor1(zero(_S), order) - tmp1571 = Array{Taylor1{_S}}(undef, size(tmp1569)) - tmp1571 .= Taylor1(zero(_S), order) - tmp1573 = Array{Taylor1{_S}}(undef, size(X)) - tmp1573 .= Taylor1(zero(_S), order) - tmp1574 = Array{Taylor1{_S}}(undef, size(Y)) - tmp1574 .= Taylor1(zero(_S), order) - tmp1575 = Array{Taylor1{_S}}(undef, size(tmp1573)) - tmp1575 .= Taylor1(zero(_S), order) - tmp1577 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_x)) - tmp1577 .= Taylor1(zero(_S), order) - tmp1579 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_y)) - tmp1579 .= Taylor1(zero(_S), order) - tmp1581 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_z)) - tmp1581 .= Taylor1(zero(_S), order) + tmp1608 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + tmp1608 .= Taylor1(zero(_S), order) + tmp1610 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + tmp1610 .= Taylor1(zero(_S), order) + tmp1612 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + tmp1612 .= Taylor1(zero(_S), order) + tmp1614 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + tmp1614 .= Taylor1(zero(_S), order) + tmp1616 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + tmp1616 .= Taylor1(zero(_S), order) + tmp1618 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + tmp1618 .= Taylor1(zero(_S), order) + tmp1620 = Array{Taylor1{_S}}(undef, size(Y)) + tmp1620 .= Taylor1(zero(_S), order) + tmp1621 = Array{Taylor1{_S}}(undef, size(Z)) + tmp1621 .= Taylor1(zero(_S), order) + tmp1622 = Array{Taylor1{_S}}(undef, size(tmp1620)) + tmp1622 .= Taylor1(zero(_S), order) + tmp1624 = Array{Taylor1{_S}}(undef, size(Z)) + tmp1624 .= Taylor1(zero(_S), order) + tmp1625 = Array{Taylor1{_S}}(undef, size(X)) + tmp1625 .= Taylor1(zero(_S), order) + tmp1626 = Array{Taylor1{_S}}(undef, size(tmp1624)) + tmp1626 .= Taylor1(zero(_S), order) + tmp1628 = Array{Taylor1{_S}}(undef, size(X)) + tmp1628 .= Taylor1(zero(_S), order) + tmp1629 = Array{Taylor1{_S}}(undef, size(Y)) + tmp1629 .= Taylor1(zero(_S), order) + tmp1630 = Array{Taylor1{_S}}(undef, size(tmp1628)) + tmp1630 .= Taylor1(zero(_S), order) + tmp1632 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_x)) + tmp1632 .= Taylor1(zero(_S), order) + tmp1634 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_y)) + tmp1634 .= Taylor1(zero(_S), order) + tmp1636 = Array{Taylor1{_S}}(undef, size(N_MfigM_pmA_z)) + tmp1636 .= Taylor1(zero(_S), order) for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] - tmp1553[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp1553[i, j]), order) + tmp1608[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp1608[i, j]), order) accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp1555[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp1555[i, j]), order) + tmp1610[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp1610[i, j]), order) accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp1557[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp1557[i, j]), order) + tmp1612[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp1612[i, j]), order) accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp1559[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp1559[i, j]), order) + tmp1614[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp1614[i, j]), order) accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp1561[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp1561[i, j]), order) + tmp1616[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp1616[i, j]), order) accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp1563[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp1563[i, j]), order) + tmp1618[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp1618[i, j]), order) accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) if j == mo - tmp1565[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp1566[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp1567[i, j] = Taylor1(constant_term(tmp1565[i, j]) - constant_term(tmp1566[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1567[i, j]), order) - tmp1569[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp1570[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp1571[i, j] = Taylor1(constant_term(tmp1569[i, j]) - constant_term(tmp1570[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1571[i, j]), order) - tmp1573[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp1574[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp1575[i, j] = Taylor1(constant_term(tmp1573[i, j]) - constant_term(tmp1574[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1575[i, j]), order) - tmp1577[i] = Taylor1(constant_term(N_MfigM_pmA_x[i]) * constant_term(μ[j]), order) - temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(tmp1577[i]), order) + tmp1620[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp1621[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp1622[i, j] = Taylor1(constant_term(tmp1620[i, j]) - constant_term(tmp1621[i, j]), order) + N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1622[i, j]), order) + tmp1624[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp1625[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp1626[i, j] = Taylor1(constant_term(tmp1624[i, j]) - constant_term(tmp1625[i, j]), order) + N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1626[i, j]), order) + tmp1628[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp1629[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp1630[i, j] = Taylor1(constant_term(tmp1628[i, j]) - constant_term(tmp1629[i, j]), order) + N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp1630[i, j]), order) + tmp1632[i] = Taylor1(constant_term(N_MfigM_pmA_x[i]) * constant_term(μ[j]), order) + temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(tmp1632[i]), order) N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) - tmp1579[i] = Taylor1(constant_term(N_MfigM_pmA_y[i]) * constant_term(μ[j]), order) - temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(tmp1579[i]), order) + tmp1634[i] = Taylor1(constant_term(N_MfigM_pmA_y[i]) * constant_term(μ[j]), order) + temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(tmp1634[i]), order) N_MfigM[2] = Taylor1(identity(constant_term(temp_N_M_y[i])), order) - tmp1581[i] = Taylor1(constant_term(N_MfigM_pmA_z[i]) * constant_term(μ[j]), order) - temp_N_M_z[i] = Taylor1(constant_term(N_MfigM[3]) - constant_term(tmp1581[i]), order) + tmp1636[i] = Taylor1(constant_term(N_MfigM_pmA_z[i]) * constant_term(μ[j]), order) + temp_N_M_z[i] = Taylor1(constant_term(N_MfigM[3]) - constant_term(tmp1636[i]), order) N_MfigM[3] = Taylor1(identity(constant_term(temp_N_M_z[i])), order) end end end end end - tmp1590 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - tmp1590 .= Taylor1(zero(_S), order) + tmp1645 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) + tmp1645 .= Taylor1(zero(_S), order) Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) Xij_t_Ui .= Taylor1(zero(_S), order) Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) Yij_t_Vi .= Taylor1(zero(_S), order) Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) Zij_t_Wi .= Taylor1(zero(_S), order) - tmp1596 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - tmp1596 .= Taylor1(zero(_S), order) - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp1596)) + tmp1651 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) + tmp1651 .= Taylor1(zero(_S), order) + Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp1651)) Rij_dot_Vi .= Taylor1(zero(_S), order) - tmp1599 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - tmp1599 .= Taylor1(zero(_S), order) - pn1t7 = Array{Taylor1{_S}}(undef, size(tmp1599)) + tmp1654 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + tmp1654 .= Taylor1(zero(_S), order) + pn1t7 = Array{Taylor1{_S}}(undef, size(tmp1654)) pn1t7 .= Taylor1(zero(_S), order) - tmp1602 = Array{Taylor1{_S}}(undef, size(pn1t7)) - tmp1602 .= Taylor1(zero(_S), order) + tmp1657 = Array{Taylor1{_S}}(undef, size(pn1t7)) + tmp1657 .= Taylor1(zero(_S), order) pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) pn1t2_7 .= Taylor1(zero(_S), order) for j = 1:N @@ -1095,18 +1094,18 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp1590[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1590[i, j]), order) + tmp1645[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) + sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1645[i, j]), order) ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp1596[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp1596[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp1599[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - pn1t7[i, j] = Taylor1(constant_term(tmp1599[i, j]) / constant_term(r_p2[i, j]), order) - tmp1602[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1602[i, j]), order) + tmp1651[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) + Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp1651[i, j]) + constant_term(Zij_t_Wi[i, j]), order) + tmp1654[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + pn1t7[i, j] = Taylor1(constant_term(tmp1654[i, j]) / constant_term(r_p2[i, j]), order) + tmp1657[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) + pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1657[i, j]), order) pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) end end @@ -1114,26 +1113,26 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp1609 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - tmp1609 .= Taylor1(zero(_S), order) - tmp1610 = Array{Taylor1{_S}}(undef, size(tmp1609)) - tmp1610 .= Taylor1(zero(_S), order) - tmp1611 = Array{Taylor1{_S}}(undef, size(tmp1610)) - tmp1611 .= Taylor1(zero(_S), order) - tmp1619 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - tmp1619 .= Taylor1(zero(_S), order) + tmp1664 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) + tmp1664 .= Taylor1(zero(_S), order) + tmp1665 = Array{Taylor1{_S}}(undef, size(tmp1664)) + tmp1665 .= Taylor1(zero(_S), order) + tmp1666 = Array{Taylor1{_S}}(undef, size(tmp1665)) + tmp1666 .= Taylor1(zero(_S), order) + tmp1674 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) + tmp1674 .= Taylor1(zero(_S), order) termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) termpnx .= Taylor1(zero(_S), order) sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) sumpnx .= Taylor1(zero(_S), order) - tmp1622 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - tmp1622 .= Taylor1(zero(_S), order) + tmp1677 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) + tmp1677 .= Taylor1(zero(_S), order) termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) termpny .= Taylor1(zero(_S), order) sumpny = Array{Taylor1{_S}}(undef, size(termpny)) sumpny .= Taylor1(zero(_S), order) - tmp1625 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - tmp1625 .= Taylor1(zero(_S), order) + tmp1680 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) + tmp1680 .= Taylor1(zero(_S), order) termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) termpnz .= Taylor1(zero(_S), order) sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) @@ -1146,26 +1145,26 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp1609[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp1610[i, j] = Taylor1(constant_term(tmp1609[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp1611[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp1610[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp1611[i, j]), order) + tmp1664[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) + tmp1665[i, j] = Taylor1(constant_term(tmp1664[i, j]) + constant_term(pNZ_t_Z[i, j]), order) + tmp1666[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp1665[i, j]), order) + pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp1666[i, j]), order) X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp1619[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp1619[i, j]), order) + tmp1674[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) + termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp1674[i, j]), order) sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp1622[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp1622[i, j]), order) + tmp1677[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) + termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp1677[i, j]), order) sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp1625[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp1625[i, j]), order) + tmp1680[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) + termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp1680[i, j]), order) sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) end @@ -1184,277 +1183,2746 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) end - tmp1634 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp1635 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp1636 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp1637 = Taylor1(constant_term(tmp1635) + constant_term(tmp1636), order) - Iω_x = Taylor1(constant_term(tmp1634) + constant_term(tmp1637), order) - tmp1639 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp1640 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp1641 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp1642 = Taylor1(constant_term(tmp1640) + constant_term(tmp1641), order) - Iω_y = Taylor1(constant_term(tmp1639) + constant_term(tmp1642), order) - tmp1644 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp1645 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp1646 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp1647 = Taylor1(constant_term(tmp1645) + constant_term(tmp1646), order) - Iω_z = Taylor1(constant_term(tmp1644) + constant_term(tmp1647), order) - tmp1649 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp1650 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp1649) - constant_term(tmp1650), order) - tmp1652 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp1653 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp1652) - constant_term(tmp1653), order) - tmp1655 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp1656 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp1655) - constant_term(tmp1656), order) - tmp1658 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp1659 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp1660 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp1661 = Taylor1(constant_term(tmp1659) + constant_term(tmp1660), order) - dIω_x = Taylor1(constant_term(tmp1658) + constant_term(tmp1661), order) - tmp1663 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp1664 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp1665 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp1666 = Taylor1(constant_term(tmp1664) + constant_term(tmp1665), order) - dIω_y = Taylor1(constant_term(tmp1663) + constant_term(tmp1666), order) - tmp1668 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp1669 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp1670 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp1671 = Taylor1(constant_term(tmp1669) + constant_term(tmp1670), order) - dIω_z = Taylor1(constant_term(tmp1668) + constant_term(tmp1671), order) + tmp1689 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp1690 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp1691 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp1692 = Taylor1(constant_term(tmp1690) + constant_term(tmp1691), order) + Iω_x = Taylor1(constant_term(tmp1689) + constant_term(tmp1692), order) + tmp1694 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp1695 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp1696 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp1697 = Taylor1(constant_term(tmp1695) + constant_term(tmp1696), order) + Iω_y = Taylor1(constant_term(tmp1694) + constant_term(tmp1697), order) + tmp1699 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp1700 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp1701 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp1702 = Taylor1(constant_term(tmp1700) + constant_term(tmp1701), order) + Iω_z = Taylor1(constant_term(tmp1699) + constant_term(tmp1702), order) + tmp1704 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) + tmp1705 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) + ωxIω_x = Taylor1(constant_term(tmp1704) - constant_term(tmp1705), order) + tmp1707 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) + tmp1708 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) + ωxIω_y = Taylor1(constant_term(tmp1707) - constant_term(tmp1708), order) + tmp1710 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) + tmp1711 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) + ωxIω_z = Taylor1(constant_term(tmp1710) - constant_term(tmp1711), order) + tmp1713 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp1714 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp1715 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp1716 = Taylor1(constant_term(tmp1714) + constant_term(tmp1715), order) + dIω_x = Taylor1(constant_term(tmp1713) + constant_term(tmp1716), order) + tmp1718 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp1719 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp1720 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp1721 = Taylor1(constant_term(tmp1719) + constant_term(tmp1720), order) + dIω_y = Taylor1(constant_term(tmp1718) + constant_term(tmp1721), order) + tmp1723 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp1724 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp1725 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp1726 = Taylor1(constant_term(tmp1724) + constant_term(tmp1725), order) + dIω_z = Taylor1(constant_term(tmp1723) + constant_term(tmp1726), order) er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp1676 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp1677 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp1678 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp1679 = Taylor1(constant_term(tmp1677) + constant_term(tmp1678), order) - er_EM_1 = Taylor1(constant_term(tmp1676) + constant_term(tmp1679), order) - tmp1681 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp1682 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp1683 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp1684 = Taylor1(constant_term(tmp1682) + constant_term(tmp1683), order) - er_EM_2 = Taylor1(constant_term(tmp1681) + constant_term(tmp1684), order) - tmp1686 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp1687 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp1688 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp1689 = Taylor1(constant_term(tmp1687) + constant_term(tmp1688), order) - er_EM_3 = Taylor1(constant_term(tmp1686) + constant_term(tmp1689), order) - tmp1691 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp1692 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp1693 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) - tmp1694 = Taylor1(constant_term(tmp1692) + constant_term(tmp1693), order) - p_E_1 = Taylor1(constant_term(tmp1691) + constant_term(tmp1694), order) - tmp1696 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp1697 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp1698 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) - tmp1699 = Taylor1(constant_term(tmp1697) + constant_term(tmp1698), order) - p_E_2 = Taylor1(constant_term(tmp1696) + constant_term(tmp1699), order) - tmp1701 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp1702 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp1703 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) - tmp1704 = Taylor1(constant_term(tmp1702) + constant_term(tmp1703), order) - p_E_3 = Taylor1(constant_term(tmp1701) + constant_term(tmp1704), order) - tmp1706 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp1707 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp1708 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) - tmp1709 = Taylor1(constant_term(tmp1707) + constant_term(tmp1708), order) - I_er_EM_1 = Taylor1(constant_term(tmp1706) + constant_term(tmp1709), order) - tmp1711 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp1712 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp1713 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) - tmp1714 = Taylor1(constant_term(tmp1712) + constant_term(tmp1713), order) - I_er_EM_2 = Taylor1(constant_term(tmp1711) + constant_term(tmp1714), order) - tmp1716 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp1717 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp1718 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) - tmp1719 = Taylor1(constant_term(tmp1717) + constant_term(tmp1718), order) - I_er_EM_3 = Taylor1(constant_term(tmp1716) + constant_term(tmp1719), order) - tmp1721 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp1722 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp1723 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) - tmp1724 = Taylor1(constant_term(tmp1722) + constant_term(tmp1723), order) - I_p_E_1 = Taylor1(constant_term(tmp1721) + constant_term(tmp1724), order) - tmp1726 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp1727 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp1728 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) - tmp1729 = Taylor1(constant_term(tmp1727) + constant_term(tmp1728), order) - I_p_E_2 = Taylor1(constant_term(tmp1726) + constant_term(tmp1729), order) - tmp1731 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp1732 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp1733 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp1731 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) + tmp1732 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) + tmp1733 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) tmp1734 = Taylor1(constant_term(tmp1732) + constant_term(tmp1733), order) - I_p_E_3 = Taylor1(constant_term(tmp1731) + constant_term(tmp1734), order) - tmp1736 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp1737 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp1736) - constant_term(tmp1737), order) - tmp1739 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp1740 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp1739) - constant_term(tmp1740), order) - tmp1742 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp1743 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp1742) - constant_term(tmp1743), order) - tmp1745 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp1746 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp1745) - constant_term(tmp1746), order) - tmp1748 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp1749 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp1748) - constant_term(tmp1749), order) - tmp1751 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp1752 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp1751) - constant_term(tmp1752), order) - tmp1754 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp1755 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp1754) - constant_term(tmp1755), order) - tmp1757 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp1758 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp1757) - constant_term(tmp1758), order) - tmp1760 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp1761 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp1760) - constant_term(tmp1761), order) - tmp1763 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp1764 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp1763) - constant_term(tmp1764), order) - tmp1766 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp1767 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp1766) - constant_term(tmp1767), order) - tmp1769 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp1770 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp1769) - constant_term(tmp1770), order) - tmp1774 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp1775 = Taylor1(constant_term(7) * constant_term(tmp1774), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp1775), order) + er_EM_1 = Taylor1(constant_term(tmp1731) + constant_term(tmp1734), order) + tmp1736 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) + tmp1737 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) + tmp1738 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) + tmp1739 = Taylor1(constant_term(tmp1737) + constant_term(tmp1738), order) + er_EM_2 = Taylor1(constant_term(tmp1736) + constant_term(tmp1739), order) + tmp1741 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) + tmp1742 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) + tmp1743 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) + tmp1744 = Taylor1(constant_term(tmp1742) + constant_term(tmp1743), order) + er_EM_3 = Taylor1(constant_term(tmp1741) + constant_term(tmp1744), order) + tmp1746 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) + tmp1747 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) + tmp1748 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) + tmp1749 = Taylor1(constant_term(tmp1747) + constant_term(tmp1748), order) + p_E_1 = Taylor1(constant_term(tmp1746) + constant_term(tmp1749), order) + tmp1751 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) + tmp1752 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) + tmp1753 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) + tmp1754 = Taylor1(constant_term(tmp1752) + constant_term(tmp1753), order) + p_E_2 = Taylor1(constant_term(tmp1751) + constant_term(tmp1754), order) + tmp1756 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) + tmp1757 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) + tmp1758 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) + tmp1759 = Taylor1(constant_term(tmp1757) + constant_term(tmp1758), order) + p_E_3 = Taylor1(constant_term(tmp1756) + constant_term(tmp1759), order) + tmp1761 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) + tmp1762 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) + tmp1763 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) + tmp1764 = Taylor1(constant_term(tmp1762) + constant_term(tmp1763), order) + I_er_EM_1 = Taylor1(constant_term(tmp1761) + constant_term(tmp1764), order) + tmp1766 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) + tmp1767 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) + tmp1768 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) + tmp1769 = Taylor1(constant_term(tmp1767) + constant_term(tmp1768), order) + I_er_EM_2 = Taylor1(constant_term(tmp1766) + constant_term(tmp1769), order) + tmp1771 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) + tmp1772 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) + tmp1773 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) + tmp1774 = Taylor1(constant_term(tmp1772) + constant_term(tmp1773), order) + I_er_EM_3 = Taylor1(constant_term(tmp1771) + constant_term(tmp1774), order) + tmp1776 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) + tmp1777 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) + tmp1778 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + tmp1779 = Taylor1(constant_term(tmp1777) + constant_term(tmp1778), order) + I_p_E_1 = Taylor1(constant_term(tmp1776) + constant_term(tmp1779), order) + tmp1781 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) + tmp1782 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) + tmp1783 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + tmp1784 = Taylor1(constant_term(tmp1782) + constant_term(tmp1783), order) + I_p_E_2 = Taylor1(constant_term(tmp1781) + constant_term(tmp1784), order) + tmp1786 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) + tmp1787 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) + tmp1788 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp1789 = Taylor1(constant_term(tmp1787) + constant_term(tmp1788), order) + I_p_E_3 = Taylor1(constant_term(tmp1786) + constant_term(tmp1789), order) + tmp1791 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) + tmp1792 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) + er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp1791) - constant_term(tmp1792), order) + tmp1794 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) + tmp1795 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) + er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp1794) - constant_term(tmp1795), order) + tmp1797 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) + tmp1798 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) + er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp1797) - constant_term(tmp1798), order) + tmp1800 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) + tmp1801 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) + er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp1800) - constant_term(tmp1801), order) + tmp1803 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) + tmp1804 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) + er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp1803) - constant_term(tmp1804), order) + tmp1806 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) + tmp1807 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) + er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp1806) - constant_term(tmp1807), order) + tmp1809 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) + tmp1810 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) + p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp1809) - constant_term(tmp1810), order) + tmp1812 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) + tmp1813 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) + p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp1812) - constant_term(tmp1813), order) + tmp1815 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) + tmp1816 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) + p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp1815) - constant_term(tmp1816), order) + tmp1818 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) + tmp1819 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) + p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp1818) - constant_term(tmp1819), order) + tmp1821 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) + tmp1822 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) + p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp1821) - constant_term(tmp1822), order) + tmp1824 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) + tmp1825 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) + p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp1824) - constant_term(tmp1825), order) + tmp1829 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp1830 = Taylor1(constant_term(7) * constant_term(tmp1829), order) + one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp1830), order) two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp1780 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp1780), order) - tmp1782 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp1783 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp1784 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1783), order) - tmp1785 = Taylor1(constant_term(tmp1782) + constant_term(tmp1784), order) - tmp1787 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp1788 = Taylor1(constant_term(tmp1785) - constant_term(tmp1787), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1788), order) - tmp1790 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp1791 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp1792 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1791), order) - tmp1793 = Taylor1(constant_term(tmp1790) + constant_term(tmp1792), order) - tmp1795 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp1796 = Taylor1(constant_term(tmp1793) - constant_term(tmp1795), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1796), order) - tmp1798 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp1799 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp1800 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1799), order) - tmp1801 = Taylor1(constant_term(tmp1798) + constant_term(tmp1800), order) - tmp1803 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp1804 = Taylor1(constant_term(tmp1801) - constant_term(tmp1803), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1804), order) - tmp1806 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp1807 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp1808 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp1809 = Taylor1(constant_term(tmp1807) + constant_term(tmp1808), order) - N_1_LMF = Taylor1(constant_term(tmp1806) + constant_term(tmp1809), order) - tmp1811 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp1812 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp1813 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp1814 = Taylor1(constant_term(tmp1812) + constant_term(tmp1813), order) - N_2_LMF = Taylor1(constant_term(tmp1811) + constant_term(tmp1814), order) - tmp1816 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp1817 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp1818 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp1819 = Taylor1(constant_term(tmp1817) + constant_term(tmp1818), order) - N_3_LMF = Taylor1(constant_term(tmp1816) + constant_term(tmp1819), order) - tmp1821 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp1822 = Taylor1(constant_term(k_ν) * constant_term(tmp1821), order) - tmp1823 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp1824 = Taylor1(constant_term(tmp1823) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp1822) - constant_term(tmp1824), order) - tmp1826 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp1827 = Taylor1(constant_term(k_ν) * constant_term(tmp1826), order) - tmp1828 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp1829 = Taylor1(constant_term(tmp1828) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp1827) + constant_term(tmp1829), order) - tmp1831 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp1831), order) - tmp1833 = Taylor1(constant_term(N_1_LMF) + constant_term(N_MfigM_figE_1), order) - tmp1834 = Taylor1(constant_term(tmp1833) + constant_term(N_cmb_1), order) - tmp1835 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp1834) - constant_term(tmp1835), order) - tmp1837 = Taylor1(constant_term(N_2_LMF) + constant_term(N_MfigM_figE_2), order) - tmp1838 = Taylor1(constant_term(tmp1837) + constant_term(N_cmb_2), order) - tmp1839 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp1838) - constant_term(tmp1839), order) - tmp1841 = Taylor1(constant_term(N_3_LMF) + constant_term(N_MfigM_figE_3), order) - tmp1842 = Taylor1(constant_term(tmp1841) + constant_term(N_cmb_3), order) - tmp1843 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp1842) - constant_term(tmp1843), order) + tmp1835 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp1835), order) + tmp1837 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) + tmp1838 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) + tmp1839 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1838), order) + tmp1840 = Taylor1(constant_term(tmp1837) + constant_term(tmp1839), order) + tmp1842 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) + tmp1843 = Taylor1(constant_term(tmp1840) - constant_term(tmp1842), order) + N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1843), order) + tmp1845 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) + tmp1846 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) + tmp1847 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1846), order) + tmp1848 = Taylor1(constant_term(tmp1845) + constant_term(tmp1847), order) + tmp1850 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) + tmp1851 = Taylor1(constant_term(tmp1848) - constant_term(tmp1850), order) + N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1851), order) + tmp1853 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) + tmp1854 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) + tmp1855 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp1854), order) + tmp1856 = Taylor1(constant_term(tmp1853) + constant_term(tmp1855), order) + tmp1858 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) + tmp1859 = Taylor1(constant_term(tmp1856) - constant_term(tmp1858), order) + N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1859), order) + tmp1861 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp1862 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp1863 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp1864 = Taylor1(constant_term(tmp1862) + constant_term(tmp1863), order) + N_1_LMF = Taylor1(constant_term(tmp1861) + constant_term(tmp1864), order) + tmp1866 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp1867 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp1868 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp1869 = Taylor1(constant_term(tmp1867) + constant_term(tmp1868), order) + N_2_LMF = Taylor1(constant_term(tmp1866) + constant_term(tmp1869), order) + tmp1871 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp1872 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp1873 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp1874 = Taylor1(constant_term(tmp1872) + constant_term(tmp1873), order) + N_3_LMF = Taylor1(constant_term(tmp1871) + constant_term(tmp1874), order) + tmp1876 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) + tmp1877 = Taylor1(constant_term(k_ν) * constant_term(tmp1876), order) + tmp1878 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp1879 = Taylor1(constant_term(tmp1878) * constant_term(q[6N + 11]), order) + N_cmb_1 = Taylor1(constant_term(tmp1877) - constant_term(tmp1879), order) + tmp1881 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) + tmp1882 = Taylor1(constant_term(k_ν) * constant_term(tmp1881), order) + tmp1883 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp1884 = Taylor1(constant_term(tmp1883) * constant_term(q[6N + 10]), order) + N_cmb_2 = Taylor1(constant_term(tmp1882) + constant_term(tmp1884), order) + tmp1886 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) + N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp1886), order) + tmp1888 = Taylor1(constant_term(N_1_LMF) + constant_term(N_MfigM_figE_1), order) + tmp1889 = Taylor1(constant_term(tmp1888) + constant_term(N_cmb_1), order) + tmp1890 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) + I_dω_1 = Taylor1(constant_term(tmp1889) - constant_term(tmp1890), order) + tmp1892 = Taylor1(constant_term(N_2_LMF) + constant_term(N_MfigM_figE_2), order) + tmp1893 = Taylor1(constant_term(tmp1892) + constant_term(N_cmb_2), order) + tmp1894 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) + I_dω_2 = Taylor1(constant_term(tmp1893) - constant_term(tmp1894), order) + tmp1896 = Taylor1(constant_term(N_3_LMF) + constant_term(N_MfigM_figE_3), order) + tmp1897 = Taylor1(constant_term(tmp1896) + constant_term(N_cmb_3), order) + tmp1898 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) + I_dω_3 = Taylor1(constant_term(tmp1897) - constant_term(tmp1898), order) Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp1848 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp1849 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp1848) - constant_term(tmp1849), order) - tmp1851 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp1852 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp1851) - constant_term(tmp1852), order) - tmp1854 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp1855 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp1854) - constant_term(tmp1855), order) + tmp1903 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) + tmp1904 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) + m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp1903) - constant_term(tmp1904), order) + tmp1906 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) + tmp1907 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) + m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp1906) - constant_term(tmp1907), order) + tmp1909 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) + tmp1910 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) + m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp1909) - constant_term(tmp1910), order) Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp1860 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1940 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1861 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1860), order) - tmp1862 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1941 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1863 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1862), order) - tmp1864 = Taylor1(constant_term(tmp1861) + constant_term(tmp1863), order) - tmp1865 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp1942 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp1864) / constant_term(tmp1865), order) - tmp1867 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1943 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1868 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1867), order) - tmp1869 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp1944 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp1870 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1869), order) - dq[6N + 2] = Taylor1(constant_term(tmp1868) - constant_term(tmp1870), order) - tmp1872 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp1945 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp1873 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp1872), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp1873), order) - tmp1875 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp1876 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp1877 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp1878 = Taylor1(constant_term(tmp1876) + constant_term(tmp1877), order) - dq[6N + 4] = Taylor1(constant_term(tmp1875) + constant_term(tmp1878), order) - tmp1880 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp1881 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp1882 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp1883 = Taylor1(constant_term(tmp1881) + constant_term(tmp1882), order) - dq[6N + 5] = Taylor1(constant_term(tmp1880) + constant_term(tmp1883), order) - tmp1885 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp1886 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp1887 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp1888 = Taylor1(constant_term(tmp1886) + constant_term(tmp1887), order) - dq[6N + 6] = Taylor1(constant_term(tmp1885) + constant_term(tmp1888), order) - tmp1890 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp1946 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp1891 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp1890), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp1891)), order) - tmp1893 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp1947 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp1894 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp1893), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp1894), order) + tmp1915 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1995 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1916 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1915), order) + tmp1917 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1996 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1918 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1917), order) + tmp1919 = Taylor1(constant_term(tmp1916) + constant_term(tmp1918), order) + tmp1920 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp1997 = Taylor1(cos(constant_term(q[6N + 2])), order) + dq[6N + 1] = Taylor1(constant_term(tmp1919) / constant_term(tmp1920), order) + tmp1922 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1998 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1923 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp1922), order) + tmp1924 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp1999 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp1925 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp1924), order) + dq[6N + 2] = Taylor1(constant_term(tmp1923) - constant_term(tmp1925), order) + tmp1927 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp2000 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp1928 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp1927), order) + dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp1928), order) + tmp1930 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) + tmp1931 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) + tmp1932 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) + tmp1933 = Taylor1(constant_term(tmp1931) + constant_term(tmp1932), order) + dq[6N + 4] = Taylor1(constant_term(tmp1930) + constant_term(tmp1933), order) + tmp1935 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) + tmp1936 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) + tmp1937 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) + tmp1938 = Taylor1(constant_term(tmp1936) + constant_term(tmp1937), order) + dq[6N + 5] = Taylor1(constant_term(tmp1935) + constant_term(tmp1938), order) + tmp1940 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) + tmp1941 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) + tmp1942 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) + tmp1943 = Taylor1(constant_term(tmp1941) + constant_term(tmp1942), order) + dq[6N + 6] = Taylor1(constant_term(tmp1940) + constant_term(tmp1943), order) + tmp1945 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp2001 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp1946 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp1945), order) + dq[6N + 9] = Taylor1(-(constant_term(tmp1946)), order) + tmp1948 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp2002 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp1949 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp1948), order) + dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp1949), order) dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp1220, tmp1221, tmp1222, tmp1223, tmp1224, tmp1225, tmp1226, tmp1227, tmp1229, tmp1230, tmp1231, tmp1232, tmp1233, tmp1234, tmp1235, tmp1236, tmp1237, tmp1239, tmp1240, tmp1242, tmp1243, tmp1244, tmp1245, tmp1246, tmp1247, tmp1248, tmp1249, tmp1251, tmp1252, tmp1253, tmp1254, tmp1255, tmp1256, tmp1257, tmp1258, tmp1260, tmp1261, tmp1262, tmp1264, tmp1265, tmp1267, tmp1268, tmp1271, tmp1272, tmp1273, tmp1274, tmp1276, tmp1277, tmp1278, tmp1279, tmp1280, tmp1282, tmp1283, tmp1284, tmp1285, tmp1287, tmp1288, tmp1289, tmp1290, tmp1291, tmp1293, tmp1294, tmp1295, tmp1296, tmp1298, tmp1299, tmp1300, tmp1301, tmp1302, tmp1304, tmp1305, tmp1306, tmp1307, tmp1309, tmp1310, tmp1311, tmp1312, tmp1314, tmp1315, tmp1316, tmp1317, tmp1389, tmp1391, tmp1392, tmp1394, tmp1395, tmp1398, tmp1400, tmp1402, tmp1403, tmp1689, tmp1690, tmp1691, tmp1692, tmp1694, tmp1695, tmp1696, tmp1697, tmp1699, tmp1700, tmp1701, tmp1702, tmp1704, tmp1705, tmp1707, tmp1708, tmp1710, tmp1711, tmp1713, tmp1714, tmp1715, tmp1716, tmp1718, tmp1719, tmp1720, tmp1721, tmp1723, tmp1724, tmp1725, tmp1726, tmp1731, tmp1732, tmp1733, tmp1734, tmp1736, tmp1737, tmp1738, tmp1739, tmp1741, tmp1742, tmp1743, tmp1744, tmp1746, tmp1747, tmp1748, tmp1749, tmp1751, tmp1752, tmp1753, tmp1754, tmp1756, tmp1757, tmp1758, tmp1759, tmp1761, tmp1762, tmp1763, tmp1764, tmp1766, tmp1767, tmp1768, tmp1769, tmp1771, tmp1772, tmp1773, tmp1774, tmp1776, tmp1777, tmp1778, tmp1779, tmp1781, tmp1782, tmp1783, tmp1784, tmp1786, tmp1787, tmp1788, tmp1789, tmp1791, tmp1792, tmp1794, tmp1795, tmp1797, tmp1798, tmp1800, tmp1801, tmp1803, tmp1804, tmp1806, tmp1807, tmp1809, tmp1810, tmp1812, tmp1813, tmp1815, tmp1816, tmp1818, tmp1819, tmp1821, tmp1822, tmp1824, tmp1825, tmp1829, tmp1830, tmp1835, tmp1837, tmp1838, tmp1839, tmp1840, tmp1842, tmp1843, tmp1845, tmp1846, tmp1847, tmp1848, tmp1850, tmp1851, tmp1853, tmp1854, tmp1855, tmp1856, tmp1858, tmp1859, tmp1861, tmp1862, tmp1863, tmp1864, tmp1866, tmp1867, tmp1868, tmp1869, tmp1871, tmp1872, tmp1873, tmp1874, tmp1876, tmp1877, tmp1878, tmp1879, tmp1881, tmp1882, tmp1883, tmp1884, tmp1886, tmp1888, tmp1889, tmp1890, tmp1892, tmp1893, tmp1894, tmp1896, tmp1897, tmp1898, tmp1903, tmp1904, tmp1906, tmp1907, tmp1909, tmp1910, tmp1915, tmp1916, tmp1917, tmp1918, tmp1919, tmp1920, tmp1922, tmp1923, tmp1924, tmp1925, tmp1927, tmp1928, tmp1930, tmp1931, tmp1932, tmp1933, tmp1935, tmp1936, tmp1937, tmp1938, tmp1940, tmp1941, tmp1942, tmp1943, tmp1945, tmp1946, tmp1948, tmp1949, ϕ_m, θ_m, ψ_m, tmp1954, tmp1955, tmp1956, tmp1957, tmp1958, tmp1959, tmp1960, tmp1961, tmp1962, tmp1963, tmp1964, tmp1965, tmp1966, tmp1967, tmp1968, tmp1969, tmp1970, tmp1971, tmp1972, tmp1973, tmp1974, tmp1975, tmp1976, tmp1977, tmp1978, tmp1979, tmp1980, tmp1981, tmp1982, ϕ_c, tmp1983, tmp1984, tmp1985, tmp1986, tmp1987, tmp1988, tmp1989, tmp1990, tmp1991, tmp1992, tmp1993, tmp1994, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp1995, tmp1996, tmp1997, tmp1998, tmp1999, tmp2000, tmp2001, tmp2002], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp1326, tmp1328, tmp1331, tmp1333, tmp1336, tmp1338, tmp1382, tmp1384, tmp1385, tmp1387, tmp1632, tmp1634, tmp1636], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp1346, tmp1349, tmp1351, tmp1352, tmp1354, tmp1362, tmp1363, tmp1374, temp_001, tmp1376, temp_002, tmp1378, temp_003, temp_004, tmp1415, tmp1417, tmp1419, tmp1423, tmp1425, tmp1426, tmp1532, tmp1533, tmp1536, tmp1537, tmp1543, tmp1546, tmp1608, tmp1610, tmp1612, tmp1614, tmp1616, tmp1618, tmp1620, tmp1621, tmp1622, tmp1624, tmp1625, tmp1626, tmp1628, tmp1629, tmp1630, tmp1645, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp1651, Rij_dot_Vi, tmp1654, pn1t7, tmp1657, pn1t2_7, tmp1664, tmp1665, tmp1666, tmp1674, termpnx, sumpnx, tmp1677, termpny, sumpny, tmp1680, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp1431, tmp1432, tmp1433, tmp1435, tmp1436, tmp1441, tmp1442, tmp1444, tmp1445, tmp1446, tmp1448, tmp1449, tmp1450, tmp1452, tmp1453, tmp1454, tmp1455, tmp1458, tmp1459, tmp1461, tmp1462, tmp1481, tmp1482, tmp1483, tmp1486, tmp1487, tmp1488, tmp1493, tmp1494, tmp1495, tmp1498, tmp1499, tmp1500, tmp1504, tmp1505, tmp1506, tmp1508, tmp1509, tmp1510], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp1464, tmp1467, tmp1469, tmp1471, tmp1472, tmp1473, tmp1476, tmp1477, tmp1478, tmp1480, tmp1484, tmp1485, tmp1489, tmp1490, tmp1492, tmp1496, tmp1497, tmp1501, tmp1502, tmp1507, tmp1511, tmp1512, tmp1518, tmp1519, tmp1520, tmp1521, tmp1523, tmp1524, tmp1525, tmp1526, tmp1528, tmp1529, tmp1530, tmp1548, tmp1549, tmp1550, tmp1551, tmp1553, tmp1554, tmp1555, tmp1556, tmp1558, tmp1559, tmp1560, tmp1561, tmp1563, tmp1564, tmp1565, tmp1566, tmp1568, tmp1569, tmp1570, tmp1571, tmp1573, tmp1574, tmp1575, tmp1576, tmp1578, tmp1579, tmp1580, tmp1581, tmp1583, tmp1584, tmp1585, tmp1586, tmp1588, tmp1589, tmp1590, tmp1591, tmp1593, tmp1594, tmp1595, tmp1596, tmp1598, tmp1599, tmp1600, tmp1601, tmp1603, tmp1604, tmp1605, tmp1606]) +end +# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S! +function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} + order = t.order + tmp1220 = __ralloc.v0[1]::Taylor1{_S} + tmp1221 = __ralloc.v0[2]::Taylor1{_S} + tmp1222 = __ralloc.v0[3]::Taylor1{_S} + tmp1223 = __ralloc.v0[4]::Taylor1{_S} + tmp1224 = __ralloc.v0[5]::Taylor1{_S} + tmp1225 = __ralloc.v0[6]::Taylor1{_S} + tmp1226 = __ralloc.v0[7]::Taylor1{_S} + tmp1227 = __ralloc.v0[8]::Taylor1{_S} + tmp1229 = __ralloc.v0[9]::Taylor1{_S} + tmp1230 = __ralloc.v0[10]::Taylor1{_S} + tmp1231 = __ralloc.v0[11]::Taylor1{_S} + tmp1232 = __ralloc.v0[12]::Taylor1{_S} + tmp1233 = __ralloc.v0[13]::Taylor1{_S} + tmp1234 = __ralloc.v0[14]::Taylor1{_S} + tmp1235 = __ralloc.v0[15]::Taylor1{_S} + tmp1236 = __ralloc.v0[16]::Taylor1{_S} + tmp1237 = __ralloc.v0[17]::Taylor1{_S} + tmp1239 = __ralloc.v0[18]::Taylor1{_S} + tmp1240 = __ralloc.v0[19]::Taylor1{_S} + tmp1242 = __ralloc.v0[20]::Taylor1{_S} + tmp1243 = __ralloc.v0[21]::Taylor1{_S} + tmp1244 = __ralloc.v0[22]::Taylor1{_S} + tmp1245 = __ralloc.v0[23]::Taylor1{_S} + tmp1246 = __ralloc.v0[24]::Taylor1{_S} + tmp1247 = __ralloc.v0[25]::Taylor1{_S} + tmp1248 = __ralloc.v0[26]::Taylor1{_S} + tmp1249 = __ralloc.v0[27]::Taylor1{_S} + tmp1251 = __ralloc.v0[28]::Taylor1{_S} + tmp1252 = __ralloc.v0[29]::Taylor1{_S} + tmp1253 = __ralloc.v0[30]::Taylor1{_S} + tmp1254 = __ralloc.v0[31]::Taylor1{_S} + tmp1255 = __ralloc.v0[32]::Taylor1{_S} + tmp1256 = __ralloc.v0[33]::Taylor1{_S} + tmp1257 = __ralloc.v0[34]::Taylor1{_S} + tmp1258 = __ralloc.v0[35]::Taylor1{_S} + tmp1260 = __ralloc.v0[36]::Taylor1{_S} + tmp1261 = __ralloc.v0[37]::Taylor1{_S} + tmp1262 = __ralloc.v0[38]::Taylor1{_S} + tmp1264 = __ralloc.v0[39]::Taylor1{_S} + tmp1265 = __ralloc.v0[40]::Taylor1{_S} + tmp1267 = __ralloc.v0[41]::Taylor1{_S} + tmp1268 = __ralloc.v0[42]::Taylor1{_S} + tmp1271 = __ralloc.v0[43]::Taylor1{_S} + tmp1272 = __ralloc.v0[44]::Taylor1{_S} + tmp1273 = __ralloc.v0[45]::Taylor1{_S} + tmp1274 = __ralloc.v0[46]::Taylor1{_S} + tmp1276 = __ralloc.v0[47]::Taylor1{_S} + tmp1277 = __ralloc.v0[48]::Taylor1{_S} + tmp1278 = __ralloc.v0[49]::Taylor1{_S} + tmp1279 = __ralloc.v0[50]::Taylor1{_S} + tmp1280 = __ralloc.v0[51]::Taylor1{_S} + tmp1282 = __ralloc.v0[52]::Taylor1{_S} + tmp1283 = __ralloc.v0[53]::Taylor1{_S} + tmp1284 = __ralloc.v0[54]::Taylor1{_S} + tmp1285 = __ralloc.v0[55]::Taylor1{_S} + tmp1287 = __ralloc.v0[56]::Taylor1{_S} + tmp1288 = __ralloc.v0[57]::Taylor1{_S} + tmp1289 = __ralloc.v0[58]::Taylor1{_S} + tmp1290 = __ralloc.v0[59]::Taylor1{_S} + tmp1291 = __ralloc.v0[60]::Taylor1{_S} + tmp1293 = __ralloc.v0[61]::Taylor1{_S} + tmp1294 = __ralloc.v0[62]::Taylor1{_S} + tmp1295 = __ralloc.v0[63]::Taylor1{_S} + tmp1296 = __ralloc.v0[64]::Taylor1{_S} + tmp1298 = __ralloc.v0[65]::Taylor1{_S} + tmp1299 = __ralloc.v0[66]::Taylor1{_S} + tmp1300 = __ralloc.v0[67]::Taylor1{_S} + tmp1301 = __ralloc.v0[68]::Taylor1{_S} + tmp1302 = __ralloc.v0[69]::Taylor1{_S} + tmp1304 = __ralloc.v0[70]::Taylor1{_S} + tmp1305 = __ralloc.v0[71]::Taylor1{_S} + tmp1306 = __ralloc.v0[72]::Taylor1{_S} + tmp1307 = __ralloc.v0[73]::Taylor1{_S} + tmp1309 = __ralloc.v0[74]::Taylor1{_S} + tmp1310 = __ralloc.v0[75]::Taylor1{_S} + tmp1311 = __ralloc.v0[76]::Taylor1{_S} + tmp1312 = __ralloc.v0[77]::Taylor1{_S} + tmp1314 = __ralloc.v0[78]::Taylor1{_S} + tmp1315 = __ralloc.v0[79]::Taylor1{_S} + tmp1316 = __ralloc.v0[80]::Taylor1{_S} + tmp1317 = __ralloc.v0[81]::Taylor1{_S} + tmp1389 = __ralloc.v0[82]::Taylor1{_S} + tmp1391 = __ralloc.v0[83]::Taylor1{_S} + tmp1392 = __ralloc.v0[84]::Taylor1{_S} + tmp1394 = __ralloc.v0[85]::Taylor1{_S} + tmp1395 = __ralloc.v0[86]::Taylor1{_S} + tmp1398 = __ralloc.v0[87]::Taylor1{_S} + tmp1400 = __ralloc.v0[88]::Taylor1{_S} + tmp1402 = __ralloc.v0[89]::Taylor1{_S} + tmp1403 = __ralloc.v0[90]::Taylor1{_S} + tmp1689 = __ralloc.v0[91]::Taylor1{_S} + tmp1690 = __ralloc.v0[92]::Taylor1{_S} + tmp1691 = __ralloc.v0[93]::Taylor1{_S} + tmp1692 = __ralloc.v0[94]::Taylor1{_S} + tmp1694 = __ralloc.v0[95]::Taylor1{_S} + tmp1695 = __ralloc.v0[96]::Taylor1{_S} + tmp1696 = __ralloc.v0[97]::Taylor1{_S} + tmp1697 = __ralloc.v0[98]::Taylor1{_S} + tmp1699 = __ralloc.v0[99]::Taylor1{_S} + tmp1700 = __ralloc.v0[100]::Taylor1{_S} + tmp1701 = __ralloc.v0[101]::Taylor1{_S} + tmp1702 = __ralloc.v0[102]::Taylor1{_S} + tmp1704 = __ralloc.v0[103]::Taylor1{_S} + tmp1705 = __ralloc.v0[104]::Taylor1{_S} + tmp1707 = __ralloc.v0[105]::Taylor1{_S} + tmp1708 = __ralloc.v0[106]::Taylor1{_S} + tmp1710 = __ralloc.v0[107]::Taylor1{_S} + tmp1711 = __ralloc.v0[108]::Taylor1{_S} + tmp1713 = __ralloc.v0[109]::Taylor1{_S} + tmp1714 = __ralloc.v0[110]::Taylor1{_S} + tmp1715 = __ralloc.v0[111]::Taylor1{_S} + tmp1716 = __ralloc.v0[112]::Taylor1{_S} + tmp1718 = __ralloc.v0[113]::Taylor1{_S} + tmp1719 = __ralloc.v0[114]::Taylor1{_S} + tmp1720 = __ralloc.v0[115]::Taylor1{_S} + tmp1721 = __ralloc.v0[116]::Taylor1{_S} + tmp1723 = __ralloc.v0[117]::Taylor1{_S} + tmp1724 = __ralloc.v0[118]::Taylor1{_S} + tmp1725 = __ralloc.v0[119]::Taylor1{_S} + tmp1726 = __ralloc.v0[120]::Taylor1{_S} + tmp1731 = __ralloc.v0[121]::Taylor1{_S} + tmp1732 = __ralloc.v0[122]::Taylor1{_S} + tmp1733 = __ralloc.v0[123]::Taylor1{_S} + tmp1734 = __ralloc.v0[124]::Taylor1{_S} + tmp1736 = __ralloc.v0[125]::Taylor1{_S} + tmp1737 = __ralloc.v0[126]::Taylor1{_S} + tmp1738 = __ralloc.v0[127]::Taylor1{_S} + tmp1739 = __ralloc.v0[128]::Taylor1{_S} + tmp1741 = __ralloc.v0[129]::Taylor1{_S} + tmp1742 = __ralloc.v0[130]::Taylor1{_S} + tmp1743 = __ralloc.v0[131]::Taylor1{_S} + tmp1744 = __ralloc.v0[132]::Taylor1{_S} + tmp1746 = __ralloc.v0[133]::Taylor1{_S} + tmp1747 = __ralloc.v0[134]::Taylor1{_S} + tmp1748 = __ralloc.v0[135]::Taylor1{_S} + tmp1749 = __ralloc.v0[136]::Taylor1{_S} + tmp1751 = __ralloc.v0[137]::Taylor1{_S} + tmp1752 = __ralloc.v0[138]::Taylor1{_S} + tmp1753 = __ralloc.v0[139]::Taylor1{_S} + tmp1754 = __ralloc.v0[140]::Taylor1{_S} + tmp1756 = __ralloc.v0[141]::Taylor1{_S} + tmp1757 = __ralloc.v0[142]::Taylor1{_S} + tmp1758 = __ralloc.v0[143]::Taylor1{_S} + tmp1759 = __ralloc.v0[144]::Taylor1{_S} + tmp1761 = __ralloc.v0[145]::Taylor1{_S} + tmp1762 = __ralloc.v0[146]::Taylor1{_S} + tmp1763 = __ralloc.v0[147]::Taylor1{_S} + tmp1764 = __ralloc.v0[148]::Taylor1{_S} + tmp1766 = __ralloc.v0[149]::Taylor1{_S} + tmp1767 = __ralloc.v0[150]::Taylor1{_S} + tmp1768 = __ralloc.v0[151]::Taylor1{_S} + tmp1769 = __ralloc.v0[152]::Taylor1{_S} + tmp1771 = __ralloc.v0[153]::Taylor1{_S} + tmp1772 = __ralloc.v0[154]::Taylor1{_S} + tmp1773 = __ralloc.v0[155]::Taylor1{_S} + tmp1774 = __ralloc.v0[156]::Taylor1{_S} + tmp1776 = __ralloc.v0[157]::Taylor1{_S} + tmp1777 = __ralloc.v0[158]::Taylor1{_S} + tmp1778 = __ralloc.v0[159]::Taylor1{_S} + tmp1779 = __ralloc.v0[160]::Taylor1{_S} + tmp1781 = __ralloc.v0[161]::Taylor1{_S} + tmp1782 = __ralloc.v0[162]::Taylor1{_S} + tmp1783 = __ralloc.v0[163]::Taylor1{_S} + tmp1784 = __ralloc.v0[164]::Taylor1{_S} + tmp1786 = __ralloc.v0[165]::Taylor1{_S} + tmp1787 = __ralloc.v0[166]::Taylor1{_S} + tmp1788 = __ralloc.v0[167]::Taylor1{_S} + tmp1789 = __ralloc.v0[168]::Taylor1{_S} + tmp1791 = __ralloc.v0[169]::Taylor1{_S} + tmp1792 = __ralloc.v0[170]::Taylor1{_S} + tmp1794 = __ralloc.v0[171]::Taylor1{_S} + tmp1795 = __ralloc.v0[172]::Taylor1{_S} + tmp1797 = __ralloc.v0[173]::Taylor1{_S} + tmp1798 = __ralloc.v0[174]::Taylor1{_S} + tmp1800 = __ralloc.v0[175]::Taylor1{_S} + tmp1801 = __ralloc.v0[176]::Taylor1{_S} + tmp1803 = __ralloc.v0[177]::Taylor1{_S} + tmp1804 = __ralloc.v0[178]::Taylor1{_S} + tmp1806 = __ralloc.v0[179]::Taylor1{_S} + tmp1807 = __ralloc.v0[180]::Taylor1{_S} + tmp1809 = __ralloc.v0[181]::Taylor1{_S} + tmp1810 = __ralloc.v0[182]::Taylor1{_S} + tmp1812 = __ralloc.v0[183]::Taylor1{_S} + tmp1813 = __ralloc.v0[184]::Taylor1{_S} + tmp1815 = __ralloc.v0[185]::Taylor1{_S} + tmp1816 = __ralloc.v0[186]::Taylor1{_S} + tmp1818 = __ralloc.v0[187]::Taylor1{_S} + tmp1819 = __ralloc.v0[188]::Taylor1{_S} + tmp1821 = __ralloc.v0[189]::Taylor1{_S} + tmp1822 = __ralloc.v0[190]::Taylor1{_S} + tmp1824 = __ralloc.v0[191]::Taylor1{_S} + tmp1825 = __ralloc.v0[192]::Taylor1{_S} + tmp1829 = __ralloc.v0[193]::Taylor1{_S} + tmp1830 = __ralloc.v0[194]::Taylor1{_S} + tmp1835 = __ralloc.v0[195]::Taylor1{_S} + tmp1837 = __ralloc.v0[196]::Taylor1{_S} + tmp1838 = __ralloc.v0[197]::Taylor1{_S} + tmp1839 = __ralloc.v0[198]::Taylor1{_S} + tmp1840 = __ralloc.v0[199]::Taylor1{_S} + tmp1842 = __ralloc.v0[200]::Taylor1{_S} + tmp1843 = __ralloc.v0[201]::Taylor1{_S} + tmp1845 = __ralloc.v0[202]::Taylor1{_S} + tmp1846 = __ralloc.v0[203]::Taylor1{_S} + tmp1847 = __ralloc.v0[204]::Taylor1{_S} + tmp1848 = __ralloc.v0[205]::Taylor1{_S} + tmp1850 = __ralloc.v0[206]::Taylor1{_S} + tmp1851 = __ralloc.v0[207]::Taylor1{_S} + tmp1853 = __ralloc.v0[208]::Taylor1{_S} + tmp1854 = __ralloc.v0[209]::Taylor1{_S} + tmp1855 = __ralloc.v0[210]::Taylor1{_S} + tmp1856 = __ralloc.v0[211]::Taylor1{_S} + tmp1858 = __ralloc.v0[212]::Taylor1{_S} + tmp1859 = __ralloc.v0[213]::Taylor1{_S} + tmp1861 = __ralloc.v0[214]::Taylor1{_S} + tmp1862 = __ralloc.v0[215]::Taylor1{_S} + tmp1863 = __ralloc.v0[216]::Taylor1{_S} + tmp1864 = __ralloc.v0[217]::Taylor1{_S} + tmp1866 = __ralloc.v0[218]::Taylor1{_S} + tmp1867 = __ralloc.v0[219]::Taylor1{_S} + tmp1868 = __ralloc.v0[220]::Taylor1{_S} + tmp1869 = __ralloc.v0[221]::Taylor1{_S} + tmp1871 = __ralloc.v0[222]::Taylor1{_S} + tmp1872 = __ralloc.v0[223]::Taylor1{_S} + tmp1873 = __ralloc.v0[224]::Taylor1{_S} + tmp1874 = __ralloc.v0[225]::Taylor1{_S} + tmp1876 = __ralloc.v0[226]::Taylor1{_S} + tmp1877 = __ralloc.v0[227]::Taylor1{_S} + tmp1878 = __ralloc.v0[228]::Taylor1{_S} + tmp1879 = __ralloc.v0[229]::Taylor1{_S} + tmp1881 = __ralloc.v0[230]::Taylor1{_S} + tmp1882 = __ralloc.v0[231]::Taylor1{_S} + tmp1883 = __ralloc.v0[232]::Taylor1{_S} + tmp1884 = __ralloc.v0[233]::Taylor1{_S} + tmp1886 = __ralloc.v0[234]::Taylor1{_S} + tmp1888 = __ralloc.v0[235]::Taylor1{_S} + tmp1889 = __ralloc.v0[236]::Taylor1{_S} + tmp1890 = __ralloc.v0[237]::Taylor1{_S} + tmp1892 = __ralloc.v0[238]::Taylor1{_S} + tmp1893 = __ralloc.v0[239]::Taylor1{_S} + tmp1894 = __ralloc.v0[240]::Taylor1{_S} + tmp1896 = __ralloc.v0[241]::Taylor1{_S} + tmp1897 = __ralloc.v0[242]::Taylor1{_S} + tmp1898 = __ralloc.v0[243]::Taylor1{_S} + tmp1903 = __ralloc.v0[244]::Taylor1{_S} + tmp1904 = __ralloc.v0[245]::Taylor1{_S} + tmp1906 = __ralloc.v0[246]::Taylor1{_S} + tmp1907 = __ralloc.v0[247]::Taylor1{_S} + tmp1909 = __ralloc.v0[248]::Taylor1{_S} + tmp1910 = __ralloc.v0[249]::Taylor1{_S} + tmp1915 = __ralloc.v0[250]::Taylor1{_S} + tmp1916 = __ralloc.v0[251]::Taylor1{_S} + tmp1917 = __ralloc.v0[252]::Taylor1{_S} + tmp1918 = __ralloc.v0[253]::Taylor1{_S} + tmp1919 = __ralloc.v0[254]::Taylor1{_S} + tmp1920 = __ralloc.v0[255]::Taylor1{_S} + tmp1922 = __ralloc.v0[256]::Taylor1{_S} + tmp1923 = __ralloc.v0[257]::Taylor1{_S} + tmp1924 = __ralloc.v0[258]::Taylor1{_S} + tmp1925 = __ralloc.v0[259]::Taylor1{_S} + tmp1927 = __ralloc.v0[260]::Taylor1{_S} + tmp1928 = __ralloc.v0[261]::Taylor1{_S} + tmp1930 = __ralloc.v0[262]::Taylor1{_S} + tmp1931 = __ralloc.v0[263]::Taylor1{_S} + tmp1932 = __ralloc.v0[264]::Taylor1{_S} + tmp1933 = __ralloc.v0[265]::Taylor1{_S} + tmp1935 = __ralloc.v0[266]::Taylor1{_S} + tmp1936 = __ralloc.v0[267]::Taylor1{_S} + tmp1937 = __ralloc.v0[268]::Taylor1{_S} + tmp1938 = __ralloc.v0[269]::Taylor1{_S} + tmp1940 = __ralloc.v0[270]::Taylor1{_S} + tmp1941 = __ralloc.v0[271]::Taylor1{_S} + tmp1942 = __ralloc.v0[272]::Taylor1{_S} + tmp1943 = __ralloc.v0[273]::Taylor1{_S} + tmp1945 = __ralloc.v0[274]::Taylor1{_S} + tmp1946 = __ralloc.v0[275]::Taylor1{_S} + tmp1948 = __ralloc.v0[276]::Taylor1{_S} + tmp1949 = __ralloc.v0[277]::Taylor1{_S} + ϕ_m = __ralloc.v0[278]::Taylor1{_S} + θ_m = __ralloc.v0[279]::Taylor1{_S} + ψ_m = __ralloc.v0[280]::Taylor1{_S} + tmp1954 = __ralloc.v0[281]::Taylor1{_S} + tmp1955 = __ralloc.v0[282]::Taylor1{_S} + tmp1956 = __ralloc.v0[283]::Taylor1{_S} + tmp1957 = __ralloc.v0[284]::Taylor1{_S} + tmp1958 = __ralloc.v0[285]::Taylor1{_S} + tmp1959 = __ralloc.v0[286]::Taylor1{_S} + tmp1960 = __ralloc.v0[287]::Taylor1{_S} + tmp1961 = __ralloc.v0[288]::Taylor1{_S} + tmp1962 = __ralloc.v0[289]::Taylor1{_S} + tmp1963 = __ralloc.v0[290]::Taylor1{_S} + tmp1964 = __ralloc.v0[291]::Taylor1{_S} + tmp1965 = __ralloc.v0[292]::Taylor1{_S} + tmp1966 = __ralloc.v0[293]::Taylor1{_S} + tmp1967 = __ralloc.v0[294]::Taylor1{_S} + tmp1968 = __ralloc.v0[295]::Taylor1{_S} + tmp1969 = __ralloc.v0[296]::Taylor1{_S} + tmp1970 = __ralloc.v0[297]::Taylor1{_S} + tmp1971 = __ralloc.v0[298]::Taylor1{_S} + tmp1972 = __ralloc.v0[299]::Taylor1{_S} + tmp1973 = __ralloc.v0[300]::Taylor1{_S} + tmp1974 = __ralloc.v0[301]::Taylor1{_S} + tmp1975 = __ralloc.v0[302]::Taylor1{_S} + tmp1976 = __ralloc.v0[303]::Taylor1{_S} + tmp1977 = __ralloc.v0[304]::Taylor1{_S} + tmp1978 = __ralloc.v0[305]::Taylor1{_S} + tmp1979 = __ralloc.v0[306]::Taylor1{_S} + tmp1980 = __ralloc.v0[307]::Taylor1{_S} + tmp1981 = __ralloc.v0[308]::Taylor1{_S} + tmp1982 = __ralloc.v0[309]::Taylor1{_S} + ϕ_c = __ralloc.v0[310]::Taylor1{_S} + tmp1983 = __ralloc.v0[311]::Taylor1{_S} + tmp1984 = __ralloc.v0[312]::Taylor1{_S} + tmp1985 = __ralloc.v0[313]::Taylor1{_S} + tmp1986 = __ralloc.v0[314]::Taylor1{_S} + tmp1987 = __ralloc.v0[315]::Taylor1{_S} + tmp1988 = __ralloc.v0[316]::Taylor1{_S} + tmp1989 = __ralloc.v0[317]::Taylor1{_S} + tmp1990 = __ralloc.v0[318]::Taylor1{_S} + tmp1991 = __ralloc.v0[319]::Taylor1{_S} + tmp1992 = __ralloc.v0[320]::Taylor1{_S} + tmp1993 = __ralloc.v0[321]::Taylor1{_S} + tmp1994 = __ralloc.v0[322]::Taylor1{_S} + ω_c_CE_1 = __ralloc.v0[323]::Taylor1{_S} + ω_c_CE_2 = __ralloc.v0[324]::Taylor1{_S} + ω_c_CE_3 = __ralloc.v0[325]::Taylor1{_S} + J2M_t = __ralloc.v0[326]::Taylor1{_S} + C22M_t = __ralloc.v0[327]::Taylor1{_S} + C21M_t = __ralloc.v0[328]::Taylor1{_S} + S21M_t = __ralloc.v0[329]::Taylor1{_S} + S22M_t = __ralloc.v0[330]::Taylor1{_S} + Iω_x = __ralloc.v0[331]::Taylor1{_S} + Iω_y = __ralloc.v0[332]::Taylor1{_S} + Iω_z = __ralloc.v0[333]::Taylor1{_S} + ωxIω_x = __ralloc.v0[334]::Taylor1{_S} + ωxIω_y = __ralloc.v0[335]::Taylor1{_S} + ωxIω_z = __ralloc.v0[336]::Taylor1{_S} + dIω_x = __ralloc.v0[337]::Taylor1{_S} + dIω_y = __ralloc.v0[338]::Taylor1{_S} + dIω_z = __ralloc.v0[339]::Taylor1{_S} + er_EM_I_1 = __ralloc.v0[340]::Taylor1{_S} + er_EM_I_2 = __ralloc.v0[341]::Taylor1{_S} + er_EM_I_3 = __ralloc.v0[342]::Taylor1{_S} + p_E_I_1 = __ralloc.v0[343]::Taylor1{_S} + p_E_I_2 = __ralloc.v0[344]::Taylor1{_S} + p_E_I_3 = __ralloc.v0[345]::Taylor1{_S} + er_EM_1 = __ralloc.v0[346]::Taylor1{_S} + er_EM_2 = __ralloc.v0[347]::Taylor1{_S} + er_EM_3 = __ralloc.v0[348]::Taylor1{_S} + p_E_1 = __ralloc.v0[349]::Taylor1{_S} + p_E_2 = __ralloc.v0[350]::Taylor1{_S} + p_E_3 = __ralloc.v0[351]::Taylor1{_S} + I_er_EM_1 = __ralloc.v0[352]::Taylor1{_S} + I_er_EM_2 = __ralloc.v0[353]::Taylor1{_S} + I_er_EM_3 = __ralloc.v0[354]::Taylor1{_S} + I_p_E_1 = __ralloc.v0[355]::Taylor1{_S} + I_p_E_2 = __ralloc.v0[356]::Taylor1{_S} + I_p_E_3 = __ralloc.v0[357]::Taylor1{_S} + er_EM_cross_I_er_EM_1 = __ralloc.v0[358]::Taylor1{_S} + er_EM_cross_I_er_EM_2 = __ralloc.v0[359]::Taylor1{_S} + er_EM_cross_I_er_EM_3 = __ralloc.v0[360]::Taylor1{_S} + er_EM_cross_I_p_E_1 = __ralloc.v0[361]::Taylor1{_S} + er_EM_cross_I_p_E_2 = __ralloc.v0[362]::Taylor1{_S} + er_EM_cross_I_p_E_3 = __ralloc.v0[363]::Taylor1{_S} + p_E_cross_I_er_EM_1 = __ralloc.v0[364]::Taylor1{_S} + p_E_cross_I_er_EM_2 = __ralloc.v0[365]::Taylor1{_S} + p_E_cross_I_er_EM_3 = __ralloc.v0[366]::Taylor1{_S} + p_E_cross_I_p_E_1 = __ralloc.v0[367]::Taylor1{_S} + p_E_cross_I_p_E_2 = __ralloc.v0[368]::Taylor1{_S} + p_E_cross_I_p_E_3 = __ralloc.v0[369]::Taylor1{_S} + one_minus_7sin2ϕEM = __ralloc.v0[370]::Taylor1{_S} + two_sinϕEM = __ralloc.v0[371]::Taylor1{_S} + N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[372]::Taylor1{_S} + N_MfigM_figE_1 = __ralloc.v0[373]::Taylor1{_S} + N_MfigM_figE_2 = __ralloc.v0[374]::Taylor1{_S} + N_MfigM_figE_3 = __ralloc.v0[375]::Taylor1{_S} + N_1_LMF = __ralloc.v0[376]::Taylor1{_S} + N_2_LMF = __ralloc.v0[377]::Taylor1{_S} + N_3_LMF = __ralloc.v0[378]::Taylor1{_S} + N_cmb_1 = __ralloc.v0[379]::Taylor1{_S} + N_cmb_2 = __ralloc.v0[380]::Taylor1{_S} + N_cmb_3 = __ralloc.v0[381]::Taylor1{_S} + I_dω_1 = __ralloc.v0[382]::Taylor1{_S} + I_dω_2 = __ralloc.v0[383]::Taylor1{_S} + I_dω_3 = __ralloc.v0[384]::Taylor1{_S} + Ic_ωc_1 = __ralloc.v0[385]::Taylor1{_S} + Ic_ωc_2 = __ralloc.v0[386]::Taylor1{_S} + Ic_ωc_3 = __ralloc.v0[387]::Taylor1{_S} + m_ωm_x_Icωc_1 = __ralloc.v0[388]::Taylor1{_S} + m_ωm_x_Icωc_2 = __ralloc.v0[389]::Taylor1{_S} + m_ωm_x_Icωc_3 = __ralloc.v0[390]::Taylor1{_S} + Ic_dωc_1 = __ralloc.v0[391]::Taylor1{_S} + Ic_dωc_2 = __ralloc.v0[392]::Taylor1{_S} + Ic_dωc_3 = __ralloc.v0[393]::Taylor1{_S} + tmp1995 = __ralloc.v0[394]::Taylor1{_S} + tmp1996 = __ralloc.v0[395]::Taylor1{_S} + tmp1997 = __ralloc.v0[396]::Taylor1{_S} + tmp1998 = __ralloc.v0[397]::Taylor1{_S} + tmp1999 = __ralloc.v0[398]::Taylor1{_S} + tmp2000 = __ralloc.v0[399]::Taylor1{_S} + tmp2001 = __ralloc.v0[400]::Taylor1{_S} + tmp2002 = __ralloc.v0[401]::Taylor1{_S} + newtonX = __ralloc.v1[1]::Vector{Taylor1{_S}} + newtonY = __ralloc.v1[2]::Vector{Taylor1{_S}} + newtonZ = __ralloc.v1[3]::Vector{Taylor1{_S}} + newtonianNb_Potential = __ralloc.v1[4]::Vector{Taylor1{_S}} + v2 = __ralloc.v1[5]::Vector{Taylor1{_S}} + pntempX = __ralloc.v1[6]::Vector{Taylor1{_S}} + pntempY = __ralloc.v1[7]::Vector{Taylor1{_S}} + pntempZ = __ralloc.v1[8]::Vector{Taylor1{_S}} + postNewtonX = __ralloc.v1[9]::Vector{Taylor1{_S}} + postNewtonY = __ralloc.v1[10]::Vector{Taylor1{_S}} + postNewtonZ = __ralloc.v1[11]::Vector{Taylor1{_S}} + accX = __ralloc.v1[12]::Vector{Taylor1{_S}} + accY = __ralloc.v1[13]::Vector{Taylor1{_S}} + accZ = __ralloc.v1[14]::Vector{Taylor1{_S}} + N_MfigM_pmA_x = __ralloc.v1[15]::Vector{Taylor1{_S}} + N_MfigM_pmA_y = __ralloc.v1[16]::Vector{Taylor1{_S}} + N_MfigM_pmA_z = __ralloc.v1[17]::Vector{Taylor1{_S}} + temp_N_M_x = __ralloc.v1[18]::Vector{Taylor1{_S}} + temp_N_M_y = __ralloc.v1[19]::Vector{Taylor1{_S}} + temp_N_M_z = __ralloc.v1[20]::Vector{Taylor1{_S}} + N_MfigM = __ralloc.v1[21]::Vector{Taylor1{_S}} + J2_t = __ralloc.v1[22]::Vector{Taylor1{_S}} + tmp1326 = __ralloc.v1[23]::Vector{Taylor1{_S}} + tmp1328 = __ralloc.v1[24]::Vector{Taylor1{_S}} + tmp1331 = __ralloc.v1[25]::Vector{Taylor1{_S}} + tmp1333 = __ralloc.v1[26]::Vector{Taylor1{_S}} + tmp1336 = __ralloc.v1[27]::Vector{Taylor1{_S}} + tmp1338 = __ralloc.v1[28]::Vector{Taylor1{_S}} + tmp1382 = __ralloc.v1[29]::Vector{Taylor1{_S}} + tmp1384 = __ralloc.v1[30]::Vector{Taylor1{_S}} + tmp1385 = __ralloc.v1[31]::Vector{Taylor1{_S}} + tmp1387 = __ralloc.v1[32]::Vector{Taylor1{_S}} + tmp1632 = __ralloc.v1[33]::Vector{Taylor1{_S}} + tmp1634 = __ralloc.v1[34]::Vector{Taylor1{_S}} + tmp1636 = __ralloc.v1[35]::Vector{Taylor1{_S}} + X = __ralloc.v2[1]::Array{Taylor1{_S}, 2} + Y = __ralloc.v2[2]::Array{Taylor1{_S}, 2} + Z = __ralloc.v2[3]::Array{Taylor1{_S}, 2} + r_p2 = __ralloc.v2[4]::Array{Taylor1{_S}, 2} + r_p1d2 = __ralloc.v2[5]::Array{Taylor1{_S}, 2} + r_p3d2 = __ralloc.v2[6]::Array{Taylor1{_S}, 2} + r_p7d2 = __ralloc.v2[7]::Array{Taylor1{_S}, 2} + newtonianCoeff = __ralloc.v2[8]::Array{Taylor1{_S}, 2} + U = __ralloc.v2[9]::Array{Taylor1{_S}, 2} + V = __ralloc.v2[10]::Array{Taylor1{_S}, 2} + W = __ralloc.v2[11]::Array{Taylor1{_S}, 2} + _4U_m_3X = __ralloc.v2[12]::Array{Taylor1{_S}, 2} + _4V_m_3Y = __ralloc.v2[13]::Array{Taylor1{_S}, 2} + _4W_m_3Z = __ralloc.v2[14]::Array{Taylor1{_S}, 2} + UU = __ralloc.v2[15]::Array{Taylor1{_S}, 2} + VV = __ralloc.v2[16]::Array{Taylor1{_S}, 2} + WW = __ralloc.v2[17]::Array{Taylor1{_S}, 2} + newtonian1b_Potential = __ralloc.v2[18]::Array{Taylor1{_S}, 2} + newton_acc_X = __ralloc.v2[19]::Array{Taylor1{_S}, 2} + newton_acc_Y = __ralloc.v2[20]::Array{Taylor1{_S}, 2} + newton_acc_Z = __ralloc.v2[21]::Array{Taylor1{_S}, 2} + _2v2 = __ralloc.v2[22]::Array{Taylor1{_S}, 2} + vi_dot_vj = __ralloc.v2[23]::Array{Taylor1{_S}, 2} + pn2 = __ralloc.v2[24]::Array{Taylor1{_S}, 2} + U_t_pn2 = __ralloc.v2[25]::Array{Taylor1{_S}, 2} + V_t_pn2 = __ralloc.v2[26]::Array{Taylor1{_S}, 2} + W_t_pn2 = __ralloc.v2[27]::Array{Taylor1{_S}, 2} + pn3 = __ralloc.v2[28]::Array{Taylor1{_S}, 2} + pNX_t_pn3 = __ralloc.v2[29]::Array{Taylor1{_S}, 2} + pNY_t_pn3 = __ralloc.v2[30]::Array{Taylor1{_S}, 2} + pNZ_t_pn3 = __ralloc.v2[31]::Array{Taylor1{_S}, 2} + _4ϕj = __ralloc.v2[32]::Array{Taylor1{_S}, 2} + ϕi_plus_4ϕj = __ralloc.v2[33]::Array{Taylor1{_S}, 2} + sj2_plus_2si2 = __ralloc.v2[34]::Array{Taylor1{_S}, 2} + sj2_plus_2si2_minus_4vivj = __ralloc.v2[35]::Array{Taylor1{_S}, 2} + ϕs_and_vs = __ralloc.v2[36]::Array{Taylor1{_S}, 2} + pn1t1_7 = __ralloc.v2[37]::Array{Taylor1{_S}, 2} + pNX_t_X = __ralloc.v2[38]::Array{Taylor1{_S}, 2} + pNY_t_Y = __ralloc.v2[39]::Array{Taylor1{_S}, 2} + pNZ_t_Z = __ralloc.v2[40]::Array{Taylor1{_S}, 2} + pn1 = __ralloc.v2[41]::Array{Taylor1{_S}, 2} + X_t_pn1 = __ralloc.v2[42]::Array{Taylor1{_S}, 2} + Y_t_pn1 = __ralloc.v2[43]::Array{Taylor1{_S}, 2} + Z_t_pn1 = __ralloc.v2[44]::Array{Taylor1{_S}, 2} + X_bf_1 = __ralloc.v2[45]::Array{Taylor1{_S}, 2} + Y_bf_1 = __ralloc.v2[46]::Array{Taylor1{_S}, 2} + Z_bf_1 = __ralloc.v2[47]::Array{Taylor1{_S}, 2} + X_bf_2 = __ralloc.v2[48]::Array{Taylor1{_S}, 2} + Y_bf_2 = __ralloc.v2[49]::Array{Taylor1{_S}, 2} + Z_bf_2 = __ralloc.v2[50]::Array{Taylor1{_S}, 2} + X_bf_3 = __ralloc.v2[51]::Array{Taylor1{_S}, 2} + Y_bf_3 = __ralloc.v2[52]::Array{Taylor1{_S}, 2} + Z_bf_3 = __ralloc.v2[53]::Array{Taylor1{_S}, 2} + X_bf = __ralloc.v2[54]::Array{Taylor1{_S}, 2} + Y_bf = __ralloc.v2[55]::Array{Taylor1{_S}, 2} + Z_bf = __ralloc.v2[56]::Array{Taylor1{_S}, 2} + F_JCS_x = __ralloc.v2[57]::Array{Taylor1{_S}, 2} + F_JCS_y = __ralloc.v2[58]::Array{Taylor1{_S}, 2} + F_JCS_z = __ralloc.v2[59]::Array{Taylor1{_S}, 2} + temp_accX_j = __ralloc.v2[60]::Array{Taylor1{_S}, 2} + temp_accY_j = __ralloc.v2[61]::Array{Taylor1{_S}, 2} + temp_accZ_j = __ralloc.v2[62]::Array{Taylor1{_S}, 2} + temp_accX_i = __ralloc.v2[63]::Array{Taylor1{_S}, 2} + temp_accY_i = __ralloc.v2[64]::Array{Taylor1{_S}, 2} + temp_accZ_i = __ralloc.v2[65]::Array{Taylor1{_S}, 2} + sin_ϕ = __ralloc.v2[66]::Array{Taylor1{_S}, 2} + cos_ϕ = __ralloc.v2[67]::Array{Taylor1{_S}, 2} + sin_λ = __ralloc.v2[68]::Array{Taylor1{_S}, 2} + cos_λ = __ralloc.v2[69]::Array{Taylor1{_S}, 2} + r_xy = __ralloc.v2[70]::Array{Taylor1{_S}, 2} + r_p4 = __ralloc.v2[71]::Array{Taylor1{_S}, 2} + F_CS_ξ_36 = __ralloc.v2[72]::Array{Taylor1{_S}, 2} + F_CS_η_36 = __ralloc.v2[73]::Array{Taylor1{_S}, 2} + F_CS_ζ_36 = __ralloc.v2[74]::Array{Taylor1{_S}, 2} + F_J_ξ_36 = __ralloc.v2[75]::Array{Taylor1{_S}, 2} + F_J_ζ_36 = __ralloc.v2[76]::Array{Taylor1{_S}, 2} + F_J_ξ = __ralloc.v2[77]::Array{Taylor1{_S}, 2} + F_J_ζ = __ralloc.v2[78]::Array{Taylor1{_S}, 2} + F_CS_ξ = __ralloc.v2[79]::Array{Taylor1{_S}, 2} + F_CS_η = __ralloc.v2[80]::Array{Taylor1{_S}, 2} + F_CS_ζ = __ralloc.v2[81]::Array{Taylor1{_S}, 2} + F_JCS_ξ = __ralloc.v2[82]::Array{Taylor1{_S}, 2} + F_JCS_η = __ralloc.v2[83]::Array{Taylor1{_S}, 2} + F_JCS_ζ = __ralloc.v2[84]::Array{Taylor1{_S}, 2} + mantlef2coref = __ralloc.v2[85]::Array{Taylor1{_S}, 2} + pn2x = __ralloc.v2[86]::Array{Taylor1{_S}, 2} + pn2y = __ralloc.v2[87]::Array{Taylor1{_S}, 2} + pn2z = __ralloc.v2[88]::Array{Taylor1{_S}, 2} + tmp1346 = __ralloc.v2[89]::Array{Taylor1{_S}, 2} + tmp1349 = __ralloc.v2[90]::Array{Taylor1{_S}, 2} + tmp1351 = __ralloc.v2[91]::Array{Taylor1{_S}, 2} + tmp1352 = __ralloc.v2[92]::Array{Taylor1{_S}, 2} + tmp1354 = __ralloc.v2[93]::Array{Taylor1{_S}, 2} + tmp1362 = __ralloc.v2[94]::Array{Taylor1{_S}, 2} + tmp1363 = __ralloc.v2[95]::Array{Taylor1{_S}, 2} + tmp1374 = __ralloc.v2[96]::Array{Taylor1{_S}, 2} + temp_001 = __ralloc.v2[97]::Array{Taylor1{_S}, 2} + tmp1376 = __ralloc.v2[98]::Array{Taylor1{_S}, 2} + temp_002 = __ralloc.v2[99]::Array{Taylor1{_S}, 2} + tmp1378 = __ralloc.v2[100]::Array{Taylor1{_S}, 2} + temp_003 = __ralloc.v2[101]::Array{Taylor1{_S}, 2} + temp_004 = __ralloc.v2[102]::Array{Taylor1{_S}, 2} + tmp1415 = __ralloc.v2[103]::Array{Taylor1{_S}, 2} + tmp1417 = __ralloc.v2[104]::Array{Taylor1{_S}, 2} + tmp1419 = __ralloc.v2[105]::Array{Taylor1{_S}, 2} + tmp1423 = __ralloc.v2[106]::Array{Taylor1{_S}, 2} + tmp1425 = __ralloc.v2[107]::Array{Taylor1{_S}, 2} + tmp1426 = __ralloc.v2[108]::Array{Taylor1{_S}, 2} + tmp1532 = __ralloc.v2[109]::Array{Taylor1{_S}, 2} + tmp1533 = __ralloc.v2[110]::Array{Taylor1{_S}, 2} + tmp1536 = __ralloc.v2[111]::Array{Taylor1{_S}, 2} + tmp1537 = __ralloc.v2[112]::Array{Taylor1{_S}, 2} + tmp1543 = __ralloc.v2[113]::Array{Taylor1{_S}, 2} + tmp1546 = __ralloc.v2[114]::Array{Taylor1{_S}, 2} + tmp1608 = __ralloc.v2[115]::Array{Taylor1{_S}, 2} + tmp1610 = __ralloc.v2[116]::Array{Taylor1{_S}, 2} + tmp1612 = __ralloc.v2[117]::Array{Taylor1{_S}, 2} + tmp1614 = __ralloc.v2[118]::Array{Taylor1{_S}, 2} + tmp1616 = __ralloc.v2[119]::Array{Taylor1{_S}, 2} + tmp1618 = __ralloc.v2[120]::Array{Taylor1{_S}, 2} + tmp1620 = __ralloc.v2[121]::Array{Taylor1{_S}, 2} + tmp1621 = __ralloc.v2[122]::Array{Taylor1{_S}, 2} + tmp1622 = __ralloc.v2[123]::Array{Taylor1{_S}, 2} + tmp1624 = __ralloc.v2[124]::Array{Taylor1{_S}, 2} + tmp1625 = __ralloc.v2[125]::Array{Taylor1{_S}, 2} + tmp1626 = __ralloc.v2[126]::Array{Taylor1{_S}, 2} + tmp1628 = __ralloc.v2[127]::Array{Taylor1{_S}, 2} + tmp1629 = __ralloc.v2[128]::Array{Taylor1{_S}, 2} + tmp1630 = __ralloc.v2[129]::Array{Taylor1{_S}, 2} + tmp1645 = __ralloc.v2[130]::Array{Taylor1{_S}, 2} + Xij_t_Ui = __ralloc.v2[131]::Array{Taylor1{_S}, 2} + Yij_t_Vi = __ralloc.v2[132]::Array{Taylor1{_S}, 2} + Zij_t_Wi = __ralloc.v2[133]::Array{Taylor1{_S}, 2} + tmp1651 = __ralloc.v2[134]::Array{Taylor1{_S}, 2} + Rij_dot_Vi = __ralloc.v2[135]::Array{Taylor1{_S}, 2} + tmp1654 = __ralloc.v2[136]::Array{Taylor1{_S}, 2} + pn1t7 = __ralloc.v2[137]::Array{Taylor1{_S}, 2} + tmp1657 = __ralloc.v2[138]::Array{Taylor1{_S}, 2} + pn1t2_7 = __ralloc.v2[139]::Array{Taylor1{_S}, 2} + tmp1664 = __ralloc.v2[140]::Array{Taylor1{_S}, 2} + tmp1665 = __ralloc.v2[141]::Array{Taylor1{_S}, 2} + tmp1666 = __ralloc.v2[142]::Array{Taylor1{_S}, 2} + tmp1674 = __ralloc.v2[143]::Array{Taylor1{_S}, 2} + termpnx = __ralloc.v2[144]::Array{Taylor1{_S}, 2} + sumpnx = __ralloc.v2[145]::Array{Taylor1{_S}, 2} + tmp1677 = __ralloc.v2[146]::Array{Taylor1{_S}, 2} + termpny = __ralloc.v2[147]::Array{Taylor1{_S}, 2} + sumpny = __ralloc.v2[148]::Array{Taylor1{_S}, 2} + tmp1680 = __ralloc.v2[149]::Array{Taylor1{_S}, 2} + termpnz = __ralloc.v2[150]::Array{Taylor1{_S}, 2} + sumpnz = __ralloc.v2[151]::Array{Taylor1{_S}, 2} + P_n = __ralloc.v3[1]::Array{Taylor1{_S}, 3} + dP_n = __ralloc.v3[2]::Array{Taylor1{_S}, 3} + temp_fjξ = __ralloc.v3[3]::Array{Taylor1{_S}, 3} + temp_fjζ = __ralloc.v3[4]::Array{Taylor1{_S}, 3} + temp_rn = __ralloc.v3[5]::Array{Taylor1{_S}, 3} + sin_mλ = __ralloc.v3[6]::Array{Taylor1{_S}, 3} + cos_mλ = __ralloc.v3[7]::Array{Taylor1{_S}, 3} + RotM = __ralloc.v3[8]::Array{Taylor1{_S}, 3} + tmp1431 = __ralloc.v3[9]::Array{Taylor1{_S}, 3} + tmp1432 = __ralloc.v3[10]::Array{Taylor1{_S}, 3} + tmp1433 = __ralloc.v3[11]::Array{Taylor1{_S}, 3} + tmp1435 = __ralloc.v3[12]::Array{Taylor1{_S}, 3} + tmp1436 = __ralloc.v3[13]::Array{Taylor1{_S}, 3} + tmp1441 = __ralloc.v3[14]::Array{Taylor1{_S}, 3} + tmp1442 = __ralloc.v3[15]::Array{Taylor1{_S}, 3} + tmp1444 = __ralloc.v3[16]::Array{Taylor1{_S}, 3} + tmp1445 = __ralloc.v3[17]::Array{Taylor1{_S}, 3} + tmp1446 = __ralloc.v3[18]::Array{Taylor1{_S}, 3} + tmp1448 = __ralloc.v3[19]::Array{Taylor1{_S}, 3} + tmp1449 = __ralloc.v3[20]::Array{Taylor1{_S}, 3} + tmp1450 = __ralloc.v3[21]::Array{Taylor1{_S}, 3} + tmp1452 = __ralloc.v3[22]::Array{Taylor1{_S}, 3} + tmp1453 = __ralloc.v3[23]::Array{Taylor1{_S}, 3} + tmp1454 = __ralloc.v3[24]::Array{Taylor1{_S}, 3} + tmp1455 = __ralloc.v3[25]::Array{Taylor1{_S}, 3} + tmp1458 = __ralloc.v3[26]::Array{Taylor1{_S}, 3} + tmp1459 = __ralloc.v3[27]::Array{Taylor1{_S}, 3} + tmp1461 = __ralloc.v3[28]::Array{Taylor1{_S}, 3} + tmp1462 = __ralloc.v3[29]::Array{Taylor1{_S}, 3} + tmp1481 = __ralloc.v3[30]::Array{Taylor1{_S}, 3} + tmp1482 = __ralloc.v3[31]::Array{Taylor1{_S}, 3} + tmp1483 = __ralloc.v3[32]::Array{Taylor1{_S}, 3} + tmp1486 = __ralloc.v3[33]::Array{Taylor1{_S}, 3} + tmp1487 = __ralloc.v3[34]::Array{Taylor1{_S}, 3} + tmp1488 = __ralloc.v3[35]::Array{Taylor1{_S}, 3} + tmp1493 = __ralloc.v3[36]::Array{Taylor1{_S}, 3} + tmp1494 = __ralloc.v3[37]::Array{Taylor1{_S}, 3} + tmp1495 = __ralloc.v3[38]::Array{Taylor1{_S}, 3} + tmp1498 = __ralloc.v3[39]::Array{Taylor1{_S}, 3} + tmp1499 = __ralloc.v3[40]::Array{Taylor1{_S}, 3} + tmp1500 = __ralloc.v3[41]::Array{Taylor1{_S}, 3} + tmp1504 = __ralloc.v3[42]::Array{Taylor1{_S}, 3} + tmp1505 = __ralloc.v3[43]::Array{Taylor1{_S}, 3} + tmp1506 = __ralloc.v3[44]::Array{Taylor1{_S}, 3} + tmp1508 = __ralloc.v3[45]::Array{Taylor1{_S}, 3} + tmp1509 = __ralloc.v3[46]::Array{Taylor1{_S}, 3} + tmp1510 = __ralloc.v3[47]::Array{Taylor1{_S}, 3} + temp_CS_ξ = __ralloc.v4[1]::Array{Taylor1{_S}, 4} + temp_CS_η = __ralloc.v4[2]::Array{Taylor1{_S}, 4} + temp_CS_ζ = __ralloc.v4[3]::Array{Taylor1{_S}, 4} + Cnm_cosmλ = __ralloc.v4[4]::Array{Taylor1{_S}, 4} + Cnm_sinmλ = __ralloc.v4[5]::Array{Taylor1{_S}, 4} + Snm_cosmλ = __ralloc.v4[6]::Array{Taylor1{_S}, 4} + Snm_sinmλ = __ralloc.v4[7]::Array{Taylor1{_S}, 4} + secϕ_P_nm = __ralloc.v4[8]::Array{Taylor1{_S}, 4} + P_nm = __ralloc.v4[9]::Array{Taylor1{_S}, 4} + cosϕ_dP_nm = __ralloc.v4[10]::Array{Taylor1{_S}, 4} + Rb2p = __ralloc.v4[11]::Array{Taylor1{_S}, 4} + Gc2p = __ralloc.v4[12]::Array{Taylor1{_S}, 4} + tmp1464 = __ralloc.v4[13]::Array{Taylor1{_S}, 4} + tmp1467 = __ralloc.v4[14]::Array{Taylor1{_S}, 4} + tmp1469 = __ralloc.v4[15]::Array{Taylor1{_S}, 4} + tmp1471 = __ralloc.v4[16]::Array{Taylor1{_S}, 4} + tmp1472 = __ralloc.v4[17]::Array{Taylor1{_S}, 4} + tmp1473 = __ralloc.v4[18]::Array{Taylor1{_S}, 4} + tmp1476 = __ralloc.v4[19]::Array{Taylor1{_S}, 4} + tmp1477 = __ralloc.v4[20]::Array{Taylor1{_S}, 4} + tmp1478 = __ralloc.v4[21]::Array{Taylor1{_S}, 4} + tmp1480 = __ralloc.v4[22]::Array{Taylor1{_S}, 4} + tmp1484 = __ralloc.v4[23]::Array{Taylor1{_S}, 4} + tmp1485 = __ralloc.v4[24]::Array{Taylor1{_S}, 4} + tmp1489 = __ralloc.v4[25]::Array{Taylor1{_S}, 4} + tmp1490 = __ralloc.v4[26]::Array{Taylor1{_S}, 4} + tmp1492 = __ralloc.v4[27]::Array{Taylor1{_S}, 4} + tmp1496 = __ralloc.v4[28]::Array{Taylor1{_S}, 4} + tmp1497 = __ralloc.v4[29]::Array{Taylor1{_S}, 4} + tmp1501 = __ralloc.v4[30]::Array{Taylor1{_S}, 4} + tmp1502 = __ralloc.v4[31]::Array{Taylor1{_S}, 4} + tmp1507 = __ralloc.v4[32]::Array{Taylor1{_S}, 4} + tmp1511 = __ralloc.v4[33]::Array{Taylor1{_S}, 4} + tmp1512 = __ralloc.v4[34]::Array{Taylor1{_S}, 4} + tmp1518 = __ralloc.v4[35]::Array{Taylor1{_S}, 4} + tmp1519 = __ralloc.v4[36]::Array{Taylor1{_S}, 4} + tmp1520 = __ralloc.v4[37]::Array{Taylor1{_S}, 4} + tmp1521 = __ralloc.v4[38]::Array{Taylor1{_S}, 4} + tmp1523 = __ralloc.v4[39]::Array{Taylor1{_S}, 4} + tmp1524 = __ralloc.v4[40]::Array{Taylor1{_S}, 4} + tmp1525 = __ralloc.v4[41]::Array{Taylor1{_S}, 4} + tmp1526 = __ralloc.v4[42]::Array{Taylor1{_S}, 4} + tmp1528 = __ralloc.v4[43]::Array{Taylor1{_S}, 4} + tmp1529 = __ralloc.v4[44]::Array{Taylor1{_S}, 4} + tmp1530 = __ralloc.v4[45]::Array{Taylor1{_S}, 4} + tmp1548 = __ralloc.v4[46]::Array{Taylor1{_S}, 4} + tmp1549 = __ralloc.v4[47]::Array{Taylor1{_S}, 4} + tmp1550 = __ralloc.v4[48]::Array{Taylor1{_S}, 4} + tmp1551 = __ralloc.v4[49]::Array{Taylor1{_S}, 4} + tmp1553 = __ralloc.v4[50]::Array{Taylor1{_S}, 4} + tmp1554 = __ralloc.v4[51]::Array{Taylor1{_S}, 4} + tmp1555 = __ralloc.v4[52]::Array{Taylor1{_S}, 4} + tmp1556 = __ralloc.v4[53]::Array{Taylor1{_S}, 4} + tmp1558 = __ralloc.v4[54]::Array{Taylor1{_S}, 4} + tmp1559 = __ralloc.v4[55]::Array{Taylor1{_S}, 4} + tmp1560 = __ralloc.v4[56]::Array{Taylor1{_S}, 4} + tmp1561 = __ralloc.v4[57]::Array{Taylor1{_S}, 4} + tmp1563 = __ralloc.v4[58]::Array{Taylor1{_S}, 4} + tmp1564 = __ralloc.v4[59]::Array{Taylor1{_S}, 4} + tmp1565 = __ralloc.v4[60]::Array{Taylor1{_S}, 4} + tmp1566 = __ralloc.v4[61]::Array{Taylor1{_S}, 4} + tmp1568 = __ralloc.v4[62]::Array{Taylor1{_S}, 4} + tmp1569 = __ralloc.v4[63]::Array{Taylor1{_S}, 4} + tmp1570 = __ralloc.v4[64]::Array{Taylor1{_S}, 4} + tmp1571 = __ralloc.v4[65]::Array{Taylor1{_S}, 4} + tmp1573 = __ralloc.v4[66]::Array{Taylor1{_S}, 4} + tmp1574 = __ralloc.v4[67]::Array{Taylor1{_S}, 4} + tmp1575 = __ralloc.v4[68]::Array{Taylor1{_S}, 4} + tmp1576 = __ralloc.v4[69]::Array{Taylor1{_S}, 4} + tmp1578 = __ralloc.v4[70]::Array{Taylor1{_S}, 4} + tmp1579 = __ralloc.v4[71]::Array{Taylor1{_S}, 4} + tmp1580 = __ralloc.v4[72]::Array{Taylor1{_S}, 4} + tmp1581 = __ralloc.v4[73]::Array{Taylor1{_S}, 4} + tmp1583 = __ralloc.v4[74]::Array{Taylor1{_S}, 4} + tmp1584 = __ralloc.v4[75]::Array{Taylor1{_S}, 4} + tmp1585 = __ralloc.v4[76]::Array{Taylor1{_S}, 4} + tmp1586 = __ralloc.v4[77]::Array{Taylor1{_S}, 4} + tmp1588 = __ralloc.v4[78]::Array{Taylor1{_S}, 4} + tmp1589 = __ralloc.v4[79]::Array{Taylor1{_S}, 4} + tmp1590 = __ralloc.v4[80]::Array{Taylor1{_S}, 4} + tmp1591 = __ralloc.v4[81]::Array{Taylor1{_S}, 4} + tmp1593 = __ralloc.v4[82]::Array{Taylor1{_S}, 4} + tmp1594 = __ralloc.v4[83]::Array{Taylor1{_S}, 4} + tmp1595 = __ralloc.v4[84]::Array{Taylor1{_S}, 4} + tmp1596 = __ralloc.v4[85]::Array{Taylor1{_S}, 4} + tmp1598 = __ralloc.v4[86]::Array{Taylor1{_S}, 4} + tmp1599 = __ralloc.v4[87]::Array{Taylor1{_S}, 4} + tmp1600 = __ralloc.v4[88]::Array{Taylor1{_S}, 4} + tmp1601 = __ralloc.v4[89]::Array{Taylor1{_S}, 4} + tmp1603 = __ralloc.v4[90]::Array{Taylor1{_S}, 4} + tmp1604 = __ralloc.v4[91]::Array{Taylor1{_S}, 4} + tmp1605 = __ralloc.v4[92]::Array{Taylor1{_S}, 4} + tmp1606 = __ralloc.v4[93]::Array{Taylor1{_S}, 4} + local (N, jd0) = params + local S = eltype(q) + local zero_q_1 = zero(q[1]) + local one_t = one(t) + local dsj2k = t + (jd0 - J2000) + local I_m_t = (ITM_und - I_c) .* one_t + local dI_m_t = ordpres_differentiate.(I_m_t) + local inv_I_m_t = inv(I_m_t) + local I_c_t = I_c .* one_t + local inv_I_c_t = inv(I_c_t) + local I_M_t = I_m_t + I_c_t + (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) + local αs = deg2rad(α_p_sun * one_t) + local δs = deg2rad(δ_p_sun * one_t) + local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) + local RotM[:, :, su] = pole_rotation(αs, δs) + ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) + ϕ_m.coeffs[2:order + 1] .= zero(ϕ_m.coeffs[1]) + θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) + θ_m.coeffs[2:order + 1] .= zero(θ_m.coeffs[1]) + ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) + ψ_m.coeffs[2:order + 1] .= zero(ψ_m.coeffs[1]) + tmp1220.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1220.coeffs[2:order + 1] .= zero(tmp1220.coeffs[1]) + tmp1954.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1954.coeffs[2:order + 1] .= zero(tmp1954.coeffs[1]) + tmp1221.coeffs[1] = cos(constant_term(ψ_m)) + tmp1221.coeffs[2:order + 1] .= zero(tmp1221.coeffs[1]) + tmp1955.coeffs[1] = sin(constant_term(ψ_m)) + tmp1955.coeffs[2:order + 1] .= zero(tmp1955.coeffs[1]) + tmp1222.coeffs[1] = constant_term(tmp1220) * constant_term(tmp1221) + tmp1222.coeffs[2:order + 1] .= zero(tmp1222.coeffs[1]) + tmp1223.coeffs[1] = cos(constant_term(θ_m)) + tmp1223.coeffs[2:order + 1] .= zero(tmp1223.coeffs[1]) + tmp1956.coeffs[1] = sin(constant_term(θ_m)) + tmp1956.coeffs[2:order + 1] .= zero(tmp1956.coeffs[1]) + tmp1224.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1224.coeffs[2:order + 1] .= zero(tmp1224.coeffs[1]) + tmp1957.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1957.coeffs[2:order + 1] .= zero(tmp1957.coeffs[1]) + tmp1225.coeffs[1] = constant_term(tmp1223) * constant_term(tmp1224) + tmp1225.coeffs[2:order + 1] .= zero(tmp1225.coeffs[1]) + tmp1226.coeffs[1] = sin(constant_term(ψ_m)) + tmp1226.coeffs[2:order + 1] .= zero(tmp1226.coeffs[1]) + tmp1958.coeffs[1] = cos(constant_term(ψ_m)) + tmp1958.coeffs[2:order + 1] .= zero(tmp1958.coeffs[1]) + tmp1227.coeffs[1] = constant_term(tmp1225) * constant_term(tmp1226) + tmp1227.coeffs[2:order + 1] .= zero(tmp1227.coeffs[1]) + (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp1222) - constant_term(tmp1227) + (RotM[1, 1, mo]).coeffs[2:order + 1] .= zero((RotM[1, 1, mo]).coeffs[1]) + tmp1229.coeffs[1] = cos(constant_term(θ_m)) + tmp1229.coeffs[2:order + 1] .= zero(tmp1229.coeffs[1]) + tmp1959.coeffs[1] = sin(constant_term(θ_m)) + tmp1959.coeffs[2:order + 1] .= zero(tmp1959.coeffs[1]) + tmp1230.coeffs[1] = -(constant_term(tmp1229)) + tmp1230.coeffs[2:order + 1] .= zero(tmp1230.coeffs[1]) + tmp1231.coeffs[1] = cos(constant_term(ψ_m)) + tmp1231.coeffs[2:order + 1] .= zero(tmp1231.coeffs[1]) + tmp1960.coeffs[1] = sin(constant_term(ψ_m)) + tmp1960.coeffs[2:order + 1] .= zero(tmp1960.coeffs[1]) + tmp1232.coeffs[1] = constant_term(tmp1230) * constant_term(tmp1231) + tmp1232.coeffs[2:order + 1] .= zero(tmp1232.coeffs[1]) + tmp1233.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1233.coeffs[2:order + 1] .= zero(tmp1233.coeffs[1]) + tmp1961.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1961.coeffs[2:order + 1] .= zero(tmp1961.coeffs[1]) + tmp1234.coeffs[1] = constant_term(tmp1232) * constant_term(tmp1233) + tmp1234.coeffs[2:order + 1] .= zero(tmp1234.coeffs[1]) + tmp1235.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1235.coeffs[2:order + 1] .= zero(tmp1235.coeffs[1]) + tmp1962.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1962.coeffs[2:order + 1] .= zero(tmp1962.coeffs[1]) + tmp1236.coeffs[1] = sin(constant_term(ψ_m)) + tmp1236.coeffs[2:order + 1] .= zero(tmp1236.coeffs[1]) + tmp1963.coeffs[1] = cos(constant_term(ψ_m)) + tmp1963.coeffs[2:order + 1] .= zero(tmp1963.coeffs[1]) + tmp1237.coeffs[1] = constant_term(tmp1235) * constant_term(tmp1236) + tmp1237.coeffs[2:order + 1] .= zero(tmp1237.coeffs[1]) + (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp1234) - constant_term(tmp1237) + (RotM[2, 1, mo]).coeffs[2:order + 1] .= zero((RotM[2, 1, mo]).coeffs[1]) + tmp1239.coeffs[1] = sin(constant_term(θ_m)) + tmp1239.coeffs[2:order + 1] .= zero(tmp1239.coeffs[1]) + tmp1964.coeffs[1] = cos(constant_term(θ_m)) + tmp1964.coeffs[2:order + 1] .= zero(tmp1964.coeffs[1]) + tmp1240.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1240.coeffs[2:order + 1] .= zero(tmp1240.coeffs[1]) + tmp1965.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1965.coeffs[2:order + 1] .= zero(tmp1965.coeffs[1]) + (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp1239) * constant_term(tmp1240) + (RotM[3, 1, mo]).coeffs[2:order + 1] .= zero((RotM[3, 1, mo]).coeffs[1]) + tmp1242.coeffs[1] = cos(constant_term(ψ_m)) + tmp1242.coeffs[2:order + 1] .= zero(tmp1242.coeffs[1]) + tmp1966.coeffs[1] = sin(constant_term(ψ_m)) + tmp1966.coeffs[2:order + 1] .= zero(tmp1966.coeffs[1]) + tmp1243.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1243.coeffs[2:order + 1] .= zero(tmp1243.coeffs[1]) + tmp1967.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1967.coeffs[2:order + 1] .= zero(tmp1967.coeffs[1]) + tmp1244.coeffs[1] = constant_term(tmp1242) * constant_term(tmp1243) + tmp1244.coeffs[2:order + 1] .= zero(tmp1244.coeffs[1]) + tmp1245.coeffs[1] = cos(constant_term(θ_m)) + tmp1245.coeffs[2:order + 1] .= zero(tmp1245.coeffs[1]) + tmp1968.coeffs[1] = sin(constant_term(θ_m)) + tmp1968.coeffs[2:order + 1] .= zero(tmp1968.coeffs[1]) + tmp1246.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1246.coeffs[2:order + 1] .= zero(tmp1246.coeffs[1]) + tmp1969.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1969.coeffs[2:order + 1] .= zero(tmp1969.coeffs[1]) + tmp1247.coeffs[1] = constant_term(tmp1245) * constant_term(tmp1246) + tmp1247.coeffs[2:order + 1] .= zero(tmp1247.coeffs[1]) + tmp1248.coeffs[1] = sin(constant_term(ψ_m)) + tmp1248.coeffs[2:order + 1] .= zero(tmp1248.coeffs[1]) + tmp1970.coeffs[1] = cos(constant_term(ψ_m)) + tmp1970.coeffs[2:order + 1] .= zero(tmp1970.coeffs[1]) + tmp1249.coeffs[1] = constant_term(tmp1247) * constant_term(tmp1248) + tmp1249.coeffs[2:order + 1] .= zero(tmp1249.coeffs[1]) + (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp1244) + constant_term(tmp1249) + (RotM[1, 2, mo]).coeffs[2:order + 1] .= zero((RotM[1, 2, mo]).coeffs[1]) + tmp1251.coeffs[1] = cos(constant_term(θ_m)) + tmp1251.coeffs[2:order + 1] .= zero(tmp1251.coeffs[1]) + tmp1971.coeffs[1] = sin(constant_term(θ_m)) + tmp1971.coeffs[2:order + 1] .= zero(tmp1971.coeffs[1]) + tmp1252.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1252.coeffs[2:order + 1] .= zero(tmp1252.coeffs[1]) + tmp1972.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1972.coeffs[2:order + 1] .= zero(tmp1972.coeffs[1]) + tmp1253.coeffs[1] = constant_term(tmp1251) * constant_term(tmp1252) + tmp1253.coeffs[2:order + 1] .= zero(tmp1253.coeffs[1]) + tmp1254.coeffs[1] = cos(constant_term(ψ_m)) + tmp1254.coeffs[2:order + 1] .= zero(tmp1254.coeffs[1]) + tmp1973.coeffs[1] = sin(constant_term(ψ_m)) + tmp1973.coeffs[2:order + 1] .= zero(tmp1973.coeffs[1]) + tmp1255.coeffs[1] = constant_term(tmp1253) * constant_term(tmp1254) + tmp1255.coeffs[2:order + 1] .= zero(tmp1255.coeffs[1]) + tmp1256.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1256.coeffs[2:order + 1] .= zero(tmp1256.coeffs[1]) + tmp1974.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1974.coeffs[2:order + 1] .= zero(tmp1974.coeffs[1]) + tmp1257.coeffs[1] = sin(constant_term(ψ_m)) + tmp1257.coeffs[2:order + 1] .= zero(tmp1257.coeffs[1]) + tmp1975.coeffs[1] = cos(constant_term(ψ_m)) + tmp1975.coeffs[2:order + 1] .= zero(tmp1975.coeffs[1]) + tmp1258.coeffs[1] = constant_term(tmp1256) * constant_term(tmp1257) + tmp1258.coeffs[2:order + 1] .= zero(tmp1258.coeffs[1]) + (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp1255) - constant_term(tmp1258) + (RotM[2, 2, mo]).coeffs[2:order + 1] .= zero((RotM[2, 2, mo]).coeffs[1]) + tmp1260.coeffs[1] = cos(constant_term(ϕ_m)) + tmp1260.coeffs[2:order + 1] .= zero(tmp1260.coeffs[1]) + tmp1976.coeffs[1] = sin(constant_term(ϕ_m)) + tmp1976.coeffs[2:order + 1] .= zero(tmp1976.coeffs[1]) + tmp1261.coeffs[1] = -(constant_term(tmp1260)) + tmp1261.coeffs[2:order + 1] .= zero(tmp1261.coeffs[1]) + tmp1262.coeffs[1] = sin(constant_term(θ_m)) + tmp1262.coeffs[2:order + 1] .= zero(tmp1262.coeffs[1]) + tmp1977.coeffs[1] = cos(constant_term(θ_m)) + tmp1977.coeffs[2:order + 1] .= zero(tmp1977.coeffs[1]) + (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp1261) * constant_term(tmp1262) + (RotM[3, 2, mo]).coeffs[2:order + 1] .= zero((RotM[3, 2, mo]).coeffs[1]) + tmp1264.coeffs[1] = sin(constant_term(θ_m)) + tmp1264.coeffs[2:order + 1] .= zero(tmp1264.coeffs[1]) + tmp1978.coeffs[1] = cos(constant_term(θ_m)) + tmp1978.coeffs[2:order + 1] .= zero(tmp1978.coeffs[1]) + tmp1265.coeffs[1] = sin(constant_term(ψ_m)) + tmp1265.coeffs[2:order + 1] .= zero(tmp1265.coeffs[1]) + tmp1979.coeffs[1] = cos(constant_term(ψ_m)) + tmp1979.coeffs[2:order + 1] .= zero(tmp1979.coeffs[1]) + (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp1264) * constant_term(tmp1265) + (RotM[1, 3, mo]).coeffs[2:order + 1] .= zero((RotM[1, 3, mo]).coeffs[1]) + tmp1267.coeffs[1] = cos(constant_term(ψ_m)) + tmp1267.coeffs[2:order + 1] .= zero(tmp1267.coeffs[1]) + tmp1980.coeffs[1] = sin(constant_term(ψ_m)) + tmp1980.coeffs[2:order + 1] .= zero(tmp1980.coeffs[1]) + tmp1268.coeffs[1] = sin(constant_term(θ_m)) + tmp1268.coeffs[2:order + 1] .= zero(tmp1268.coeffs[1]) + tmp1981.coeffs[1] = cos(constant_term(θ_m)) + tmp1981.coeffs[2:order + 1] .= zero(tmp1981.coeffs[1]) + (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp1267) * constant_term(tmp1268) + (RotM[2, 3, mo]).coeffs[2:order + 1] .= zero((RotM[2, 3, mo]).coeffs[1]) + (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) + (RotM[3, 3, mo]).coeffs[2:order + 1] .= zero((RotM[3, 3, mo]).coeffs[1]) + tmp1982.coeffs[1] = sin(constant_term(θ_m)) + tmp1982.coeffs[2:order + 1] .= zero(tmp1982.coeffs[1]) + ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) + ϕ_c.coeffs[2:order + 1] .= zero(ϕ_c.coeffs[1]) + tmp1271.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1271.coeffs[2:order + 1] .= zero(tmp1271.coeffs[1]) + tmp1983.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1983.coeffs[2:order + 1] .= zero(tmp1983.coeffs[1]) + tmp1272.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp1271) + tmp1272.coeffs[2:order + 1] .= zero(tmp1272.coeffs[1]) + tmp1273.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1273.coeffs[2:order + 1] .= zero(tmp1273.coeffs[1]) + tmp1984.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1984.coeffs[2:order + 1] .= zero(tmp1984.coeffs[1]) + tmp1274.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1273) + tmp1274.coeffs[2:order + 1] .= zero(tmp1274.coeffs[1]) + (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp1272) + constant_term(tmp1274) + (mantlef2coref[1, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 1]).coeffs[1]) + tmp1276.coeffs[1] = -(constant_term(RotM[1, 1, mo])) + tmp1276.coeffs[2:order + 1] .= zero(tmp1276.coeffs[1]) + tmp1277.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1277.coeffs[2:order + 1] .= zero(tmp1277.coeffs[1]) + tmp1985.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1985.coeffs[2:order + 1] .= zero(tmp1985.coeffs[1]) + tmp1278.coeffs[1] = constant_term(tmp1276) * constant_term(tmp1277) + tmp1278.coeffs[2:order + 1] .= zero(tmp1278.coeffs[1]) + tmp1279.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1279.coeffs[2:order + 1] .= zero(tmp1279.coeffs[1]) + tmp1986.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1986.coeffs[2:order + 1] .= zero(tmp1986.coeffs[1]) + tmp1280.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp1279) + tmp1280.coeffs[2:order + 1] .= zero(tmp1280.coeffs[1]) + (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp1278) + constant_term(tmp1280) + (mantlef2coref[2, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 1]).coeffs[1]) + (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) + (mantlef2coref[3, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 1]).coeffs[1]) + tmp1282.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1282.coeffs[2:order + 1] .= zero(tmp1282.coeffs[1]) + tmp1987.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1987.coeffs[2:order + 1] .= zero(tmp1987.coeffs[1]) + tmp1283.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp1282) + tmp1283.coeffs[2:order + 1] .= zero(tmp1283.coeffs[1]) + tmp1284.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1284.coeffs[2:order + 1] .= zero(tmp1284.coeffs[1]) + tmp1988.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1988.coeffs[2:order + 1] .= zero(tmp1988.coeffs[1]) + tmp1285.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1284) + tmp1285.coeffs[2:order + 1] .= zero(tmp1285.coeffs[1]) + (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp1283) + constant_term(tmp1285) + (mantlef2coref[1, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 2]).coeffs[1]) + tmp1287.coeffs[1] = -(constant_term(RotM[2, 1, mo])) + tmp1287.coeffs[2:order + 1] .= zero(tmp1287.coeffs[1]) + tmp1288.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1288.coeffs[2:order + 1] .= zero(tmp1288.coeffs[1]) + tmp1989.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1989.coeffs[2:order + 1] .= zero(tmp1989.coeffs[1]) + tmp1289.coeffs[1] = constant_term(tmp1287) * constant_term(tmp1288) + tmp1289.coeffs[2:order + 1] .= zero(tmp1289.coeffs[1]) + tmp1290.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1290.coeffs[2:order + 1] .= zero(tmp1290.coeffs[1]) + tmp1990.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1990.coeffs[2:order + 1] .= zero(tmp1990.coeffs[1]) + tmp1291.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp1290) + tmp1291.coeffs[2:order + 1] .= zero(tmp1291.coeffs[1]) + (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp1289) + constant_term(tmp1291) + (mantlef2coref[2, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 2]).coeffs[1]) + (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) + (mantlef2coref[3, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 2]).coeffs[1]) + tmp1293.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1293.coeffs[2:order + 1] .= zero(tmp1293.coeffs[1]) + tmp1991.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1991.coeffs[2:order + 1] .= zero(tmp1991.coeffs[1]) + tmp1294.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp1293) + tmp1294.coeffs[2:order + 1] .= zero(tmp1294.coeffs[1]) + tmp1295.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1295.coeffs[2:order + 1] .= zero(tmp1295.coeffs[1]) + tmp1992.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1992.coeffs[2:order + 1] .= zero(tmp1992.coeffs[1]) + tmp1296.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1295) + tmp1296.coeffs[2:order + 1] .= zero(tmp1296.coeffs[1]) + (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp1294) + constant_term(tmp1296) + (mantlef2coref[1, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 3]).coeffs[1]) + tmp1298.coeffs[1] = -(constant_term(RotM[3, 1, mo])) + tmp1298.coeffs[2:order + 1] .= zero(tmp1298.coeffs[1]) + tmp1299.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1299.coeffs[2:order + 1] .= zero(tmp1299.coeffs[1]) + tmp1993.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1993.coeffs[2:order + 1] .= zero(tmp1993.coeffs[1]) + tmp1300.coeffs[1] = constant_term(tmp1298) * constant_term(tmp1299) + tmp1300.coeffs[2:order + 1] .= zero(tmp1300.coeffs[1]) + tmp1301.coeffs[1] = cos(constant_term(ϕ_c)) + tmp1301.coeffs[2:order + 1] .= zero(tmp1301.coeffs[1]) + tmp1994.coeffs[1] = sin(constant_term(ϕ_c)) + tmp1994.coeffs[2:order + 1] .= zero(tmp1994.coeffs[1]) + tmp1302.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp1301) + tmp1302.coeffs[2:order + 1] .= zero(tmp1302.coeffs[1]) + (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp1300) + constant_term(tmp1302) + (mantlef2coref[2, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 3]).coeffs[1]) + (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) + (mantlef2coref[3, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 3]).coeffs[1]) + tmp1304.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) + tmp1304.coeffs[2:order + 1] .= zero(tmp1304.coeffs[1]) + tmp1305.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) + tmp1305.coeffs[2:order + 1] .= zero(tmp1305.coeffs[1]) + tmp1306.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) + tmp1306.coeffs[2:order + 1] .= zero(tmp1306.coeffs[1]) + tmp1307.coeffs[1] = constant_term(tmp1305) + constant_term(tmp1306) + tmp1307.coeffs[2:order + 1] .= zero(tmp1307.coeffs[1]) + ω_c_CE_1.coeffs[1] = constant_term(tmp1304) + constant_term(tmp1307) + ω_c_CE_1.coeffs[2:order + 1] .= zero(ω_c_CE_1.coeffs[1]) + tmp1309.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) + tmp1309.coeffs[2:order + 1] .= zero(tmp1309.coeffs[1]) + tmp1310.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) + tmp1310.coeffs[2:order + 1] .= zero(tmp1310.coeffs[1]) + tmp1311.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) + tmp1311.coeffs[2:order + 1] .= zero(tmp1311.coeffs[1]) + tmp1312.coeffs[1] = constant_term(tmp1310) + constant_term(tmp1311) + tmp1312.coeffs[2:order + 1] .= zero(tmp1312.coeffs[1]) + ω_c_CE_2.coeffs[1] = constant_term(tmp1309) + constant_term(tmp1312) + ω_c_CE_2.coeffs[2:order + 1] .= zero(ω_c_CE_2.coeffs[1]) + tmp1314.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) + tmp1314.coeffs[2:order + 1] .= zero(tmp1314.coeffs[1]) + tmp1315.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) + tmp1315.coeffs[2:order + 1] .= zero(tmp1315.coeffs[1]) + tmp1316.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) + tmp1316.coeffs[2:order + 1] .= zero(tmp1316.coeffs[1]) + tmp1317.coeffs[1] = constant_term(tmp1315) + constant_term(tmp1316) + tmp1317.coeffs[2:order + 1] .= zero(tmp1317.coeffs[1]) + ω_c_CE_3.coeffs[1] = constant_term(tmp1314) + constant_term(tmp1317) + ω_c_CE_3.coeffs[2:order + 1] .= zero(ω_c_CE_3.coeffs[1]) + local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 + local J2S_t = JSEM[su, 2] * one_t + (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) + (J2_t[su]).coeffs[2:order + 1] .= zero((J2_t[su]).coeffs[1]) + (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) + (J2_t[ea]).coeffs[2:order + 1] .= zero((J2_t[ea]).coeffs[1]) + local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t + for j = 1:N + (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) + (dq[3j - 2]).coeffs[2:order + 1] .= zero((dq[3j - 2]).coeffs[1]) + (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) + (dq[3j - 1]).coeffs[2:order + 1] .= zero((dq[3j - 1]).coeffs[1]) + (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) + (dq[3j]).coeffs[2:order + 1] .= zero((dq[3j]).coeffs[1]) + end + for j = 1:N_ext + (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) + end + for j = 1:N + for i = 1:N + if i == j + continue + else + (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) + (X[i, j]).coeffs[2:order + 1] .= zero((X[i, j]).coeffs[1]) + (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) + (Y[i, j]).coeffs[2:order + 1] .= zero((Y[i, j]).coeffs[1]) + (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) + (Z[i, j]).coeffs[2:order + 1] .= zero((Z[i, j]).coeffs[1]) + (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) + (U[i, j]).coeffs[2:order + 1] .= zero((U[i, j]).coeffs[1]) + (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) + (V[i, j]).coeffs[2:order + 1] .= zero((V[i, j]).coeffs[1]) + (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) + (W[i, j]).coeffs[2:order + 1] .= zero((W[i, j]).coeffs[1]) + (tmp1326[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) + (tmp1326[3j - 2]).coeffs[2:order + 1] .= zero((tmp1326[3j - 2]).coeffs[1]) + (tmp1328[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) + (tmp1328[3i - 2]).coeffs[2:order + 1] .= zero((tmp1328[3i - 2]).coeffs[1]) + (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp1326[3j - 2]) - constant_term(tmp1328[3i - 2]) + (_4U_m_3X[i, j]).coeffs[2:order + 1] .= zero((_4U_m_3X[i, j]).coeffs[1]) + (tmp1331[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) + (tmp1331[3j - 1]).coeffs[2:order + 1] .= zero((tmp1331[3j - 1]).coeffs[1]) + (tmp1333[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) + (tmp1333[3i - 1]).coeffs[2:order + 1] .= zero((tmp1333[3i - 1]).coeffs[1]) + (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp1331[3j - 1]) - constant_term(tmp1333[3i - 1]) + (_4V_m_3Y[i, j]).coeffs[2:order + 1] .= zero((_4V_m_3Y[i, j]).coeffs[1]) + (tmp1336[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) + (tmp1336[3j]).coeffs[2:order + 1] .= zero((tmp1336[3j]).coeffs[1]) + (tmp1338[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) + (tmp1338[3i]).coeffs[2:order + 1] .= zero((tmp1338[3i]).coeffs[1]) + (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp1336[3j]) - constant_term(tmp1338[3i]) + (_4W_m_3Z[i, j]).coeffs[2:order + 1] .= zero((_4W_m_3Z[i, j]).coeffs[1]) + (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) + (pn2x[i, j]).coeffs[2:order + 1] .= zero((pn2x[i, j]).coeffs[1]) + (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) + (pn2y[i, j]).coeffs[2:order + 1] .= zero((pn2y[i, j]).coeffs[1]) + (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) + (pn2z[i, j]).coeffs[2:order + 1] .= zero((pn2z[i, j]).coeffs[1]) + (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) + (UU[i, j]).coeffs[2:order + 1] .= zero((UU[i, j]).coeffs[1]) + (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) + (VV[i, j]).coeffs[2:order + 1] .= zero((VV[i, j]).coeffs[1]) + (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) + (WW[i, j]).coeffs[2:order + 1] .= zero((WW[i, j]).coeffs[1]) + (tmp1346[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) + (tmp1346[i, j]).coeffs[2:order + 1] .= zero((tmp1346[i, j]).coeffs[1]) + (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp1346[i, j]) + constant_term(WW[i, j]) + (vi_dot_vj[i, j]).coeffs[2:order + 1] .= zero((vi_dot_vj[i, j]).coeffs[1]) + (tmp1349[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) + (tmp1349[i, j]).coeffs[2:order + 1] .= zero((tmp1349[i, j]).coeffs[1]) + (tmp1351[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) + (tmp1351[i, j]).coeffs[2:order + 1] .= zero((tmp1351[i, j]).coeffs[1]) + (tmp1352[i, j]).coeffs[1] = constant_term(tmp1349[i, j]) + constant_term(tmp1351[i, j]) + (tmp1352[i, j]).coeffs[2:order + 1] .= zero((tmp1352[i, j]).coeffs[1]) + (tmp1354[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) + (tmp1354[i, j]).coeffs[2:order + 1] .= zero((tmp1354[i, j]).coeffs[1]) + (r_p2[i, j]).coeffs[1] = constant_term(tmp1352[i, j]) + constant_term(tmp1354[i, j]) + (r_p2[i, j]).coeffs[2:order + 1] .= zero((r_p2[i, j]).coeffs[1]) + (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) + (r_p1d2[i, j]).coeffs[2:order + 1] .= zero((r_p1d2[i, j]).coeffs[1]) + (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) + (r_p3d2[i, j]).coeffs[2:order + 1] .= zero((r_p3d2[i, j]).coeffs[1]) + (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) + (r_p7d2[i, j]).coeffs[2:order + 1] .= zero((r_p7d2[i, j]).coeffs[1]) + (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) + (newtonianCoeff[i, j]).coeffs[2:order + 1] .= zero((newtonianCoeff[i, j]).coeffs[1]) + (tmp1362[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) + (tmp1362[i, j]).coeffs[2:order + 1] .= zero((tmp1362[i, j]).coeffs[1]) + (tmp1363[i, j]).coeffs[1] = constant_term(tmp1362[i, j]) + constant_term(pn2z[i, j]) + (tmp1363[i, j]).coeffs[2:order + 1] .= zero((tmp1363[i, j]).coeffs[1]) + (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp1363[i, j]) + (pn2[i, j]).coeffs[2:order + 1] .= zero((pn2[i, j]).coeffs[1]) + (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_X[i, j]).coeffs[2:order + 1] .= zero((newton_acc_X[i, j]).coeffs[1]) + (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_Y[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Y[i, j]).coeffs[1]) + (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_Z[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Z[i, j]).coeffs[1]) + (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) + (newtonian1b_Potential[i, j]).coeffs[2:order + 1] .= zero((newtonian1b_Potential[i, j]).coeffs[1]) + (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) + (pn3[i, j]).coeffs[2:order + 1] .= zero((pn3[i, j]).coeffs[1]) + (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) + (U_t_pn2[i, j]).coeffs[2:order + 1] .= zero((U_t_pn2[i, j]).coeffs[1]) + (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) + (V_t_pn2[i, j]).coeffs[2:order + 1] .= zero((V_t_pn2[i, j]).coeffs[1]) + (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) + (W_t_pn2[i, j]).coeffs[2:order + 1] .= zero((W_t_pn2[i, j]).coeffs[1]) + (tmp1374[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp1374[i, j]).coeffs[2:order + 1] .= zero((tmp1374[i, j]).coeffs[1]) + (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp1374[i, j]) + (temp_001[i, j]).coeffs[2:order + 1] .= zero((temp_001[i, j]).coeffs[1]) + (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) + (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + (tmp1376[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp1376[i, j]).coeffs[2:order + 1] .= zero((tmp1376[i, j]).coeffs[1]) + (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp1376[i, j]) + (temp_002[i, j]).coeffs[2:order + 1] .= zero((temp_002[i, j]).coeffs[1]) + (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) + (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + (tmp1378[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp1378[i, j]).coeffs[2:order + 1] .= zero((tmp1378[i, j]).coeffs[1]) + (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp1378[i, j]) + (temp_003[i, j]).coeffs[2:order + 1] .= zero((temp_003[i, j]).coeffs[1]) + (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) + (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) + (temp_004[i, j]).coeffs[2:order + 1] .= zero((temp_004[i, j]).coeffs[1]) + (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) + (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + end + end + (tmp1382[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) + (tmp1382[3j - 2]).coeffs[2:order + 1] .= zero((tmp1382[3j - 2]).coeffs[1]) + (tmp1384[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) + (tmp1384[3j - 1]).coeffs[2:order + 1] .= zero((tmp1384[3j - 1]).coeffs[1]) + (tmp1385[3j - 2]).coeffs[1] = constant_term(tmp1382[3j - 2]) + constant_term(tmp1384[3j - 1]) + (tmp1385[3j - 2]).coeffs[2:order + 1] .= zero((tmp1385[3j - 2]).coeffs[1]) + (tmp1387[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) + (tmp1387[3j]).coeffs[2:order + 1] .= zero((tmp1387[3j]).coeffs[1]) + (v2[j]).coeffs[1] = constant_term(tmp1385[3j - 2]) + constant_term(tmp1387[3j]) + (v2[j]).coeffs[2:order + 1] .= zero((v2[j]).coeffs[1]) + end + tmp1389.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) + tmp1389.coeffs[2:order + 1] .= zero(tmp1389.coeffs[1]) + tmp1391.coeffs[1] = constant_term(tmp1389) / constant_term(2) + tmp1391.coeffs[2:order + 1] .= zero(tmp1391.coeffs[1]) + tmp1392.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp1391) + tmp1392.coeffs[2:order + 1] .= zero(tmp1392.coeffs[1]) + J2M_t.coeffs[1] = constant_term(tmp1392) / constant_term(μ[mo]) + J2M_t.coeffs[2:order + 1] .= zero(J2M_t.coeffs[1]) + tmp1394.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) + tmp1394.coeffs[2:order + 1] .= zero(tmp1394.coeffs[1]) + tmp1395.coeffs[1] = constant_term(tmp1394) / constant_term(μ[mo]) + tmp1395.coeffs[2:order + 1] .= zero(tmp1395.coeffs[1]) + C22M_t.coeffs[1] = constant_term(tmp1395) / constant_term(4) + C22M_t.coeffs[2:order + 1] .= zero(C22M_t.coeffs[1]) + tmp1398.coeffs[1] = -(constant_term(I_M_t[1, 3])) + tmp1398.coeffs[2:order + 1] .= zero(tmp1398.coeffs[1]) + C21M_t.coeffs[1] = constant_term(tmp1398) / constant_term(μ[mo]) + C21M_t.coeffs[2:order + 1] .= zero(C21M_t.coeffs[1]) + tmp1400.coeffs[1] = -(constant_term(I_M_t[3, 2])) + tmp1400.coeffs[2:order + 1] .= zero(tmp1400.coeffs[1]) + S21M_t.coeffs[1] = constant_term(tmp1400) / constant_term(μ[mo]) + S21M_t.coeffs[2:order + 1] .= zero(S21M_t.coeffs[1]) + tmp1402.coeffs[1] = -(constant_term(I_M_t[2, 1])) + tmp1402.coeffs[2:order + 1] .= zero(tmp1402.coeffs[1]) + tmp1403.coeffs[1] = constant_term(tmp1402) / constant_term(μ[mo]) + tmp1403.coeffs[2:order + 1] .= zero(tmp1403.coeffs[1]) + S22M_t.coeffs[1] = constant_term(tmp1403) / constant_term(2) + S22M_t.coeffs[2:order + 1] .= zero(S22M_t.coeffs[1]) + (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) + (J2_t[mo]).coeffs[2:order + 1] .= zero((J2_t[mo]).coeffs[1]) + for j = 1:N_ext + for i = 1:N_ext + if i == j + continue + else + if UJ_interaction[i, j] + (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) + (X_bf_1[i, j]).coeffs[2:order + 1] .= zero((X_bf_1[i, j]).coeffs[1]) + (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) + (X_bf_2[i, j]).coeffs[2:order + 1] .= zero((X_bf_2[i, j]).coeffs[1]) + (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) + (X_bf_3[i, j]).coeffs[2:order + 1] .= zero((X_bf_3[i, j]).coeffs[1]) + (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) + (Y_bf_1[i, j]).coeffs[2:order + 1] .= zero((Y_bf_1[i, j]).coeffs[1]) + (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) + (Y_bf_2[i, j]).coeffs[2:order + 1] .= zero((Y_bf_2[i, j]).coeffs[1]) + (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) + (Y_bf_3[i, j]).coeffs[2:order + 1] .= zero((Y_bf_3[i, j]).coeffs[1]) + (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) + (Z_bf_1[i, j]).coeffs[2:order + 1] .= zero((Z_bf_1[i, j]).coeffs[1]) + (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) + (Z_bf_2[i, j]).coeffs[2:order + 1] .= zero((Z_bf_2[i, j]).coeffs[1]) + (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) + (Z_bf_3[i, j]).coeffs[2:order + 1] .= zero((Z_bf_3[i, j]).coeffs[1]) + (tmp1415[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) + (tmp1415[i, j]).coeffs[2:order + 1] .= zero((tmp1415[i, j]).coeffs[1]) + (X_bf[i, j]).coeffs[1] = constant_term(tmp1415[i, j]) + constant_term(X_bf_3[i, j]) + (X_bf[i, j]).coeffs[2:order + 1] .= zero((X_bf[i, j]).coeffs[1]) + (tmp1417[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) + (tmp1417[i, j]).coeffs[2:order + 1] .= zero((tmp1417[i, j]).coeffs[1]) + (Y_bf[i, j]).coeffs[1] = constant_term(tmp1417[i, j]) + constant_term(Y_bf_3[i, j]) + (Y_bf[i, j]).coeffs[2:order + 1] .= zero((Y_bf[i, j]).coeffs[1]) + (tmp1419[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) + (tmp1419[i, j]).coeffs[2:order + 1] .= zero((tmp1419[i, j]).coeffs[1]) + (Z_bf[i, j]).coeffs[1] = constant_term(tmp1419[i, j]) + constant_term(Z_bf_3[i, j]) + (Z_bf[i, j]).coeffs[2:order + 1] .= zero((Z_bf[i, j]).coeffs[1]) + (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) + (sin_ϕ[i, j]).coeffs[2:order + 1] .= zero((sin_ϕ[i, j]).coeffs[1]) + (tmp1423[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) + (tmp1423[i, j]).coeffs[2:order + 1] .= zero((tmp1423[i, j]).coeffs[1]) + (tmp1425[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) + (tmp1425[i, j]).coeffs[2:order + 1] .= zero((tmp1425[i, j]).coeffs[1]) + (tmp1426[i, j]).coeffs[1] = constant_term(tmp1423[i, j]) + constant_term(tmp1425[i, j]) + (tmp1426[i, j]).coeffs[2:order + 1] .= zero((tmp1426[i, j]).coeffs[1]) + (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp1426[i, j])) + (r_xy[i, j]).coeffs[2:order + 1] .= zero((r_xy[i, j]).coeffs[1]) + (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) + (cos_ϕ[i, j]).coeffs[2:order + 1] .= zero((cos_ϕ[i, j]).coeffs[1]) + (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) + (sin_λ[i, j]).coeffs[2:order + 1] .= zero((sin_λ[i, j]).coeffs[1]) + (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) + (cos_λ[i, j]).coeffs[2:order + 1] .= zero((cos_λ[i, j]).coeffs[1]) + (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) + (P_n[i, j, 1]).coeffs[2:order + 1] .= zero((P_n[i, j, 1]).coeffs[1]) + (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) + (P_n[i, j, 2]).coeffs[2:order + 1] .= zero((P_n[i, j, 2]).coeffs[1]) + (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) + (dP_n[i, j, 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, 1]).coeffs[1]) + (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) + (dP_n[i, j, 2]).coeffs[2:order + 1] .= zero((dP_n[i, j, 2]).coeffs[1]) + for n = 2:n1SEM[j] + (tmp1431[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + (tmp1431[i, j, n]).coeffs[2:order + 1] .= zero((tmp1431[i, j, n]).coeffs[1]) + (tmp1432[i, j, n]).coeffs[1] = constant_term(tmp1431[i, j, n]) * constant_term(fact1_jsem[n]) + (tmp1432[i, j, n]).coeffs[2:order + 1] .= zero((tmp1432[i, j, n]).coeffs[1]) + (tmp1433[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) + (tmp1433[i, j, n - 1]).coeffs[2:order + 1] .= zero((tmp1433[i, j, n - 1]).coeffs[1]) + (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1432[i, j, n]) - constant_term(tmp1433[i, j, n - 1]) + (P_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((P_n[i, j, n + 1]).coeffs[1]) + (tmp1435[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + (tmp1435[i, j, n]).coeffs[2:order + 1] .= zero((tmp1435[i, j, n]).coeffs[1]) + (tmp1436[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) + (tmp1436[i, j, n]).coeffs[2:order + 1] .= zero((tmp1436[i, j, n]).coeffs[1]) + (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp1435[i, j, n]) + constant_term(tmp1436[i, j, n]) + (dP_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, n + 1]).coeffs[1]) + (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) + (temp_rn[i, j, n]).coeffs[2:order + 1] .= zero((temp_rn[i, j, n]).coeffs[1]) + end + (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) + (r_p4[i, j]).coeffs[2:order + 1] .= zero((r_p4[i, j]).coeffs[1]) + (tmp1441[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) + (tmp1441[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1441[i, j, 3]).coeffs[1]) + (tmp1442[i, j, 3]).coeffs[1] = constant_term(tmp1441[i, j, 3]) * constant_term(J2_t[j]) + (tmp1442[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1442[i, j, 3]).coeffs[1]) + (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp1442[i, j, 3]) / constant_term(r_p4[i, j]) + (F_J_ξ[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ[i, j]).coeffs[1]) + (tmp1444[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) + (tmp1444[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1444[i, j, 3]).coeffs[1]) + (tmp1445[i, j, 3]).coeffs[1] = constant_term(tmp1444[i, j, 3]) * constant_term(cos_ϕ[i, j]) + (tmp1445[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1445[i, j, 3]).coeffs[1]) + (tmp1446[i, j, 3]).coeffs[1] = constant_term(tmp1445[i, j, 3]) * constant_term(J2_t[j]) + (tmp1446[i, j, 3]).coeffs[2:order + 1] .= zero((tmp1446[i, j, 3]).coeffs[1]) + (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp1446[i, j, 3]) / constant_term(r_p4[i, j]) + (F_J_ζ[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ[i, j]).coeffs[1]) + (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) + for n = 3:n1SEM[j] + (tmp1448[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) + (tmp1448[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1448[i, j, n + 1]).coeffs[1]) + (tmp1449[i, j, n + 1]).coeffs[1] = constant_term(tmp1448[i, j, n + 1]) * constant_term(JSEM[j, n]) + (tmp1449[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1449[i, j, n + 1]).coeffs[1]) + (tmp1450[i, j, n + 1]).coeffs[1] = constant_term(tmp1449[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + (tmp1450[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1450[i, j, n + 1]).coeffs[1]) + (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp1450[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) + (temp_fjξ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjξ[i, j, n]).coeffs[1]) + (tmp1452[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) + (tmp1452[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1452[i, j, n + 1]).coeffs[1]) + (tmp1453[i, j, n + 1]).coeffs[1] = constant_term(tmp1452[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) + (tmp1453[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1453[i, j, n + 1]).coeffs[1]) + (tmp1454[i, j, n + 1]).coeffs[1] = constant_term(tmp1453[i, j, n + 1]) * constant_term(JSEM[j, n]) + (tmp1454[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1454[i, j, n + 1]).coeffs[1]) + (tmp1455[i, j, n + 1]).coeffs[1] = constant_term(tmp1454[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + (tmp1455[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp1455[i, j, n + 1]).coeffs[1]) + (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp1455[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) + (temp_fjζ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjζ[i, j, n]).coeffs[1]) + (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) + (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) + (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) + end + if j == mo + for m = 1:n1SEM[mo] + if m == 1 + (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) + (sin_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, 1]).coeffs[1]) + (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) + (cos_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, 1]).coeffs[1]) + (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) + (secϕ_P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, 1, 1]).coeffs[1]) + (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) + (P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((P_nm[i, j, 1, 1]).coeffs[1]) + (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) + (cosϕ_dP_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, 1, 1]).coeffs[1]) + else + (tmp1458[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + (tmp1458[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1458[i, j, m - 1]).coeffs[1]) + (tmp1459[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + (tmp1459[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1459[i, j, m - 1]).coeffs[1]) + (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp1458[i, j, m - 1]) + constant_term(tmp1459[i, j, m - 1]) + (sin_mλ[i, j, m]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, m]).coeffs[1]) + (tmp1461[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + (tmp1461[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1461[i, j, m - 1]).coeffs[1]) + (tmp1462[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + (tmp1462[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp1462[i, j, m - 1]).coeffs[1]) + (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp1461[i, j, m - 1]) - constant_term(tmp1462[i, j, m - 1]) + (cos_mλ[i, j, m]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, m]).coeffs[1]) + (tmp1464[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) + (tmp1464[i, j, m - 1, m - 1]).coeffs[2:order + 1] .= zero((tmp1464[i, j, m - 1, m - 1]).coeffs[1]) + (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1464[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) + (secϕ_P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, m, m]).coeffs[1]) + (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) + (P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, m, m]).coeffs[1]) + (tmp1467[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) + (tmp1467[i, j, m, m]).coeffs[2:order + 1] .= zero((tmp1467[i, j, m, m]).coeffs[1]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp1467[i, j, m, m]) * constant_term(lnm3[m]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, m, m]).coeffs[1]) + end + for n = m + 1:n1SEM[mo] + if n == m + 1 + (tmp1469[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + (tmp1469[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1469[i, j, n - 1, m]).coeffs[1]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1469[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + else + (tmp1471[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + (tmp1471[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1471[i, j, n - 1, m]).coeffs[1]) + (tmp1472[i, j, n - 1, m]).coeffs[1] = constant_term(tmp1471[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + (tmp1472[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1472[i, j, n - 1, m]).coeffs[1]) + (tmp1473[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) + (tmp1473[i, j, n - 2, m]).coeffs[2:order + 1] .= zero((tmp1473[i, j, n - 2, m]).coeffs[1]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1472[i, j, n - 1, m]) + constant_term(tmp1473[i, j, n - 2, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + end + (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) + (P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, n, m]).coeffs[1]) + (tmp1476[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) + (tmp1476[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1476[i, j, n, m]).coeffs[1]) + (tmp1477[i, j, n, m]).coeffs[1] = constant_term(tmp1476[i, j, n, m]) * constant_term(lnm3[n]) + (tmp1477[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1477[i, j, n, m]).coeffs[1]) + (tmp1478[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) + (tmp1478[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp1478[i, j, n - 1, m]).coeffs[1]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp1477[i, j, n, m]) + constant_term(tmp1478[i, j, n - 1, m]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, n, m]).coeffs[1]) + end + end + (tmp1480[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) + (tmp1480[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1480[i, j, 2, 1]).coeffs[1]) + (tmp1481[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp1481[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1481[i, j, 1]).coeffs[1]) + (tmp1482[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp1482[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1482[i, j, 1]).coeffs[1]) + (tmp1483[i, j, 1]).coeffs[1] = constant_term(tmp1481[i, j, 1]) + constant_term(tmp1482[i, j, 1]) + (tmp1483[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1483[i, j, 1]).coeffs[1]) + (tmp1484[i, j, 2, 1]).coeffs[1] = constant_term(tmp1480[i, j, 2, 1]) * constant_term(tmp1483[i, j, 1]) + (tmp1484[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1484[i, j, 2, 1]).coeffs[1]) + (tmp1485[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) + (tmp1485[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1485[i, j, 2, 2]).coeffs[1]) + (tmp1486[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp1486[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1486[i, j, 2]).coeffs[1]) + (tmp1487[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp1487[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1487[i, j, 2]).coeffs[1]) + (tmp1488[i, j, 2]).coeffs[1] = constant_term(tmp1486[i, j, 2]) + constant_term(tmp1487[i, j, 2]) + (tmp1488[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1488[i, j, 2]).coeffs[1]) + (tmp1489[i, j, 2, 2]).coeffs[1] = constant_term(tmp1485[i, j, 2, 2]) * constant_term(tmp1488[i, j, 2]) + (tmp1489[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1489[i, j, 2, 2]).coeffs[1]) + (tmp1490[i, j, 2, 1]).coeffs[1] = constant_term(tmp1484[i, j, 2, 1]) + constant_term(tmp1489[i, j, 2, 2]) + (tmp1490[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1490[i, j, 2, 1]).coeffs[1]) + (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp1490[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ[i, j]).coeffs[1]) + (tmp1492[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) + (tmp1492[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1492[i, j, 2, 1]).coeffs[1]) + (tmp1493[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp1493[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1493[i, j, 1]).coeffs[1]) + (tmp1494[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp1494[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1494[i, j, 1]).coeffs[1]) + (tmp1495[i, j, 1]).coeffs[1] = constant_term(tmp1493[i, j, 1]) - constant_term(tmp1494[i, j, 1]) + (tmp1495[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1495[i, j, 1]).coeffs[1]) + (tmp1496[i, j, 2, 1]).coeffs[1] = constant_term(tmp1492[i, j, 2, 1]) * constant_term(tmp1495[i, j, 1]) + (tmp1496[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1496[i, j, 2, 1]).coeffs[1]) + (tmp1497[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) + (tmp1497[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1497[i, j, 2, 2]).coeffs[1]) + (tmp1498[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp1498[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1498[i, j, 2]).coeffs[1]) + (tmp1499[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp1499[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1499[i, j, 2]).coeffs[1]) + (tmp1500[i, j, 2]).coeffs[1] = constant_term(tmp1498[i, j, 2]) - constant_term(tmp1499[i, j, 2]) + (tmp1500[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1500[i, j, 2]).coeffs[1]) + (tmp1501[i, j, 2, 2]).coeffs[1] = constant_term(tmp1497[i, j, 2, 2]) * constant_term(tmp1500[i, j, 2]) + (tmp1501[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1501[i, j, 2, 2]).coeffs[1]) + (tmp1502[i, j, 2, 1]).coeffs[1] = constant_term(tmp1496[i, j, 2, 1]) + constant_term(tmp1501[i, j, 2, 2]) + (tmp1502[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1502[i, j, 2, 1]).coeffs[1]) + (F_CS_η[i, j]).coeffs[1] = constant_term(tmp1502[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_η[i, j]).coeffs[2:order + 1] .= zero((F_CS_η[i, j]).coeffs[1]) + (tmp1504[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp1504[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1504[i, j, 1]).coeffs[1]) + (tmp1505[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp1505[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1505[i, j, 1]).coeffs[1]) + (tmp1506[i, j, 1]).coeffs[1] = constant_term(tmp1504[i, j, 1]) + constant_term(tmp1505[i, j, 1]) + (tmp1506[i, j, 1]).coeffs[2:order + 1] .= zero((tmp1506[i, j, 1]).coeffs[1]) + (tmp1507[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp1506[i, j, 1]) + (tmp1507[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1507[i, j, 2, 1]).coeffs[1]) + (tmp1508[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp1508[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1508[i, j, 2]).coeffs[1]) + (tmp1509[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp1509[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1509[i, j, 2]).coeffs[1]) + (tmp1510[i, j, 2]).coeffs[1] = constant_term(tmp1508[i, j, 2]) + constant_term(tmp1509[i, j, 2]) + (tmp1510[i, j, 2]).coeffs[2:order + 1] .= zero((tmp1510[i, j, 2]).coeffs[1]) + (tmp1511[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp1510[i, j, 2]) + (tmp1511[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1511[i, j, 2, 2]).coeffs[1]) + (tmp1512[i, j, 2, 1]).coeffs[1] = constant_term(tmp1507[i, j, 2, 1]) + constant_term(tmp1511[i, j, 2, 2]) + (tmp1512[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1512[i, j, 2, 1]).coeffs[1]) + (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp1512[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ[i, j]).coeffs[1]) + (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) + for n = 3:n2M + for m = 1:n + (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) + (Cnm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_cosmλ[i, j, n, m]).coeffs[1]) + (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) + (Cnm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_sinmλ[i, j, n, m]).coeffs[1]) + (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) + (Snm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_cosmλ[i, j, n, m]).coeffs[1]) + (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) + (Snm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_sinmλ[i, j, n, m]).coeffs[1]) + (tmp1518[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) + (tmp1518[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1518[i, j, n, m]).coeffs[1]) + (tmp1519[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + (tmp1519[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1519[i, j, n, m]).coeffs[1]) + (tmp1520[i, j, n, m]).coeffs[1] = constant_term(tmp1518[i, j, n, m]) * constant_term(tmp1519[i, j, n, m]) + (tmp1520[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1520[i, j, n, m]).coeffs[1]) + (tmp1521[i, j, n, m]).coeffs[1] = constant_term(tmp1520[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp1521[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1521[i, j, n, m]).coeffs[1]) + (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp1521[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) + (temp_CS_ξ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ξ[i, j, n, m]).coeffs[1]) + (tmp1523[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) + (tmp1523[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1523[i, j, n, m]).coeffs[1]) + (tmp1524[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) + (tmp1524[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1524[i, j, n, m]).coeffs[1]) + (tmp1525[i, j, n, m]).coeffs[1] = constant_term(tmp1523[i, j, n, m]) * constant_term(tmp1524[i, j, n, m]) + (tmp1525[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1525[i, j, n, m]).coeffs[1]) + (tmp1526[i, j, n, m]).coeffs[1] = constant_term(tmp1525[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp1526[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1526[i, j, n, m]).coeffs[1]) + (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp1526[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) + (temp_CS_η[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_η[i, j, n, m]).coeffs[1]) + (tmp1528[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + (tmp1528[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1528[i, j, n, m]).coeffs[1]) + (tmp1529[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp1528[i, j, n, m]) + (tmp1529[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1529[i, j, n, m]).coeffs[1]) + (tmp1530[i, j, n, m]).coeffs[1] = constant_term(tmp1529[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp1530[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp1530[i, j, n, m]).coeffs[1]) + (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp1530[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) + (temp_CS_ζ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ζ[i, j, n, m]).coeffs[1]) + (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) + (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) + (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) + (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) + end + end + (tmp1532[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + (tmp1532[i, j]).coeffs[2:order + 1] .= zero((tmp1532[i, j]).coeffs[1]) + (tmp1533[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) + (tmp1533[i, j]).coeffs[2:order + 1] .= zero((tmp1533[i, j]).coeffs[1]) + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp1532[i, j]) + constant_term(tmp1533[i, j]) + (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) + (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + (tmp1536[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + (tmp1536[i, j]).coeffs[2:order + 1] .= zero((tmp1536[i, j]).coeffs[1]) + (tmp1537[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) + (tmp1537[i, j]).coeffs[2:order + 1] .= zero((tmp1537[i, j]).coeffs[1]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp1536[i, j]) + constant_term(tmp1537[i, j]) + (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + else + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + end + (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) + (Rb2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 1]).coeffs[1]) + (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) + (Rb2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 1]).coeffs[1]) + (tmp1543[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + (tmp1543[i, j]).coeffs[2:order + 1] .= zero((tmp1543[i, j]).coeffs[1]) + (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1543[i, j]) * constant_term(cos_λ[i, j]) + (Rb2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 1]).coeffs[1]) + (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) + (Rb2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 2]).coeffs[1]) + (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) + (Rb2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 2]).coeffs[1]) + (tmp1546[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + (tmp1546[i, j]).coeffs[2:order + 1] .= zero((tmp1546[i, j]).coeffs[1]) + (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1546[i, j]) * constant_term(sin_λ[i, j]) + (Rb2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 2]).coeffs[1]) + (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) + (Rb2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 3]).coeffs[1]) + (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) + (Rb2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 3]).coeffs[1]) + (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) + (Rb2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 3]).coeffs[1]) + (tmp1548[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) + (tmp1548[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1548[i, j, 1, 1]).coeffs[1]) + (tmp1549[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) + (tmp1549[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1549[i, j, 1, 2]).coeffs[1]) + (tmp1550[i, j, 1, 1]).coeffs[1] = constant_term(tmp1548[i, j, 1, 1]) + constant_term(tmp1549[i, j, 1, 2]) + (tmp1550[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1550[i, j, 1, 1]).coeffs[1]) + (tmp1551[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) + (tmp1551[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1551[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp1550[i, j, 1, 1]) + constant_term(tmp1551[i, j, 1, 3]) + (Gc2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 1]).coeffs[1]) + (tmp1553[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) + (tmp1553[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1553[i, j, 2, 1]).coeffs[1]) + (tmp1554[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) + (tmp1554[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1554[i, j, 2, 2]).coeffs[1]) + (tmp1555[i, j, 2, 1]).coeffs[1] = constant_term(tmp1553[i, j, 2, 1]) + constant_term(tmp1554[i, j, 2, 2]) + (tmp1555[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1555[i, j, 2, 1]).coeffs[1]) + (tmp1556[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) + (tmp1556[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1556[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp1555[i, j, 2, 1]) + constant_term(tmp1556[i, j, 2, 3]) + (Gc2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 1]).coeffs[1]) + (tmp1558[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) + (tmp1558[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1558[i, j, 3, 1]).coeffs[1]) + (tmp1559[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) + (tmp1559[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1559[i, j, 3, 2]).coeffs[1]) + (tmp1560[i, j, 3, 1]).coeffs[1] = constant_term(tmp1558[i, j, 3, 1]) + constant_term(tmp1559[i, j, 3, 2]) + (tmp1560[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1560[i, j, 3, 1]).coeffs[1]) + (tmp1561[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) + (tmp1561[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1561[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp1560[i, j, 3, 1]) + constant_term(tmp1561[i, j, 3, 3]) + (Gc2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 1]).coeffs[1]) + (tmp1563[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) + (tmp1563[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1563[i, j, 1, 1]).coeffs[1]) + (tmp1564[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) + (tmp1564[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1564[i, j, 1, 2]).coeffs[1]) + (tmp1565[i, j, 1, 1]).coeffs[1] = constant_term(tmp1563[i, j, 1, 1]) + constant_term(tmp1564[i, j, 1, 2]) + (tmp1565[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1565[i, j, 1, 1]).coeffs[1]) + (tmp1566[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) + (tmp1566[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1566[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp1565[i, j, 1, 1]) + constant_term(tmp1566[i, j, 1, 3]) + (Gc2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 2]).coeffs[1]) + (tmp1568[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) + (tmp1568[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1568[i, j, 2, 1]).coeffs[1]) + (tmp1569[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) + (tmp1569[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1569[i, j, 2, 2]).coeffs[1]) + (tmp1570[i, j, 2, 1]).coeffs[1] = constant_term(tmp1568[i, j, 2, 1]) + constant_term(tmp1569[i, j, 2, 2]) + (tmp1570[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1570[i, j, 2, 1]).coeffs[1]) + (tmp1571[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) + (tmp1571[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1571[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp1570[i, j, 2, 1]) + constant_term(tmp1571[i, j, 2, 3]) + (Gc2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 2]).coeffs[1]) + (tmp1573[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) + (tmp1573[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1573[i, j, 3, 1]).coeffs[1]) + (tmp1574[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) + (tmp1574[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1574[i, j, 3, 2]).coeffs[1]) + (tmp1575[i, j, 3, 1]).coeffs[1] = constant_term(tmp1573[i, j, 3, 1]) + constant_term(tmp1574[i, j, 3, 2]) + (tmp1575[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1575[i, j, 3, 1]).coeffs[1]) + (tmp1576[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) + (tmp1576[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1576[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp1575[i, j, 3, 1]) + constant_term(tmp1576[i, j, 3, 3]) + (Gc2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 2]).coeffs[1]) + (tmp1578[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) + (tmp1578[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1578[i, j, 1, 1]).coeffs[1]) + (tmp1579[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) + (tmp1579[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1579[i, j, 1, 2]).coeffs[1]) + (tmp1580[i, j, 1, 1]).coeffs[1] = constant_term(tmp1578[i, j, 1, 1]) + constant_term(tmp1579[i, j, 1, 2]) + (tmp1580[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1580[i, j, 1, 1]).coeffs[1]) + (tmp1581[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) + (tmp1581[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1581[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp1580[i, j, 1, 1]) + constant_term(tmp1581[i, j, 1, 3]) + (Gc2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 3]).coeffs[1]) + (tmp1583[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) + (tmp1583[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1583[i, j, 2, 1]).coeffs[1]) + (tmp1584[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) + (tmp1584[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1584[i, j, 2, 2]).coeffs[1]) + (tmp1585[i, j, 2, 1]).coeffs[1] = constant_term(tmp1583[i, j, 2, 1]) + constant_term(tmp1584[i, j, 2, 2]) + (tmp1585[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1585[i, j, 2, 1]).coeffs[1]) + (tmp1586[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) + (tmp1586[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1586[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp1585[i, j, 2, 1]) + constant_term(tmp1586[i, j, 2, 3]) + (Gc2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 3]).coeffs[1]) + (tmp1588[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) + (tmp1588[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1588[i, j, 3, 1]).coeffs[1]) + (tmp1589[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) + (tmp1589[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1589[i, j, 3, 2]).coeffs[1]) + (tmp1590[i, j, 3, 1]).coeffs[1] = constant_term(tmp1588[i, j, 3, 1]) + constant_term(tmp1589[i, j, 3, 2]) + (tmp1590[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1590[i, j, 3, 1]).coeffs[1]) + (tmp1591[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) + (tmp1591[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1591[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp1590[i, j, 3, 1]) + constant_term(tmp1591[i, j, 3, 3]) + (Gc2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 3]).coeffs[1]) + (tmp1593[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) + (tmp1593[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1593[i, j, 1, 1]).coeffs[1]) + (tmp1594[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) + (tmp1594[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp1594[i, j, 2, 1]).coeffs[1]) + (tmp1595[i, j, 1, 1]).coeffs[1] = constant_term(tmp1593[i, j, 1, 1]) + constant_term(tmp1594[i, j, 2, 1]) + (tmp1595[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp1595[i, j, 1, 1]).coeffs[1]) + (tmp1596[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) + (tmp1596[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp1596[i, j, 3, 1]).coeffs[1]) + (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp1595[i, j, 1, 1]) + constant_term(tmp1596[i, j, 3, 1]) + (F_JCS_x[i, j]).coeffs[2:order + 1] .= zero((F_JCS_x[i, j]).coeffs[1]) + (tmp1598[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) + (tmp1598[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1598[i, j, 1, 2]).coeffs[1]) + (tmp1599[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) + (tmp1599[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp1599[i, j, 2, 2]).coeffs[1]) + (tmp1600[i, j, 1, 2]).coeffs[1] = constant_term(tmp1598[i, j, 1, 2]) + constant_term(tmp1599[i, j, 2, 2]) + (tmp1600[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp1600[i, j, 1, 2]).coeffs[1]) + (tmp1601[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) + (tmp1601[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp1601[i, j, 3, 2]).coeffs[1]) + (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp1600[i, j, 1, 2]) + constant_term(tmp1601[i, j, 3, 2]) + (F_JCS_y[i, j]).coeffs[2:order + 1] .= zero((F_JCS_y[i, j]).coeffs[1]) + (tmp1603[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) + (tmp1603[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1603[i, j, 1, 3]).coeffs[1]) + (tmp1604[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) + (tmp1604[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp1604[i, j, 2, 3]).coeffs[1]) + (tmp1605[i, j, 1, 3]).coeffs[1] = constant_term(tmp1603[i, j, 1, 3]) + constant_term(tmp1604[i, j, 2, 3]) + (tmp1605[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp1605[i, j, 1, 3]).coeffs[1]) + (tmp1606[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) + (tmp1606[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp1606[i, j, 3, 3]).coeffs[1]) + (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp1605[i, j, 1, 3]) + constant_term(tmp1606[i, j, 3, 3]) + (F_JCS_z[i, j]).coeffs[2:order + 1] .= zero((F_JCS_z[i, j]).coeffs[1]) + end + end + end + end + for j = 1:N_ext + for i = 1:N_ext + if i == j + continue + else + if UJ_interaction[i, j] + (tmp1608[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) + (tmp1608[i, j]).coeffs[2:order + 1] .= zero((tmp1608[i, j]).coeffs[1]) + (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp1608[i, j]) + (temp_accX_j[i, j]).coeffs[2:order + 1] .= zero((temp_accX_j[i, j]).coeffs[1]) + (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) + (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + (tmp1610[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) + (tmp1610[i, j]).coeffs[2:order + 1] .= zero((tmp1610[i, j]).coeffs[1]) + (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp1610[i, j]) + (temp_accY_j[i, j]).coeffs[2:order + 1] .= zero((temp_accY_j[i, j]).coeffs[1]) + (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) + (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + (tmp1612[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) + (tmp1612[i, j]).coeffs[2:order + 1] .= zero((tmp1612[i, j]).coeffs[1]) + (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp1612[i, j]) + (temp_accZ_j[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_j[i, j]).coeffs[1]) + (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) + (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) + (tmp1614[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) + (tmp1614[i, j]).coeffs[2:order + 1] .= zero((tmp1614[i, j]).coeffs[1]) + (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp1614[i, j]) + (temp_accX_i[i, j]).coeffs[2:order + 1] .= zero((temp_accX_i[i, j]).coeffs[1]) + (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) + (accX[i]).coeffs[2:order + 1] .= zero((accX[i]).coeffs[1]) + (tmp1616[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) + (tmp1616[i, j]).coeffs[2:order + 1] .= zero((tmp1616[i, j]).coeffs[1]) + (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp1616[i, j]) + (temp_accY_i[i, j]).coeffs[2:order + 1] .= zero((temp_accY_i[i, j]).coeffs[1]) + (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) + (accY[i]).coeffs[2:order + 1] .= zero((accY[i]).coeffs[1]) + (tmp1618[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) + (tmp1618[i, j]).coeffs[2:order + 1] .= zero((tmp1618[i, j]).coeffs[1]) + (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp1618[i, j]) + (temp_accZ_i[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_i[i, j]).coeffs[1]) + (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) + (accZ[i]).coeffs[2:order + 1] .= zero((accZ[i]).coeffs[1]) + if j == mo + (tmp1620[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) + (tmp1620[i, j]).coeffs[2:order + 1] .= zero((tmp1620[i, j]).coeffs[1]) + (tmp1621[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) + (tmp1621[i, j]).coeffs[2:order + 1] .= zero((tmp1621[i, j]).coeffs[1]) + (tmp1622[i, j]).coeffs[1] = constant_term(tmp1620[i, j]) - constant_term(tmp1621[i, j]) + (tmp1622[i, j]).coeffs[2:order + 1] .= zero((tmp1622[i, j]).coeffs[1]) + (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1622[i, j]) + (N_MfigM_pmA_x[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_x[i]).coeffs[1]) + (tmp1624[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) + (tmp1624[i, j]).coeffs[2:order + 1] .= zero((tmp1624[i, j]).coeffs[1]) + (tmp1625[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) + (tmp1625[i, j]).coeffs[2:order + 1] .= zero((tmp1625[i, j]).coeffs[1]) + (tmp1626[i, j]).coeffs[1] = constant_term(tmp1624[i, j]) - constant_term(tmp1625[i, j]) + (tmp1626[i, j]).coeffs[2:order + 1] .= zero((tmp1626[i, j]).coeffs[1]) + (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1626[i, j]) + (N_MfigM_pmA_y[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_y[i]).coeffs[1]) + (tmp1628[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) + (tmp1628[i, j]).coeffs[2:order + 1] .= zero((tmp1628[i, j]).coeffs[1]) + (tmp1629[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) + (tmp1629[i, j]).coeffs[2:order + 1] .= zero((tmp1629[i, j]).coeffs[1]) + (tmp1630[i, j]).coeffs[1] = constant_term(tmp1628[i, j]) - constant_term(tmp1629[i, j]) + (tmp1630[i, j]).coeffs[2:order + 1] .= zero((tmp1630[i, j]).coeffs[1]) + (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp1630[i, j]) + (N_MfigM_pmA_z[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_z[i]).coeffs[1]) + (tmp1632[i]).coeffs[1] = constant_term(N_MfigM_pmA_x[i]) * constant_term(μ[j]) + (tmp1632[i]).coeffs[2:order + 1] .= zero((tmp1632[i]).coeffs[1]) + (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(tmp1632[i]) + (temp_N_M_x[i]).coeffs[2:order + 1] .= zero((temp_N_M_x[i]).coeffs[1]) + (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) + (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + (tmp1634[i]).coeffs[1] = constant_term(N_MfigM_pmA_y[i]) * constant_term(μ[j]) + (tmp1634[i]).coeffs[2:order + 1] .= zero((tmp1634[i]).coeffs[1]) + (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(tmp1634[i]) + (temp_N_M_y[i]).coeffs[2:order + 1] .= zero((temp_N_M_y[i]).coeffs[1]) + (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) + (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + (tmp1636[i]).coeffs[1] = constant_term(N_MfigM_pmA_z[i]) * constant_term(μ[j]) + (tmp1636[i]).coeffs[2:order + 1] .= zero((tmp1636[i]).coeffs[1]) + (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(tmp1636[i]) + (temp_N_M_z[i]).coeffs[2:order + 1] .= zero((temp_N_M_z[i]).coeffs[1]) + (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) + (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) + end + end + end + end + end + for j = 1:N + for i = 1:N + if i == j + continue + else + (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) + (_4ϕj[i, j]).coeffs[2:order + 1] .= zero((_4ϕj[i, j]).coeffs[1]) + (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) + (ϕi_plus_4ϕj[i, j]).coeffs[2:order + 1] .= zero((ϕi_plus_4ϕj[i, j]).coeffs[1]) + (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) + (_2v2[i, j]).coeffs[2:order + 1] .= zero((_2v2[i, j]).coeffs[1]) + (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) + (sj2_plus_2si2[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2[i, j]).coeffs[1]) + (tmp1645[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) + (tmp1645[i, j]).coeffs[2:order + 1] .= zero((tmp1645[i, j]).coeffs[1]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp1645[i, j]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1]) + (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) + (ϕs_and_vs[i, j]).coeffs[2:order + 1] .= zero((ϕs_and_vs[i, j]).coeffs[1]) + (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) + (Xij_t_Ui[i, j]).coeffs[2:order + 1] .= zero((Xij_t_Ui[i, j]).coeffs[1]) + (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) + (Yij_t_Vi[i, j]).coeffs[2:order + 1] .= zero((Yij_t_Vi[i, j]).coeffs[1]) + (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) + (Zij_t_Wi[i, j]).coeffs[2:order + 1] .= zero((Zij_t_Wi[i, j]).coeffs[1]) + (tmp1651[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) + (tmp1651[i, j]).coeffs[2:order + 1] .= zero((tmp1651[i, j]).coeffs[1]) + (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp1651[i, j]) + constant_term(Zij_t_Wi[i, j]) + (Rij_dot_Vi[i, j]).coeffs[2:order + 1] .= zero((Rij_dot_Vi[i, j]).coeffs[1]) + (tmp1654[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) + (tmp1654[i, j]).coeffs[2:order + 1] .= zero((tmp1654[i, j]).coeffs[1]) + (pn1t7[i, j]).coeffs[1] = constant_term(tmp1654[i, j]) / constant_term(r_p2[i, j]) + (pn1t7[i, j]).coeffs[2:order + 1] .= zero((pn1t7[i, j]).coeffs[1]) + (tmp1657[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) + (tmp1657[i, j]).coeffs[2:order + 1] .= zero((tmp1657[i, j]).coeffs[1]) + (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp1657[i, j]) + (pn1t2_7[i, j]).coeffs[2:order + 1] .= zero((pn1t2_7[i, j]).coeffs[1]) + (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) + (pn1t1_7[i, j]).coeffs[2:order + 1] .= zero((pn1t1_7[i, j]).coeffs[1]) + end + end + (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) + end + for j = 1:N + for i = 1:N + if i == j + continue + else + (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) + (pNX_t_X[i, j]).coeffs[2:order + 1] .= zero((pNX_t_X[i, j]).coeffs[1]) + (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) + (pNY_t_Y[i, j]).coeffs[2:order + 1] .= zero((pNY_t_Y[i, j]).coeffs[1]) + (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) + (pNZ_t_Z[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_Z[i, j]).coeffs[1]) + (tmp1664[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) + (tmp1664[i, j]).coeffs[2:order + 1] .= zero((tmp1664[i, j]).coeffs[1]) + (tmp1665[i, j]).coeffs[1] = constant_term(tmp1664[i, j]) + constant_term(pNZ_t_Z[i, j]) + (tmp1665[i, j]).coeffs[2:order + 1] .= zero((tmp1665[i, j]).coeffs[1]) + (tmp1666[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp1665[i, j]) + (tmp1666[i, j]).coeffs[2:order + 1] .= zero((tmp1666[i, j]).coeffs[1]) + (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp1666[i, j]) + (pn1[i, j]).coeffs[2:order + 1] .= zero((pn1[i, j]).coeffs[1]) + (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) + (X_t_pn1[i, j]).coeffs[2:order + 1] .= zero((X_t_pn1[i, j]).coeffs[1]) + (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) + (Y_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Y_t_pn1[i, j]).coeffs[1]) + (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) + (Z_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Z_t_pn1[i, j]).coeffs[1]) + (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) + (pNX_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNX_t_pn3[i, j]).coeffs[1]) + (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) + (pNY_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNY_t_pn3[i, j]).coeffs[1]) + (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) + (pNZ_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_pn3[i, j]).coeffs[1]) + (tmp1674[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) + (tmp1674[i, j]).coeffs[2:order + 1] .= zero((tmp1674[i, j]).coeffs[1]) + (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp1674[i, j]) + (termpnx[i, j]).coeffs[2:order + 1] .= zero((termpnx[i, j]).coeffs[1]) + (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) + (sumpnx[i, j]).coeffs[2:order + 1] .= zero((sumpnx[i, j]).coeffs[1]) + (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) + (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + (tmp1677[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) + (tmp1677[i, j]).coeffs[2:order + 1] .= zero((tmp1677[i, j]).coeffs[1]) + (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp1677[i, j]) + (termpny[i, j]).coeffs[2:order + 1] .= zero((termpny[i, j]).coeffs[1]) + (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) + (sumpny[i, j]).coeffs[2:order + 1] .= zero((sumpny[i, j]).coeffs[1]) + (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) + (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + (tmp1680[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) + (tmp1680[i, j]).coeffs[2:order + 1] .= zero((tmp1680[i, j]).coeffs[1]) + (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp1680[i, j]) + (termpnz[i, j]).coeffs[2:order + 1] .= zero((termpnz[i, j]).coeffs[1]) + (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) + (sumpnz[i, j]).coeffs[2:order + 1] .= zero((sumpnz[i, j]).coeffs[1]) + (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) + (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) + end + end + (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) + (postNewtonX[j]).coeffs[2:order + 1] .= zero((postNewtonX[j]).coeffs[1]) + (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) + (postNewtonY[j]).coeffs[2:order + 1] .= zero((postNewtonY[j]).coeffs[1]) + (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) + (postNewtonZ[j]).coeffs[2:order + 1] .= zero((postNewtonZ[j]).coeffs[1]) + end + for i = 1:N_ext + (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) + (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) + (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) + (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) + end + for i = N_ext + 1:N + (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) + (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) + (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) + (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) + end + tmp1689.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) + tmp1689.coeffs[2:order + 1] .= zero(tmp1689.coeffs[1]) + tmp1690.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) + tmp1690.coeffs[2:order + 1] .= zero(tmp1690.coeffs[1]) + tmp1691.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) + tmp1691.coeffs[2:order + 1] .= zero(tmp1691.coeffs[1]) + tmp1692.coeffs[1] = constant_term(tmp1690) + constant_term(tmp1691) + tmp1692.coeffs[2:order + 1] .= zero(tmp1692.coeffs[1]) + Iω_x.coeffs[1] = constant_term(tmp1689) + constant_term(tmp1692) + Iω_x.coeffs[2:order + 1] .= zero(Iω_x.coeffs[1]) + tmp1694.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) + tmp1694.coeffs[2:order + 1] .= zero(tmp1694.coeffs[1]) + tmp1695.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) + tmp1695.coeffs[2:order + 1] .= zero(tmp1695.coeffs[1]) + tmp1696.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) + tmp1696.coeffs[2:order + 1] .= zero(tmp1696.coeffs[1]) + tmp1697.coeffs[1] = constant_term(tmp1695) + constant_term(tmp1696) + tmp1697.coeffs[2:order + 1] .= zero(tmp1697.coeffs[1]) + Iω_y.coeffs[1] = constant_term(tmp1694) + constant_term(tmp1697) + Iω_y.coeffs[2:order + 1] .= zero(Iω_y.coeffs[1]) + tmp1699.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) + tmp1699.coeffs[2:order + 1] .= zero(tmp1699.coeffs[1]) + tmp1700.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) + tmp1700.coeffs[2:order + 1] .= zero(tmp1700.coeffs[1]) + tmp1701.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) + tmp1701.coeffs[2:order + 1] .= zero(tmp1701.coeffs[1]) + tmp1702.coeffs[1] = constant_term(tmp1700) + constant_term(tmp1701) + tmp1702.coeffs[2:order + 1] .= zero(tmp1702.coeffs[1]) + Iω_z.coeffs[1] = constant_term(tmp1699) + constant_term(tmp1702) + Iω_z.coeffs[2:order + 1] .= zero(Iω_z.coeffs[1]) + tmp1704.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) + tmp1704.coeffs[2:order + 1] .= zero(tmp1704.coeffs[1]) + tmp1705.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) + tmp1705.coeffs[2:order + 1] .= zero(tmp1705.coeffs[1]) + ωxIω_x.coeffs[1] = constant_term(tmp1704) - constant_term(tmp1705) + ωxIω_x.coeffs[2:order + 1] .= zero(ωxIω_x.coeffs[1]) + tmp1707.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) + tmp1707.coeffs[2:order + 1] .= zero(tmp1707.coeffs[1]) + tmp1708.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) + tmp1708.coeffs[2:order + 1] .= zero(tmp1708.coeffs[1]) + ωxIω_y.coeffs[1] = constant_term(tmp1707) - constant_term(tmp1708) + ωxIω_y.coeffs[2:order + 1] .= zero(ωxIω_y.coeffs[1]) + tmp1710.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) + tmp1710.coeffs[2:order + 1] .= zero(tmp1710.coeffs[1]) + tmp1711.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) + tmp1711.coeffs[2:order + 1] .= zero(tmp1711.coeffs[1]) + ωxIω_z.coeffs[1] = constant_term(tmp1710) - constant_term(tmp1711) + ωxIω_z.coeffs[2:order + 1] .= zero(ωxIω_z.coeffs[1]) + tmp1713.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) + tmp1713.coeffs[2:order + 1] .= zero(tmp1713.coeffs[1]) + tmp1714.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) + tmp1714.coeffs[2:order + 1] .= zero(tmp1714.coeffs[1]) + tmp1715.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) + tmp1715.coeffs[2:order + 1] .= zero(tmp1715.coeffs[1]) + tmp1716.coeffs[1] = constant_term(tmp1714) + constant_term(tmp1715) + tmp1716.coeffs[2:order + 1] .= zero(tmp1716.coeffs[1]) + dIω_x.coeffs[1] = constant_term(tmp1713) + constant_term(tmp1716) + dIω_x.coeffs[2:order + 1] .= zero(dIω_x.coeffs[1]) + tmp1718.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) + tmp1718.coeffs[2:order + 1] .= zero(tmp1718.coeffs[1]) + tmp1719.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) + tmp1719.coeffs[2:order + 1] .= zero(tmp1719.coeffs[1]) + tmp1720.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) + tmp1720.coeffs[2:order + 1] .= zero(tmp1720.coeffs[1]) + tmp1721.coeffs[1] = constant_term(tmp1719) + constant_term(tmp1720) + tmp1721.coeffs[2:order + 1] .= zero(tmp1721.coeffs[1]) + dIω_y.coeffs[1] = constant_term(tmp1718) + constant_term(tmp1721) + dIω_y.coeffs[2:order + 1] .= zero(dIω_y.coeffs[1]) + tmp1723.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) + tmp1723.coeffs[2:order + 1] .= zero(tmp1723.coeffs[1]) + tmp1724.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) + tmp1724.coeffs[2:order + 1] .= zero(tmp1724.coeffs[1]) + tmp1725.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) + tmp1725.coeffs[2:order + 1] .= zero(tmp1725.coeffs[1]) + tmp1726.coeffs[1] = constant_term(tmp1724) + constant_term(tmp1725) + tmp1726.coeffs[2:order + 1] .= zero(tmp1726.coeffs[1]) + dIω_z.coeffs[1] = constant_term(tmp1723) + constant_term(tmp1726) + dIω_z.coeffs[2:order + 1] .= zero(dIω_z.coeffs[1]) + er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_1.coeffs[2:order + 1] .= zero(er_EM_I_1.coeffs[1]) + er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_2.coeffs[2:order + 1] .= zero(er_EM_I_2.coeffs[1]) + er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_3.coeffs[2:order + 1] .= zero(er_EM_I_3.coeffs[1]) + p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) + p_E_I_1.coeffs[2:order + 1] .= zero(p_E_I_1.coeffs[1]) + p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) + p_E_I_2.coeffs[2:order + 1] .= zero(p_E_I_2.coeffs[1]) + p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) + p_E_I_3.coeffs[2:order + 1] .= zero(p_E_I_3.coeffs[1]) + tmp1731.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) + tmp1731.coeffs[2:order + 1] .= zero(tmp1731.coeffs[1]) + tmp1732.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) + tmp1732.coeffs[2:order + 1] .= zero(tmp1732.coeffs[1]) + tmp1733.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) + tmp1733.coeffs[2:order + 1] .= zero(tmp1733.coeffs[1]) + tmp1734.coeffs[1] = constant_term(tmp1732) + constant_term(tmp1733) + tmp1734.coeffs[2:order + 1] .= zero(tmp1734.coeffs[1]) + er_EM_1.coeffs[1] = constant_term(tmp1731) + constant_term(tmp1734) + er_EM_1.coeffs[2:order + 1] .= zero(er_EM_1.coeffs[1]) + tmp1736.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) + tmp1736.coeffs[2:order + 1] .= zero(tmp1736.coeffs[1]) + tmp1737.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) + tmp1737.coeffs[2:order + 1] .= zero(tmp1737.coeffs[1]) + tmp1738.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) + tmp1738.coeffs[2:order + 1] .= zero(tmp1738.coeffs[1]) + tmp1739.coeffs[1] = constant_term(tmp1737) + constant_term(tmp1738) + tmp1739.coeffs[2:order + 1] .= zero(tmp1739.coeffs[1]) + er_EM_2.coeffs[1] = constant_term(tmp1736) + constant_term(tmp1739) + er_EM_2.coeffs[2:order + 1] .= zero(er_EM_2.coeffs[1]) + tmp1741.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) + tmp1741.coeffs[2:order + 1] .= zero(tmp1741.coeffs[1]) + tmp1742.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) + tmp1742.coeffs[2:order + 1] .= zero(tmp1742.coeffs[1]) + tmp1743.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) + tmp1743.coeffs[2:order + 1] .= zero(tmp1743.coeffs[1]) + tmp1744.coeffs[1] = constant_term(tmp1742) + constant_term(tmp1743) + tmp1744.coeffs[2:order + 1] .= zero(tmp1744.coeffs[1]) + er_EM_3.coeffs[1] = constant_term(tmp1741) + constant_term(tmp1744) + er_EM_3.coeffs[2:order + 1] .= zero(er_EM_3.coeffs[1]) + tmp1746.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) + tmp1746.coeffs[2:order + 1] .= zero(tmp1746.coeffs[1]) + tmp1747.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) + tmp1747.coeffs[2:order + 1] .= zero(tmp1747.coeffs[1]) + tmp1748.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) + tmp1748.coeffs[2:order + 1] .= zero(tmp1748.coeffs[1]) + tmp1749.coeffs[1] = constant_term(tmp1747) + constant_term(tmp1748) + tmp1749.coeffs[2:order + 1] .= zero(tmp1749.coeffs[1]) + p_E_1.coeffs[1] = constant_term(tmp1746) + constant_term(tmp1749) + p_E_1.coeffs[2:order + 1] .= zero(p_E_1.coeffs[1]) + tmp1751.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) + tmp1751.coeffs[2:order + 1] .= zero(tmp1751.coeffs[1]) + tmp1752.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) + tmp1752.coeffs[2:order + 1] .= zero(tmp1752.coeffs[1]) + tmp1753.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) + tmp1753.coeffs[2:order + 1] .= zero(tmp1753.coeffs[1]) + tmp1754.coeffs[1] = constant_term(tmp1752) + constant_term(tmp1753) + tmp1754.coeffs[2:order + 1] .= zero(tmp1754.coeffs[1]) + p_E_2.coeffs[1] = constant_term(tmp1751) + constant_term(tmp1754) + p_E_2.coeffs[2:order + 1] .= zero(p_E_2.coeffs[1]) + tmp1756.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) + tmp1756.coeffs[2:order + 1] .= zero(tmp1756.coeffs[1]) + tmp1757.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) + tmp1757.coeffs[2:order + 1] .= zero(tmp1757.coeffs[1]) + tmp1758.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) + tmp1758.coeffs[2:order + 1] .= zero(tmp1758.coeffs[1]) + tmp1759.coeffs[1] = constant_term(tmp1757) + constant_term(tmp1758) + tmp1759.coeffs[2:order + 1] .= zero(tmp1759.coeffs[1]) + p_E_3.coeffs[1] = constant_term(tmp1756) + constant_term(tmp1759) + p_E_3.coeffs[2:order + 1] .= zero(p_E_3.coeffs[1]) + tmp1761.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) + tmp1761.coeffs[2:order + 1] .= zero(tmp1761.coeffs[1]) + tmp1762.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) + tmp1762.coeffs[2:order + 1] .= zero(tmp1762.coeffs[1]) + tmp1763.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) + tmp1763.coeffs[2:order + 1] .= zero(tmp1763.coeffs[1]) + tmp1764.coeffs[1] = constant_term(tmp1762) + constant_term(tmp1763) + tmp1764.coeffs[2:order + 1] .= zero(tmp1764.coeffs[1]) + I_er_EM_1.coeffs[1] = constant_term(tmp1761) + constant_term(tmp1764) + I_er_EM_1.coeffs[2:order + 1] .= zero(I_er_EM_1.coeffs[1]) + tmp1766.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) + tmp1766.coeffs[2:order + 1] .= zero(tmp1766.coeffs[1]) + tmp1767.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) + tmp1767.coeffs[2:order + 1] .= zero(tmp1767.coeffs[1]) + tmp1768.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) + tmp1768.coeffs[2:order + 1] .= zero(tmp1768.coeffs[1]) + tmp1769.coeffs[1] = constant_term(tmp1767) + constant_term(tmp1768) + tmp1769.coeffs[2:order + 1] .= zero(tmp1769.coeffs[1]) + I_er_EM_2.coeffs[1] = constant_term(tmp1766) + constant_term(tmp1769) + I_er_EM_2.coeffs[2:order + 1] .= zero(I_er_EM_2.coeffs[1]) + tmp1771.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) + tmp1771.coeffs[2:order + 1] .= zero(tmp1771.coeffs[1]) + tmp1772.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) + tmp1772.coeffs[2:order + 1] .= zero(tmp1772.coeffs[1]) + tmp1773.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) + tmp1773.coeffs[2:order + 1] .= zero(tmp1773.coeffs[1]) + tmp1774.coeffs[1] = constant_term(tmp1772) + constant_term(tmp1773) + tmp1774.coeffs[2:order + 1] .= zero(tmp1774.coeffs[1]) + I_er_EM_3.coeffs[1] = constant_term(tmp1771) + constant_term(tmp1774) + I_er_EM_3.coeffs[2:order + 1] .= zero(I_er_EM_3.coeffs[1]) + tmp1776.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) + tmp1776.coeffs[2:order + 1] .= zero(tmp1776.coeffs[1]) + tmp1777.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) + tmp1777.coeffs[2:order + 1] .= zero(tmp1777.coeffs[1]) + tmp1778.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) + tmp1778.coeffs[2:order + 1] .= zero(tmp1778.coeffs[1]) + tmp1779.coeffs[1] = constant_term(tmp1777) + constant_term(tmp1778) + tmp1779.coeffs[2:order + 1] .= zero(tmp1779.coeffs[1]) + I_p_E_1.coeffs[1] = constant_term(tmp1776) + constant_term(tmp1779) + I_p_E_1.coeffs[2:order + 1] .= zero(I_p_E_1.coeffs[1]) + tmp1781.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) + tmp1781.coeffs[2:order + 1] .= zero(tmp1781.coeffs[1]) + tmp1782.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) + tmp1782.coeffs[2:order + 1] .= zero(tmp1782.coeffs[1]) + tmp1783.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) + tmp1783.coeffs[2:order + 1] .= zero(tmp1783.coeffs[1]) + tmp1784.coeffs[1] = constant_term(tmp1782) + constant_term(tmp1783) + tmp1784.coeffs[2:order + 1] .= zero(tmp1784.coeffs[1]) + I_p_E_2.coeffs[1] = constant_term(tmp1781) + constant_term(tmp1784) + I_p_E_2.coeffs[2:order + 1] .= zero(I_p_E_2.coeffs[1]) + tmp1786.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) + tmp1786.coeffs[2:order + 1] .= zero(tmp1786.coeffs[1]) + tmp1787.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) + tmp1787.coeffs[2:order + 1] .= zero(tmp1787.coeffs[1]) + tmp1788.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) + tmp1788.coeffs[2:order + 1] .= zero(tmp1788.coeffs[1]) + tmp1789.coeffs[1] = constant_term(tmp1787) + constant_term(tmp1788) + tmp1789.coeffs[2:order + 1] .= zero(tmp1789.coeffs[1]) + I_p_E_3.coeffs[1] = constant_term(tmp1786) + constant_term(tmp1789) + I_p_E_3.coeffs[2:order + 1] .= zero(I_p_E_3.coeffs[1]) + tmp1791.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) + tmp1791.coeffs[2:order + 1] .= zero(tmp1791.coeffs[1]) + tmp1792.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) + tmp1792.coeffs[2:order + 1] .= zero(tmp1792.coeffs[1]) + er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1791) - constant_term(tmp1792) + er_EM_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_1.coeffs[1]) + tmp1794.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) + tmp1794.coeffs[2:order + 1] .= zero(tmp1794.coeffs[1]) + tmp1795.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) + tmp1795.coeffs[2:order + 1] .= zero(tmp1795.coeffs[1]) + er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1794) - constant_term(tmp1795) + er_EM_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_2.coeffs[1]) + tmp1797.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) + tmp1797.coeffs[2:order + 1] .= zero(tmp1797.coeffs[1]) + tmp1798.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) + tmp1798.coeffs[2:order + 1] .= zero(tmp1798.coeffs[1]) + er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1797) - constant_term(tmp1798) + er_EM_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_3.coeffs[1]) + tmp1800.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) + tmp1800.coeffs[2:order + 1] .= zero(tmp1800.coeffs[1]) + tmp1801.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) + tmp1801.coeffs[2:order + 1] .= zero(tmp1801.coeffs[1]) + er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp1800) - constant_term(tmp1801) + er_EM_cross_I_p_E_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_1.coeffs[1]) + tmp1803.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) + tmp1803.coeffs[2:order + 1] .= zero(tmp1803.coeffs[1]) + tmp1804.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) + tmp1804.coeffs[2:order + 1] .= zero(tmp1804.coeffs[1]) + er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp1803) - constant_term(tmp1804) + er_EM_cross_I_p_E_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_2.coeffs[1]) + tmp1806.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) + tmp1806.coeffs[2:order + 1] .= zero(tmp1806.coeffs[1]) + tmp1807.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) + tmp1807.coeffs[2:order + 1] .= zero(tmp1807.coeffs[1]) + er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp1806) - constant_term(tmp1807) + er_EM_cross_I_p_E_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_3.coeffs[1]) + tmp1809.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) + tmp1809.coeffs[2:order + 1] .= zero(tmp1809.coeffs[1]) + tmp1810.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) + tmp1810.coeffs[2:order + 1] .= zero(tmp1810.coeffs[1]) + p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp1809) - constant_term(tmp1810) + p_E_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_1.coeffs[1]) + tmp1812.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) + tmp1812.coeffs[2:order + 1] .= zero(tmp1812.coeffs[1]) + tmp1813.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) + tmp1813.coeffs[2:order + 1] .= zero(tmp1813.coeffs[1]) + p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp1812) - constant_term(tmp1813) + p_E_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_2.coeffs[1]) + tmp1815.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) + tmp1815.coeffs[2:order + 1] .= zero(tmp1815.coeffs[1]) + tmp1816.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) + tmp1816.coeffs[2:order + 1] .= zero(tmp1816.coeffs[1]) + p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp1815) - constant_term(tmp1816) + p_E_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_3.coeffs[1]) + tmp1818.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) + tmp1818.coeffs[2:order + 1] .= zero(tmp1818.coeffs[1]) + tmp1819.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) + tmp1819.coeffs[2:order + 1] .= zero(tmp1819.coeffs[1]) + p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp1818) - constant_term(tmp1819) + p_E_cross_I_p_E_1.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_1.coeffs[1]) + tmp1821.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) + tmp1821.coeffs[2:order + 1] .= zero(tmp1821.coeffs[1]) + tmp1822.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) + tmp1822.coeffs[2:order + 1] .= zero(tmp1822.coeffs[1]) + p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp1821) - constant_term(tmp1822) + p_E_cross_I_p_E_2.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_2.coeffs[1]) + tmp1824.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) + tmp1824.coeffs[2:order + 1] .= zero(tmp1824.coeffs[1]) + tmp1825.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) + tmp1825.coeffs[2:order + 1] .= zero(tmp1825.coeffs[1]) + p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp1824) - constant_term(tmp1825) + p_E_cross_I_p_E_3.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_3.coeffs[1]) + tmp1829.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) + tmp1829.coeffs[2:order + 1] .= zero(tmp1829.coeffs[1]) + tmp1830.coeffs[1] = constant_term(7) * constant_term(tmp1829) + tmp1830.coeffs[2:order + 1] .= zero(tmp1830.coeffs[1]) + one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp1830) + one_minus_7sin2ϕEM.coeffs[2:order + 1] .= zero(one_minus_7sin2ϕEM.coeffs[1]) + two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) + two_sinϕEM.coeffs[2:order + 1] .= zero(two_sinϕEM.coeffs[1]) + tmp1835.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) + tmp1835.coeffs[2:order + 1] .= zero(tmp1835.coeffs[1]) + N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp1835) + N_MfigM_figE_factor_div_rEMp5.coeffs[2:order + 1] .= zero(N_MfigM_figE_factor_div_rEMp5.coeffs[1]) + tmp1837.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) + tmp1837.coeffs[2:order + 1] .= zero(tmp1837.coeffs[1]) + tmp1838.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) + tmp1838.coeffs[2:order + 1] .= zero(tmp1838.coeffs[1]) + tmp1839.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1838) + tmp1839.coeffs[2:order + 1] .= zero(tmp1839.coeffs[1]) + tmp1840.coeffs[1] = constant_term(tmp1837) + constant_term(tmp1839) + tmp1840.coeffs[2:order + 1] .= zero(tmp1840.coeffs[1]) + tmp1842.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) + tmp1842.coeffs[2:order + 1] .= zero(tmp1842.coeffs[1]) + tmp1843.coeffs[1] = constant_term(tmp1840) - constant_term(tmp1842) + tmp1843.coeffs[2:order + 1] .= zero(tmp1843.coeffs[1]) + N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1843) + N_MfigM_figE_1.coeffs[2:order + 1] .= zero(N_MfigM_figE_1.coeffs[1]) + tmp1845.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) + tmp1845.coeffs[2:order + 1] .= zero(tmp1845.coeffs[1]) + tmp1846.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) + tmp1846.coeffs[2:order + 1] .= zero(tmp1846.coeffs[1]) + tmp1847.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1846) + tmp1847.coeffs[2:order + 1] .= zero(tmp1847.coeffs[1]) + tmp1848.coeffs[1] = constant_term(tmp1845) + constant_term(tmp1847) + tmp1848.coeffs[2:order + 1] .= zero(tmp1848.coeffs[1]) + tmp1850.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) + tmp1850.coeffs[2:order + 1] .= zero(tmp1850.coeffs[1]) + tmp1851.coeffs[1] = constant_term(tmp1848) - constant_term(tmp1850) + tmp1851.coeffs[2:order + 1] .= zero(tmp1851.coeffs[1]) + N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1851) + N_MfigM_figE_2.coeffs[2:order + 1] .= zero(N_MfigM_figE_2.coeffs[1]) + tmp1853.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) + tmp1853.coeffs[2:order + 1] .= zero(tmp1853.coeffs[1]) + tmp1854.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) + tmp1854.coeffs[2:order + 1] .= zero(tmp1854.coeffs[1]) + tmp1855.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp1854) + tmp1855.coeffs[2:order + 1] .= zero(tmp1855.coeffs[1]) + tmp1856.coeffs[1] = constant_term(tmp1853) + constant_term(tmp1855) + tmp1856.coeffs[2:order + 1] .= zero(tmp1856.coeffs[1]) + tmp1858.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) + tmp1858.coeffs[2:order + 1] .= zero(tmp1858.coeffs[1]) + tmp1859.coeffs[1] = constant_term(tmp1856) - constant_term(tmp1858) + tmp1859.coeffs[2:order + 1] .= zero(tmp1859.coeffs[1]) + N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp1859) + N_MfigM_figE_3.coeffs[2:order + 1] .= zero(N_MfigM_figE_3.coeffs[1]) + tmp1861.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) + tmp1861.coeffs[2:order + 1] .= zero(tmp1861.coeffs[1]) + tmp1862.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) + tmp1862.coeffs[2:order + 1] .= zero(tmp1862.coeffs[1]) + tmp1863.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) + tmp1863.coeffs[2:order + 1] .= zero(tmp1863.coeffs[1]) + tmp1864.coeffs[1] = constant_term(tmp1862) + constant_term(tmp1863) + tmp1864.coeffs[2:order + 1] .= zero(tmp1864.coeffs[1]) + N_1_LMF.coeffs[1] = constant_term(tmp1861) + constant_term(tmp1864) + N_1_LMF.coeffs[2:order + 1] .= zero(N_1_LMF.coeffs[1]) + tmp1866.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) + tmp1866.coeffs[2:order + 1] .= zero(tmp1866.coeffs[1]) + tmp1867.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) + tmp1867.coeffs[2:order + 1] .= zero(tmp1867.coeffs[1]) + tmp1868.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) + tmp1868.coeffs[2:order + 1] .= zero(tmp1868.coeffs[1]) + tmp1869.coeffs[1] = constant_term(tmp1867) + constant_term(tmp1868) + tmp1869.coeffs[2:order + 1] .= zero(tmp1869.coeffs[1]) + N_2_LMF.coeffs[1] = constant_term(tmp1866) + constant_term(tmp1869) + N_2_LMF.coeffs[2:order + 1] .= zero(N_2_LMF.coeffs[1]) + tmp1871.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) + tmp1871.coeffs[2:order + 1] .= zero(tmp1871.coeffs[1]) + tmp1872.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) + tmp1872.coeffs[2:order + 1] .= zero(tmp1872.coeffs[1]) + tmp1873.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) + tmp1873.coeffs[2:order + 1] .= zero(tmp1873.coeffs[1]) + tmp1874.coeffs[1] = constant_term(tmp1872) + constant_term(tmp1873) + tmp1874.coeffs[2:order + 1] .= zero(tmp1874.coeffs[1]) + N_3_LMF.coeffs[1] = constant_term(tmp1871) + constant_term(tmp1874) + N_3_LMF.coeffs[2:order + 1] .= zero(N_3_LMF.coeffs[1]) + tmp1876.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) + tmp1876.coeffs[2:order + 1] .= zero(tmp1876.coeffs[1]) + tmp1877.coeffs[1] = constant_term(k_ν) * constant_term(tmp1876) + tmp1877.coeffs[2:order + 1] .= zero(tmp1877.coeffs[1]) + tmp1878.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + tmp1878.coeffs[2:order + 1] .= zero(tmp1878.coeffs[1]) + tmp1879.coeffs[1] = constant_term(tmp1878) * constant_term(q[6N + 11]) + tmp1879.coeffs[2:order + 1] .= zero(tmp1879.coeffs[1]) + N_cmb_1.coeffs[1] = constant_term(tmp1877) - constant_term(tmp1879) + N_cmb_1.coeffs[2:order + 1] .= zero(N_cmb_1.coeffs[1]) + tmp1881.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) + tmp1881.coeffs[2:order + 1] .= zero(tmp1881.coeffs[1]) + tmp1882.coeffs[1] = constant_term(k_ν) * constant_term(tmp1881) + tmp1882.coeffs[2:order + 1] .= zero(tmp1882.coeffs[1]) + tmp1883.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + tmp1883.coeffs[2:order + 1] .= zero(tmp1883.coeffs[1]) + tmp1884.coeffs[1] = constant_term(tmp1883) * constant_term(q[6N + 10]) + tmp1884.coeffs[2:order + 1] .= zero(tmp1884.coeffs[1]) + N_cmb_2.coeffs[1] = constant_term(tmp1882) + constant_term(tmp1884) + N_cmb_2.coeffs[2:order + 1] .= zero(N_cmb_2.coeffs[1]) + tmp1886.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) + tmp1886.coeffs[2:order + 1] .= zero(tmp1886.coeffs[1]) + N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp1886) + N_cmb_3.coeffs[2:order + 1] .= zero(N_cmb_3.coeffs[1]) + tmp1888.coeffs[1] = constant_term(N_1_LMF) + constant_term(N_MfigM_figE_1) + tmp1888.coeffs[2:order + 1] .= zero(tmp1888.coeffs[1]) + tmp1889.coeffs[1] = constant_term(tmp1888) + constant_term(N_cmb_1) + tmp1889.coeffs[2:order + 1] .= zero(tmp1889.coeffs[1]) + tmp1890.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) + tmp1890.coeffs[2:order + 1] .= zero(tmp1890.coeffs[1]) + I_dω_1.coeffs[1] = constant_term(tmp1889) - constant_term(tmp1890) + I_dω_1.coeffs[2:order + 1] .= zero(I_dω_1.coeffs[1]) + tmp1892.coeffs[1] = constant_term(N_2_LMF) + constant_term(N_MfigM_figE_2) + tmp1892.coeffs[2:order + 1] .= zero(tmp1892.coeffs[1]) + tmp1893.coeffs[1] = constant_term(tmp1892) + constant_term(N_cmb_2) + tmp1893.coeffs[2:order + 1] .= zero(tmp1893.coeffs[1]) + tmp1894.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) + tmp1894.coeffs[2:order + 1] .= zero(tmp1894.coeffs[1]) + I_dω_2.coeffs[1] = constant_term(tmp1893) - constant_term(tmp1894) + I_dω_2.coeffs[2:order + 1] .= zero(I_dω_2.coeffs[1]) + tmp1896.coeffs[1] = constant_term(N_3_LMF) + constant_term(N_MfigM_figE_3) + tmp1896.coeffs[2:order + 1] .= zero(tmp1896.coeffs[1]) + tmp1897.coeffs[1] = constant_term(tmp1896) + constant_term(N_cmb_3) + tmp1897.coeffs[2:order + 1] .= zero(tmp1897.coeffs[1]) + tmp1898.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) + tmp1898.coeffs[2:order + 1] .= zero(tmp1898.coeffs[1]) + I_dω_3.coeffs[1] = constant_term(tmp1897) - constant_term(tmp1898) + I_dω_3.coeffs[2:order + 1] .= zero(I_dω_3.coeffs[1]) + Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) + Ic_ωc_1.coeffs[2:order + 1] .= zero(Ic_ωc_1.coeffs[1]) + Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) + Ic_ωc_2.coeffs[2:order + 1] .= zero(Ic_ωc_2.coeffs[1]) + Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) + Ic_ωc_3.coeffs[2:order + 1] .= zero(Ic_ωc_3.coeffs[1]) + tmp1903.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) + tmp1903.coeffs[2:order + 1] .= zero(tmp1903.coeffs[1]) + tmp1904.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) + tmp1904.coeffs[2:order + 1] .= zero(tmp1904.coeffs[1]) + m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp1903) - constant_term(tmp1904) + m_ωm_x_Icωc_1.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_1.coeffs[1]) + tmp1906.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) + tmp1906.coeffs[2:order + 1] .= zero(tmp1906.coeffs[1]) + tmp1907.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) + tmp1907.coeffs[2:order + 1] .= zero(tmp1907.coeffs[1]) + m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp1906) - constant_term(tmp1907) + m_ωm_x_Icωc_2.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_2.coeffs[1]) + tmp1909.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) + tmp1909.coeffs[2:order + 1] .= zero(tmp1909.coeffs[1]) + tmp1910.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) + tmp1910.coeffs[2:order + 1] .= zero(tmp1910.coeffs[1]) + m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp1909) - constant_term(tmp1910) + m_ωm_x_Icωc_3.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_3.coeffs[1]) + Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) + Ic_dωc_1.coeffs[2:order + 1] .= zero(Ic_dωc_1.coeffs[1]) + Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) + Ic_dωc_2.coeffs[2:order + 1] .= zero(Ic_dωc_2.coeffs[1]) + Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) + Ic_dωc_3.coeffs[2:order + 1] .= zero(Ic_dωc_3.coeffs[1]) + tmp1915.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp1915.coeffs[2:order + 1] .= zero(tmp1915.coeffs[1]) + tmp1995.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp1995.coeffs[2:order + 1] .= zero(tmp1995.coeffs[1]) + tmp1916.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1915) + tmp1916.coeffs[2:order + 1] .= zero(tmp1916.coeffs[1]) + tmp1917.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp1917.coeffs[2:order + 1] .= zero(tmp1917.coeffs[1]) + tmp1996.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp1996.coeffs[2:order + 1] .= zero(tmp1996.coeffs[1]) + tmp1918.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1917) + tmp1918.coeffs[2:order + 1] .= zero(tmp1918.coeffs[1]) + tmp1919.coeffs[1] = constant_term(tmp1916) + constant_term(tmp1918) + tmp1919.coeffs[2:order + 1] .= zero(tmp1919.coeffs[1]) + tmp1920.coeffs[1] = sin(constant_term(q[6N + 2])) + tmp1920.coeffs[2:order + 1] .= zero(tmp1920.coeffs[1]) + tmp1997.coeffs[1] = cos(constant_term(q[6N + 2])) + tmp1997.coeffs[2:order + 1] .= zero(tmp1997.coeffs[1]) + (dq[6N + 1]).coeffs[1] = constant_term(tmp1919) / constant_term(tmp1920) + (dq[6N + 1]).coeffs[2:order + 1] .= zero((dq[6N + 1]).coeffs[1]) + tmp1922.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp1922.coeffs[2:order + 1] .= zero(tmp1922.coeffs[1]) + tmp1998.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp1998.coeffs[2:order + 1] .= zero(tmp1998.coeffs[1]) + tmp1923.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp1922) + tmp1923.coeffs[2:order + 1] .= zero(tmp1923.coeffs[1]) + tmp1924.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp1924.coeffs[2:order + 1] .= zero(tmp1924.coeffs[1]) + tmp1999.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp1999.coeffs[2:order + 1] .= zero(tmp1999.coeffs[1]) + tmp1925.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp1924) + tmp1925.coeffs[2:order + 1] .= zero(tmp1925.coeffs[1]) + (dq[6N + 2]).coeffs[1] = constant_term(tmp1923) - constant_term(tmp1925) + (dq[6N + 2]).coeffs[2:order + 1] .= zero((dq[6N + 2]).coeffs[1]) + tmp1927.coeffs[1] = cos(constant_term(q[6N + 2])) + tmp1927.coeffs[2:order + 1] .= zero(tmp1927.coeffs[1]) + tmp2000.coeffs[1] = sin(constant_term(q[6N + 2])) + tmp2000.coeffs[2:order + 1] .= zero(tmp2000.coeffs[1]) + tmp1928.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp1927) + tmp1928.coeffs[2:order + 1] .= zero(tmp1928.coeffs[1]) + (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp1928) + (dq[6N + 3]).coeffs[2:order + 1] .= zero((dq[6N + 3]).coeffs[1]) + tmp1930.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) + tmp1930.coeffs[2:order + 1] .= zero(tmp1930.coeffs[1]) + tmp1931.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) + tmp1931.coeffs[2:order + 1] .= zero(tmp1931.coeffs[1]) + tmp1932.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) + tmp1932.coeffs[2:order + 1] .= zero(tmp1932.coeffs[1]) + tmp1933.coeffs[1] = constant_term(tmp1931) + constant_term(tmp1932) + tmp1933.coeffs[2:order + 1] .= zero(tmp1933.coeffs[1]) + (dq[6N + 4]).coeffs[1] = constant_term(tmp1930) + constant_term(tmp1933) + (dq[6N + 4]).coeffs[2:order + 1] .= zero((dq[6N + 4]).coeffs[1]) + tmp1935.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) + tmp1935.coeffs[2:order + 1] .= zero(tmp1935.coeffs[1]) + tmp1936.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) + tmp1936.coeffs[2:order + 1] .= zero(tmp1936.coeffs[1]) + tmp1937.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) + tmp1937.coeffs[2:order + 1] .= zero(tmp1937.coeffs[1]) + tmp1938.coeffs[1] = constant_term(tmp1936) + constant_term(tmp1937) + tmp1938.coeffs[2:order + 1] .= zero(tmp1938.coeffs[1]) + (dq[6N + 5]).coeffs[1] = constant_term(tmp1935) + constant_term(tmp1938) + (dq[6N + 5]).coeffs[2:order + 1] .= zero((dq[6N + 5]).coeffs[1]) + tmp1940.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) + tmp1940.coeffs[2:order + 1] .= zero(tmp1940.coeffs[1]) + tmp1941.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) + tmp1941.coeffs[2:order + 1] .= zero(tmp1941.coeffs[1]) + tmp1942.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) + tmp1942.coeffs[2:order + 1] .= zero(tmp1942.coeffs[1]) + tmp1943.coeffs[1] = constant_term(tmp1941) + constant_term(tmp1942) + tmp1943.coeffs[2:order + 1] .= zero(tmp1943.coeffs[1]) + (dq[6N + 6]).coeffs[1] = constant_term(tmp1940) + constant_term(tmp1943) + (dq[6N + 6]).coeffs[2:order + 1] .= zero((dq[6N + 6]).coeffs[1]) + tmp1945.coeffs[1] = sin(constant_term(q[6N + 8])) + tmp1945.coeffs[2:order + 1] .= zero(tmp1945.coeffs[1]) + tmp2001.coeffs[1] = cos(constant_term(q[6N + 8])) + tmp2001.coeffs[2:order + 1] .= zero(tmp2001.coeffs[1]) + tmp1946.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp1945) + tmp1946.coeffs[2:order + 1] .= zero(tmp1946.coeffs[1]) + (dq[6N + 9]).coeffs[1] = -(constant_term(tmp1946)) + (dq[6N + 9]).coeffs[2:order + 1] .= zero((dq[6N + 9]).coeffs[1]) + tmp1948.coeffs[1] = cos(constant_term(q[6N + 8])) + tmp1948.coeffs[2:order + 1] .= zero(tmp1948.coeffs[1]) + tmp2002.coeffs[1] = sin(constant_term(q[6N + 8])) + tmp2002.coeffs[2:order + 1] .= zero(tmp2002.coeffs[1]) + tmp1949.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp1948) + tmp1949.coeffs[2:order + 1] .= zero(tmp1949.coeffs[1]) + (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp1949) + (dq[6N + 7]).coeffs[2:order + 1] .= zero((dq[6N + 7]).coeffs[1]) + (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) + (dq[6N + 8]).coeffs[2:order + 1] .= zero((dq[6N + 8]).coeffs[1]) + (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) + (dq[6N + 10]).coeffs[2:order + 1] .= zero((dq[6N + 10]).coeffs[1]) + (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) + (dq[6N + 11]).coeffs[2:order + 1] .= zero((dq[6N + 11]).coeffs[1]) + (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) + (dq[6N + 12]).coeffs[2:order + 1] .= zero((dq[6N + 12]).coeffs[1]) + (dq[6N + 13]).coeffs[1] = identity(constant_term(zero_q_1)) + (dq[6N + 13]).coeffs[2:order + 1] .= zero((dq[6N + 13]).coeffs[1]) for __idx = eachindex(q) (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] end @@ -1466,109 +3934,109 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) TaylorSeries.identity!(θ_m, q[6N + 2], ord) TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp1899, tmp1165, ϕ_m, ord) - TaylorSeries.sincos!(tmp1900, tmp1166, ψ_m, ord) - TaylorSeries.mul!(tmp1167, tmp1165, tmp1166, ord) - TaylorSeries.sincos!(tmp1901, tmp1168, θ_m, ord) - TaylorSeries.sincos!(tmp1169, tmp1902, ϕ_m, ord) - TaylorSeries.mul!(tmp1170, tmp1168, tmp1169, ord) - TaylorSeries.sincos!(tmp1171, tmp1903, ψ_m, ord) - TaylorSeries.mul!(tmp1172, tmp1170, tmp1171, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp1167, tmp1172, ord) - TaylorSeries.sincos!(tmp1904, tmp1174, θ_m, ord) - TaylorSeries.subst!(tmp1175, tmp1174, ord) - TaylorSeries.sincos!(tmp1905, tmp1176, ψ_m, ord) - TaylorSeries.mul!(tmp1177, tmp1175, tmp1176, ord) - TaylorSeries.sincos!(tmp1178, tmp1906, ϕ_m, ord) - TaylorSeries.mul!(tmp1179, tmp1177, tmp1178, ord) - TaylorSeries.sincos!(tmp1907, tmp1180, ϕ_m, ord) - TaylorSeries.sincos!(tmp1181, tmp1908, ψ_m, ord) - TaylorSeries.mul!(tmp1182, tmp1180, tmp1181, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp1179, tmp1182, ord) - TaylorSeries.sincos!(tmp1184, tmp1909, θ_m, ord) - TaylorSeries.sincos!(tmp1185, tmp1910, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp1184, tmp1185, ord) - TaylorSeries.sincos!(tmp1911, tmp1187, ψ_m, ord) - TaylorSeries.sincos!(tmp1188, tmp1912, ϕ_m, ord) - TaylorSeries.mul!(tmp1189, tmp1187, tmp1188, ord) - TaylorSeries.sincos!(tmp1913, tmp1190, θ_m, ord) - TaylorSeries.sincos!(tmp1914, tmp1191, ϕ_m, ord) - TaylorSeries.mul!(tmp1192, tmp1190, tmp1191, ord) - TaylorSeries.sincos!(tmp1193, tmp1915, ψ_m, ord) - TaylorSeries.mul!(tmp1194, tmp1192, tmp1193, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp1189, tmp1194, ord) - TaylorSeries.sincos!(tmp1916, tmp1196, θ_m, ord) - TaylorSeries.sincos!(tmp1917, tmp1197, ϕ_m, ord) - TaylorSeries.mul!(tmp1198, tmp1196, tmp1197, ord) - TaylorSeries.sincos!(tmp1918, tmp1199, ψ_m, ord) - TaylorSeries.mul!(tmp1200, tmp1198, tmp1199, ord) - TaylorSeries.sincos!(tmp1201, tmp1919, ϕ_m, ord) - TaylorSeries.sincos!(tmp1202, tmp1920, ψ_m, ord) - TaylorSeries.mul!(tmp1203, tmp1201, tmp1202, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp1200, tmp1203, ord) - TaylorSeries.sincos!(tmp1921, tmp1205, ϕ_m, ord) - TaylorSeries.subst!(tmp1206, tmp1205, ord) - TaylorSeries.sincos!(tmp1207, tmp1922, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp1206, tmp1207, ord) - TaylorSeries.sincos!(tmp1209, tmp1923, θ_m, ord) - TaylorSeries.sincos!(tmp1210, tmp1924, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp1209, tmp1210, ord) - TaylorSeries.sincos!(tmp1925, tmp1212, ψ_m, ord) - TaylorSeries.sincos!(tmp1213, tmp1926, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp1212, tmp1213, ord) - TaylorSeries.sincos!(tmp1927, RotM[3, 3, mo], θ_m, ord) + TaylorSeries.sincos!(tmp1954, tmp1220, ϕ_m, ord) + TaylorSeries.sincos!(tmp1955, tmp1221, ψ_m, ord) + TaylorSeries.mul!(tmp1222, tmp1220, tmp1221, ord) + TaylorSeries.sincos!(tmp1956, tmp1223, θ_m, ord) + TaylorSeries.sincos!(tmp1224, tmp1957, ϕ_m, ord) + TaylorSeries.mul!(tmp1225, tmp1223, tmp1224, ord) + TaylorSeries.sincos!(tmp1226, tmp1958, ψ_m, ord) + TaylorSeries.mul!(tmp1227, tmp1225, tmp1226, ord) + TaylorSeries.subst!(RotM[1, 1, mo], tmp1222, tmp1227, ord) + TaylorSeries.sincos!(tmp1959, tmp1229, θ_m, ord) + TaylorSeries.subst!(tmp1230, tmp1229, ord) + TaylorSeries.sincos!(tmp1960, tmp1231, ψ_m, ord) + TaylorSeries.mul!(tmp1232, tmp1230, tmp1231, ord) + TaylorSeries.sincos!(tmp1233, tmp1961, ϕ_m, ord) + TaylorSeries.mul!(tmp1234, tmp1232, tmp1233, ord) + TaylorSeries.sincos!(tmp1962, tmp1235, ϕ_m, ord) + TaylorSeries.sincos!(tmp1236, tmp1963, ψ_m, ord) + TaylorSeries.mul!(tmp1237, tmp1235, tmp1236, ord) + TaylorSeries.subst!(RotM[2, 1, mo], tmp1234, tmp1237, ord) + TaylorSeries.sincos!(tmp1239, tmp1964, θ_m, ord) + TaylorSeries.sincos!(tmp1240, tmp1965, ϕ_m, ord) + TaylorSeries.mul!(RotM[3, 1, mo], tmp1239, tmp1240, ord) + TaylorSeries.sincos!(tmp1966, tmp1242, ψ_m, ord) + TaylorSeries.sincos!(tmp1243, tmp1967, ϕ_m, ord) + TaylorSeries.mul!(tmp1244, tmp1242, tmp1243, ord) + TaylorSeries.sincos!(tmp1968, tmp1245, θ_m, ord) + TaylorSeries.sincos!(tmp1969, tmp1246, ϕ_m, ord) + TaylorSeries.mul!(tmp1247, tmp1245, tmp1246, ord) + TaylorSeries.sincos!(tmp1248, tmp1970, ψ_m, ord) + TaylorSeries.mul!(tmp1249, tmp1247, tmp1248, ord) + TaylorSeries.add!(RotM[1, 2, mo], tmp1244, tmp1249, ord) + TaylorSeries.sincos!(tmp1971, tmp1251, θ_m, ord) + TaylorSeries.sincos!(tmp1972, tmp1252, ϕ_m, ord) + TaylorSeries.mul!(tmp1253, tmp1251, tmp1252, ord) + TaylorSeries.sincos!(tmp1973, tmp1254, ψ_m, ord) + TaylorSeries.mul!(tmp1255, tmp1253, tmp1254, ord) + TaylorSeries.sincos!(tmp1256, tmp1974, ϕ_m, ord) + TaylorSeries.sincos!(tmp1257, tmp1975, ψ_m, ord) + TaylorSeries.mul!(tmp1258, tmp1256, tmp1257, ord) + TaylorSeries.subst!(RotM[2, 2, mo], tmp1255, tmp1258, ord) + TaylorSeries.sincos!(tmp1976, tmp1260, ϕ_m, ord) + TaylorSeries.subst!(tmp1261, tmp1260, ord) + TaylorSeries.sincos!(tmp1262, tmp1977, θ_m, ord) + TaylorSeries.mul!(RotM[3, 2, mo], tmp1261, tmp1262, ord) + TaylorSeries.sincos!(tmp1264, tmp1978, θ_m, ord) + TaylorSeries.sincos!(tmp1265, tmp1979, ψ_m, ord) + TaylorSeries.mul!(RotM[1, 3, mo], tmp1264, tmp1265, ord) + TaylorSeries.sincos!(tmp1980, tmp1267, ψ_m, ord) + TaylorSeries.sincos!(tmp1268, tmp1981, θ_m, ord) + TaylorSeries.mul!(RotM[2, 3, mo], tmp1267, tmp1268, ord) + TaylorSeries.sincos!(tmp1982, RotM[3, 3, mo], θ_m, ord) TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp1928, tmp1216, ϕ_c, ord) - TaylorSeries.mul!(tmp1217, RotM[1, 1, mo], tmp1216, ord) - TaylorSeries.sincos!(tmp1218, tmp1929, ϕ_c, ord) - TaylorSeries.mul!(tmp1219, RotM[1, 2, mo], tmp1218, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp1217, tmp1219, ord) - TaylorSeries.subst!(tmp1221, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp1222, tmp1930, ϕ_c, ord) - TaylorSeries.mul!(tmp1223, tmp1221, tmp1222, ord) - TaylorSeries.sincos!(tmp1931, tmp1224, ϕ_c, ord) - TaylorSeries.mul!(tmp1225, RotM[1, 2, mo], tmp1224, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp1223, tmp1225, ord) + TaylorSeries.sincos!(tmp1983, tmp1271, ϕ_c, ord) + TaylorSeries.mul!(tmp1272, RotM[1, 1, mo], tmp1271, ord) + TaylorSeries.sincos!(tmp1273, tmp1984, ϕ_c, ord) + TaylorSeries.mul!(tmp1274, RotM[1, 2, mo], tmp1273, ord) + TaylorSeries.add!(mantlef2coref[1, 1], tmp1272, tmp1274, ord) + TaylorSeries.subst!(tmp1276, RotM[1, 1, mo], ord) + TaylorSeries.sincos!(tmp1277, tmp1985, ϕ_c, ord) + TaylorSeries.mul!(tmp1278, tmp1276, tmp1277, ord) + TaylorSeries.sincos!(tmp1986, tmp1279, ϕ_c, ord) + TaylorSeries.mul!(tmp1280, RotM[1, 2, mo], tmp1279, ord) + TaylorSeries.add!(mantlef2coref[2, 1], tmp1278, tmp1280, ord) TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp1932, tmp1227, ϕ_c, ord) - TaylorSeries.mul!(tmp1228, RotM[2, 1, mo], tmp1227, ord) - TaylorSeries.sincos!(tmp1229, tmp1933, ϕ_c, ord) - TaylorSeries.mul!(tmp1230, RotM[2, 2, mo], tmp1229, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp1228, tmp1230, ord) - TaylorSeries.subst!(tmp1232, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp1233, tmp1934, ϕ_c, ord) - TaylorSeries.mul!(tmp1234, tmp1232, tmp1233, ord) - TaylorSeries.sincos!(tmp1935, tmp1235, ϕ_c, ord) - TaylorSeries.mul!(tmp1236, RotM[2, 2, mo], tmp1235, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp1234, tmp1236, ord) + TaylorSeries.sincos!(tmp1987, tmp1282, ϕ_c, ord) + TaylorSeries.mul!(tmp1283, RotM[2, 1, mo], tmp1282, ord) + TaylorSeries.sincos!(tmp1284, tmp1988, ϕ_c, ord) + TaylorSeries.mul!(tmp1285, RotM[2, 2, mo], tmp1284, ord) + TaylorSeries.add!(mantlef2coref[1, 2], tmp1283, tmp1285, ord) + TaylorSeries.subst!(tmp1287, RotM[2, 1, mo], ord) + TaylorSeries.sincos!(tmp1288, tmp1989, ϕ_c, ord) + TaylorSeries.mul!(tmp1289, tmp1287, tmp1288, ord) + TaylorSeries.sincos!(tmp1990, tmp1290, ϕ_c, ord) + TaylorSeries.mul!(tmp1291, RotM[2, 2, mo], tmp1290, ord) + TaylorSeries.add!(mantlef2coref[2, 2], tmp1289, tmp1291, ord) TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp1936, tmp1238, ϕ_c, ord) - TaylorSeries.mul!(tmp1239, RotM[3, 1, mo], tmp1238, ord) - TaylorSeries.sincos!(tmp1240, tmp1937, ϕ_c, ord) - TaylorSeries.mul!(tmp1241, RotM[3, 2, mo], tmp1240, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp1239, tmp1241, ord) - TaylorSeries.subst!(tmp1243, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp1244, tmp1938, ϕ_c, ord) - TaylorSeries.mul!(tmp1245, tmp1243, tmp1244, ord) - TaylorSeries.sincos!(tmp1939, tmp1246, ϕ_c, ord) - TaylorSeries.mul!(tmp1247, RotM[3, 2, mo], tmp1246, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp1245, tmp1247, ord) + TaylorSeries.sincos!(tmp1991, tmp1293, ϕ_c, ord) + TaylorSeries.mul!(tmp1294, RotM[3, 1, mo], tmp1293, ord) + TaylorSeries.sincos!(tmp1295, tmp1992, ϕ_c, ord) + TaylorSeries.mul!(tmp1296, RotM[3, 2, mo], tmp1295, ord) + TaylorSeries.add!(mantlef2coref[1, 3], tmp1294, tmp1296, ord) + TaylorSeries.subst!(tmp1298, RotM[3, 1, mo], ord) + TaylorSeries.sincos!(tmp1299, tmp1993, ϕ_c, ord) + TaylorSeries.mul!(tmp1300, tmp1298, tmp1299, ord) + TaylorSeries.sincos!(tmp1994, tmp1301, ϕ_c, ord) + TaylorSeries.mul!(tmp1302, RotM[3, 2, mo], tmp1301, ord) + TaylorSeries.add!(mantlef2coref[2, 3], tmp1300, tmp1302, ord) TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp1249, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp1250, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp1251, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp1252, tmp1250, tmp1251, ord) - TaylorSeries.add!(ω_c_CE_1, tmp1249, tmp1252, ord) - TaylorSeries.mul!(tmp1254, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp1255, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp1256, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp1257, tmp1255, tmp1256, ord) - TaylorSeries.add!(ω_c_CE_2, tmp1254, tmp1257, ord) - TaylorSeries.mul!(tmp1259, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp1260, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp1261, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp1262, tmp1260, tmp1261, ord) - TaylorSeries.add!(ω_c_CE_3, tmp1259, tmp1262, ord) + TaylorSeries.mul!(tmp1304, mantlef2coref[1, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp1305, mantlef2coref[1, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp1306, mantlef2coref[1, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp1307, tmp1305, tmp1306, ord) + TaylorSeries.add!(ω_c_CE_1, tmp1304, tmp1307, ord) + TaylorSeries.mul!(tmp1309, mantlef2coref[2, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp1310, mantlef2coref[2, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp1311, mantlef2coref[2, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp1312, tmp1310, tmp1311, ord) + TaylorSeries.add!(ω_c_CE_2, tmp1309, tmp1312, ord) + TaylorSeries.mul!(tmp1314, mantlef2coref[3, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp1315, mantlef2coref[3, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp1316, mantlef2coref[3, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp1317, tmp1315, tmp1316, ord) + TaylorSeries.add!(ω_c_CE_3, tmp1314, tmp1317, ord) TaylorSeries.identity!(J2_t[su], J2S_t, ord) TaylorSeries.identity!(J2_t[ea], J2E_t, ord) for j = 1:N @@ -1596,35 +4064,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp1271[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp1273[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp1271[3j - 2], tmp1273[3i - 2], ord) - TaylorSeries.mul!(tmp1276[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp1278[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp1276[3j - 1], tmp1278[3i - 1], ord) - TaylorSeries.mul!(tmp1281[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp1283[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp1281[3j], tmp1283[3i], ord) + TaylorSeries.mul!(tmp1326[3j - 2], 4, dq[3j - 2], ord) + TaylorSeries.mul!(tmp1328[3i - 2], 3, dq[3i - 2], ord) + TaylorSeries.subst!(_4U_m_3X[i, j], tmp1326[3j - 2], tmp1328[3i - 2], ord) + TaylorSeries.mul!(tmp1331[3j - 1], 4, dq[3j - 1], ord) + TaylorSeries.mul!(tmp1333[3i - 1], 3, dq[3i - 1], ord) + TaylorSeries.subst!(_4V_m_3Y[i, j], tmp1331[3j - 1], tmp1333[3i - 1], ord) + TaylorSeries.mul!(tmp1336[3j], 4, dq[3j], ord) + TaylorSeries.mul!(tmp1338[3i], 3, dq[3i], ord) + TaylorSeries.subst!(_4W_m_3Z[i, j], tmp1336[3j], tmp1338[3i], ord) TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp1291[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp1291[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp1294[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp1296[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp1297[i, j], tmp1294[i, j], tmp1296[i, j], ord) - TaylorSeries.pow!(tmp1299[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp1297[i, j], tmp1299[i, j], ord) + TaylorSeries.add!(tmp1346[i, j], UU[i, j], VV[i, j], ord) + TaylorSeries.add!(vi_dot_vj[i, j], tmp1346[i, j], WW[i, j], ord) + TaylorSeries.pow!(tmp1349[i, j], X[i, j], 2, ord) + TaylorSeries.pow!(tmp1351[i, j], Y[i, j], 2, ord) + TaylorSeries.add!(tmp1352[i, j], tmp1349[i, j], tmp1351[i, j], ord) + TaylorSeries.pow!(tmp1354[i, j], Z[i, j], 2, ord) + TaylorSeries.add!(r_p2[i, j], tmp1352[i, j], tmp1354[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp1307[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp1308[i, j], tmp1307[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp1308[i, j], ord) + TaylorSeries.add!(tmp1362[i, j], pn2x[i, j], pn2y[i, j], ord) + TaylorSeries.add!(tmp1363[i, j], tmp1362[i, j], pn2z[i, j], ord) + TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp1363[i, j], ord) TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) @@ -1633,39 +4101,39 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp1319[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp1319[i, j], ord) + TaylorSeries.mul!(tmp1374[i, j], X[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp1374[i, j], ord) TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp1321[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp1321[i, j], ord) + TaylorSeries.mul!(tmp1376[i, j], Y[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp1376[i, j], ord) TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp1323[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp1323[i, j], ord) + TaylorSeries.mul!(tmp1378[i, j], Z[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp1378[i, j], ord) TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp1327[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp1329[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp1330[3j - 2], tmp1327[3j - 2], tmp1329[3j - 1], ord) - TaylorSeries.pow!(tmp1332[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp1330[3j - 2], tmp1332[3j], ord) + TaylorSeries.pow!(tmp1382[3j - 2], dq[3j - 2], 2, ord) + TaylorSeries.pow!(tmp1384[3j - 1], dq[3j - 1], 2, ord) + TaylorSeries.add!(tmp1385[3j - 2], tmp1382[3j - 2], tmp1384[3j - 1], ord) + TaylorSeries.pow!(tmp1387[3j], dq[3j], 2, ord) + TaylorSeries.add!(v2[j], tmp1385[3j - 2], tmp1387[3j], ord) end - TaylorSeries.add!(tmp1334, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp1336, tmp1334, 2, ord) - TaylorSeries.subst!(tmp1337, I_M_t[3, 3], tmp1336, ord) - TaylorSeries.div!(J2M_t, tmp1337, μ[mo], ord) - TaylorSeries.subst!(tmp1339, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp1340, tmp1339, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp1340, 4, ord) - TaylorSeries.subst!(tmp1343, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp1343, μ[mo], ord) - TaylorSeries.subst!(tmp1345, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp1345, μ[mo], ord) - TaylorSeries.subst!(tmp1347, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp1348, tmp1347, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp1348, 2, ord) + TaylorSeries.add!(tmp1389, I_M_t[1, 1], I_M_t[2, 2], ord) + TaylorSeries.div!(tmp1391, tmp1389, 2, ord) + TaylorSeries.subst!(tmp1392, I_M_t[3, 3], tmp1391, ord) + TaylorSeries.div!(J2M_t, tmp1392, μ[mo], ord) + TaylorSeries.subst!(tmp1394, I_M_t[2, 2], I_M_t[1, 1], ord) + TaylorSeries.div!(tmp1395, tmp1394, μ[mo], ord) + TaylorSeries.div!(C22M_t, tmp1395, 4, ord) + TaylorSeries.subst!(tmp1398, I_M_t[1, 3], ord) + TaylorSeries.div!(C21M_t, tmp1398, μ[mo], ord) + TaylorSeries.subst!(tmp1400, I_M_t[3, 2], ord) + TaylorSeries.div!(S21M_t, tmp1400, μ[mo], ord) + TaylorSeries.subst!(tmp1402, I_M_t[2, 1], ord) + TaylorSeries.div!(tmp1403, tmp1402, μ[mo], ord) + TaylorSeries.div!(S22M_t, tmp1403, 2, ord) TaylorSeries.identity!(J2_t[mo], J2M_t, ord) for j = 1:N_ext for i = 1:N_ext @@ -1682,17 +4150,17 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp1360[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp1360[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp1362[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp1362[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp1364[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp1364[i, j], Z_bf_3[i, j], ord) + TaylorSeries.add!(tmp1415[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) + TaylorSeries.add!(X_bf[i, j], tmp1415[i, j], X_bf_3[i, j], ord) + TaylorSeries.add!(tmp1417[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) + TaylorSeries.add!(Y_bf[i, j], tmp1417[i, j], Y_bf_3[i, j], ord) + TaylorSeries.add!(tmp1419[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) + TaylorSeries.add!(Z_bf[i, j], tmp1419[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp1368[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp1370[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp1371[i, j], tmp1368[i, j], tmp1370[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp1371[i, j], ord) + TaylorSeries.pow!(tmp1423[i, j], X_bf[i, j], 2, ord) + TaylorSeries.pow!(tmp1425[i, j], Y_bf[i, j], 2, ord) + TaylorSeries.add!(tmp1426[i, j], tmp1423[i, j], tmp1425[i, j], ord) + TaylorSeries.sqrt!(r_xy[i, j], tmp1426[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) @@ -1701,35 +4169,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp1376[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1377[i, j, n], tmp1376[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp1378[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp1377[i, j, n], tmp1378[i, j, n - 1], ord) - TaylorSeries.mul!(tmp1380[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1381[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp1380[i, j, n], tmp1381[i, j, n], ord) + TaylorSeries.mul!(tmp1431[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1432[i, j, n], tmp1431[i, j, n], fact1_jsem[n], ord) + TaylorSeries.mul!(tmp1433[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) + TaylorSeries.subst!(P_n[i, j, n + 1], tmp1432[i, j, n], tmp1433[i, j, n - 1], ord) + TaylorSeries.mul!(tmp1435[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1436[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) + TaylorSeries.add!(dP_n[i, j, n + 1], tmp1435[i, j, n], tmp1436[i, j, n], ord) TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) end TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp1386[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp1387[i, j, 3], tmp1386[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp1387[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp1389[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp1390[i, j, 3], tmp1389[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1391[i, j, 3], tmp1390[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp1391[i, j, 3], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1441[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) + TaylorSeries.mul!(tmp1442[i, j, 3], tmp1441[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ξ[i, j], tmp1442[i, j, 3], r_p4[i, j], ord) + TaylorSeries.subst!(tmp1444[i, j, 3], dP_n[i, j, 3], ord) + TaylorSeries.mul!(tmp1445[i, j, 3], tmp1444[i, j, 3], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1446[i, j, 3], tmp1445[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ζ[i, j], tmp1446[i, j, 3], r_p4[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp1393[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp1394[i, j, n + 1], tmp1393[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp1395[i, j, n + 1], tmp1394[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp1395[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp1397[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp1398[i, j, n + 1], tmp1397[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1399[i, j, n + 1], tmp1398[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp1400[i, j, n + 1], tmp1399[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp1400[i, j, n + 1], F_J_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp1448[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) + TaylorSeries.mul!(tmp1449[i, j, n + 1], tmp1448[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp1450[i, j, n + 1], tmp1449[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjξ[i, j, n], tmp1450[i, j, n + 1], F_J_ξ_36[i, j], ord) + TaylorSeries.subst!(tmp1452[i, j, n + 1], dP_n[i, j, n + 1], ord) + TaylorSeries.mul!(tmp1453[i, j, n + 1], tmp1452[i, j, n + 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1454[i, j, n + 1], tmp1453[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp1455[i, j, n + 1], tmp1454[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjζ[i, j, n], tmp1455[i, j, n + 1], F_J_ζ_36[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) end @@ -1742,69 +4210,69 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) else - TaylorSeries.mul!(tmp1403[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1404[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp1403[i, j, m - 1], tmp1404[i, j, m - 1], ord) - TaylorSeries.mul!(tmp1406[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1407[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp1406[i, j, m - 1], tmp1407[i, j, m - 1], ord) - TaylorSeries.mul!(tmp1409[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp1409[i, j, m - 1, m - 1], lnm5[m], ord) + TaylorSeries.mul!(tmp1458[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1459[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.add!(sin_mλ[i, j, m], tmp1458[i, j, m - 1], tmp1459[i, j, m - 1], ord) + TaylorSeries.mul!(tmp1461[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1462[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(cos_mλ[i, j, m], tmp1461[i, j, m - 1], tmp1462[i, j, m - 1], ord) + TaylorSeries.mul!(tmp1464[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp1464[i, j, m - 1, m - 1], lnm5[m], ord) TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1412[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp1412[i, j, m, m], lnm3[m], ord) + TaylorSeries.mul!(tmp1467[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp1467[i, j, m, m], lnm3[m], ord) end for n = m + 1:n1SEM[mo] if n == m + 1 - TaylorSeries.mul!(tmp1414[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp1414[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp1469[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp1469[i, j, n - 1, m], lnm1[n, m], ord) else - TaylorSeries.mul!(tmp1416[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1417[i, j, n - 1, m], tmp1416[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp1418[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp1417[i, j, n - 1, m], tmp1418[i, j, n - 2, m], ord) + TaylorSeries.mul!(tmp1471[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1472[i, j, n - 1, m], tmp1471[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp1473[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) + TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp1472[i, j, n - 1, m], tmp1473[i, j, n - 2, m], ord) end TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1421[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1422[i, j, n, m], tmp1421[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp1423[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp1422[i, j, n, m], tmp1423[i, j, n - 1, m], ord) + TaylorSeries.mul!(tmp1476[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp1477[i, j, n, m], tmp1476[i, j, n, m], lnm3[n], ord) + TaylorSeries.mul!(tmp1478[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) + TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp1477[i, j, n, m], tmp1478[i, j, n - 1, m], ord) end end - TaylorSeries.mul!(tmp1425[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp1426[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1427[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp1428[i, j, 1], tmp1426[i, j, 1], tmp1427[i, j, 1], ord) - TaylorSeries.mul!(tmp1429[i, j, 2, 1], tmp1425[i, j, 2, 1], tmp1428[i, j, 1], ord) - TaylorSeries.mul!(tmp1430[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp1431[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp1432[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp1433[i, j, 2], tmp1431[i, j, 2], tmp1432[i, j, 2], ord) - TaylorSeries.mul!(tmp1434[i, j, 2, 2], tmp1430[i, j, 2, 2], tmp1433[i, j, 2], ord) - TaylorSeries.add!(tmp1435[i, j, 2, 1], tmp1429[i, j, 2, 1], tmp1434[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp1435[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp1437[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp1438[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1439[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp1440[i, j, 1], tmp1438[i, j, 1], tmp1439[i, j, 1], ord) - TaylorSeries.mul!(tmp1441[i, j, 2, 1], tmp1437[i, j, 2, 1], tmp1440[i, j, 1], ord) - TaylorSeries.mul!(tmp1442[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp1443[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp1444[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp1445[i, j, 2], tmp1443[i, j, 2], tmp1444[i, j, 2], ord) - TaylorSeries.mul!(tmp1446[i, j, 2, 2], tmp1442[i, j, 2, 2], tmp1445[i, j, 2], ord) - TaylorSeries.add!(tmp1447[i, j, 2, 1], tmp1441[i, j, 2, 1], tmp1446[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp1447[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp1449[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp1450[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp1451[i, j, 1], tmp1449[i, j, 1], tmp1450[i, j, 1], ord) - TaylorSeries.mul!(tmp1452[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp1451[i, j, 1], ord) - TaylorSeries.mul!(tmp1453[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp1454[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp1455[i, j, 2], tmp1453[i, j, 2], tmp1454[i, j, 2], ord) - TaylorSeries.mul!(tmp1456[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp1455[i, j, 2], ord) - TaylorSeries.add!(tmp1457[i, j, 2, 1], tmp1452[i, j, 2, 1], tmp1456[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp1457[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1480[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) + TaylorSeries.mul!(tmp1481[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1482[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp1483[i, j, 1], tmp1481[i, j, 1], tmp1482[i, j, 1], ord) + TaylorSeries.mul!(tmp1484[i, j, 2, 1], tmp1480[i, j, 2, 1], tmp1483[i, j, 1], ord) + TaylorSeries.mul!(tmp1485[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) + TaylorSeries.mul!(tmp1486[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp1487[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp1488[i, j, 2], tmp1486[i, j, 2], tmp1487[i, j, 2], ord) + TaylorSeries.mul!(tmp1489[i, j, 2, 2], tmp1485[i, j, 2, 2], tmp1488[i, j, 2], ord) + TaylorSeries.add!(tmp1490[i, j, 2, 1], tmp1484[i, j, 2, 1], tmp1489[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ξ[i, j], tmp1490[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1492[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) + TaylorSeries.mul!(tmp1493[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1494[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(tmp1495[i, j, 1], tmp1493[i, j, 1], tmp1494[i, j, 1], ord) + TaylorSeries.mul!(tmp1496[i, j, 2, 1], tmp1492[i, j, 2, 1], tmp1495[i, j, 1], ord) + TaylorSeries.mul!(tmp1497[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) + TaylorSeries.mul!(tmp1498[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp1499[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.subst!(tmp1500[i, j, 2], tmp1498[i, j, 2], tmp1499[i, j, 2], ord) + TaylorSeries.mul!(tmp1501[i, j, 2, 2], tmp1497[i, j, 2, 2], tmp1500[i, j, 2], ord) + TaylorSeries.add!(tmp1502[i, j, 2, 1], tmp1496[i, j, 2, 1], tmp1501[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_η[i, j], tmp1502[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp1504[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp1505[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp1506[i, j, 1], tmp1504[i, j, 1], tmp1505[i, j, 1], ord) + TaylorSeries.mul!(tmp1507[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp1506[i, j, 1], ord) + TaylorSeries.mul!(tmp1508[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp1509[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp1510[i, j, 2], tmp1508[i, j, 2], tmp1509[i, j, 2], ord) + TaylorSeries.mul!(tmp1511[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp1510[i, j, 2], ord) + TaylorSeries.add!(tmp1512[i, j, 2, 1], tmp1507[i, j, 2, 1], tmp1511[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ζ[i, j], tmp1512[i, j, 2, 1], r_p4[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) @@ -1814,32 +4282,32 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp1463[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp1464[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp1465[i, j, n, m], tmp1463[i, j, n, m], tmp1464[i, j, n, m], ord) - TaylorSeries.div!(tmp1466[i, j, n, m], tmp1465[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp1466[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp1468[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp1469[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp1470[i, j, n, m], tmp1468[i, j, n, m], tmp1469[i, j, n, m], ord) - TaylorSeries.div!(tmp1471[i, j, n, m], tmp1470[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp1471[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp1473[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp1474[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp1473[i, j, n, m], ord) - TaylorSeries.div!(tmp1475[i, j, n, m], tmp1474[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp1475[i, j, n, m], F_CS_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp1518[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) + TaylorSeries.add!(tmp1519[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp1520[i, j, n, m], tmp1518[i, j, n, m], tmp1519[i, j, n, m], ord) + TaylorSeries.div!(tmp1521[i, j, n, m], tmp1520[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp1521[i, j, n, m], F_CS_ξ_36[i, j], ord) + TaylorSeries.mul!(tmp1523[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) + TaylorSeries.subst!(tmp1524[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp1525[i, j, n, m], tmp1523[i, j, n, m], tmp1524[i, j, n, m], ord) + TaylorSeries.div!(tmp1526[i, j, n, m], tmp1525[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp1526[i, j, n, m], F_CS_η_36[i, j], ord) + TaylorSeries.add!(tmp1528[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp1529[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp1528[i, j, n, m], ord) + TaylorSeries.div!(tmp1530[i, j, n, m], tmp1529[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp1530[i, j, n, m], F_CS_ζ_36[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) end end - TaylorSeries.add!(tmp1477[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp1478[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp1477[i, j], tmp1478[i, j], ord) + TaylorSeries.add!(tmp1532[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) + TaylorSeries.add!(tmp1533[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ξ[i, j], tmp1532[i, j], tmp1533[i, j], ord) TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp1481[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp1482[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp1481[i, j], tmp1482[i, j], ord) + TaylorSeries.add!(tmp1536[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) + TaylorSeries.add!(tmp1537[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ζ[i, j], tmp1536[i, j], tmp1537[i, j], ord) else TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) @@ -1847,75 +4315,75 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 end TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp1488[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp1488[i, j], cos_λ[i, j], ord) + TaylorSeries.subst!(tmp1543[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp1543[i, j], cos_λ[i, j], ord) TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp1491[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp1491[i, j], sin_λ[i, j], ord) + TaylorSeries.subst!(tmp1546[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp1546[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp1493[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp1494[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp1495[i, j, 1, 1], tmp1493[i, j, 1, 1], tmp1494[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1496[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp1495[i, j, 1, 1], tmp1496[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1498[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp1499[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp1500[i, j, 2, 1], tmp1498[i, j, 2, 1], tmp1499[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1501[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp1500[i, j, 2, 1], tmp1501[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1503[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp1504[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp1505[i, j, 3, 1], tmp1503[i, j, 3, 1], tmp1504[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1506[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp1505[i, j, 3, 1], tmp1506[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp1508[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp1509[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp1510[i, j, 1, 1], tmp1508[i, j, 1, 1], tmp1509[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1511[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp1510[i, j, 1, 1], tmp1511[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1513[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp1514[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp1515[i, j, 2, 1], tmp1513[i, j, 2, 1], tmp1514[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1516[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp1515[i, j, 2, 1], tmp1516[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1518[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp1519[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp1520[i, j, 3, 1], tmp1518[i, j, 3, 1], tmp1519[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1521[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp1520[i, j, 3, 1], tmp1521[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp1523[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp1524[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp1525[i, j, 1, 1], tmp1523[i, j, 1, 1], tmp1524[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1526[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp1525[i, j, 1, 1], tmp1526[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1528[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp1529[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp1530[i, j, 2, 1], tmp1528[i, j, 2, 1], tmp1529[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1531[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp1530[i, j, 2, 1], tmp1531[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1533[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp1534[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp1535[i, j, 3, 1], tmp1533[i, j, 3, 1], tmp1534[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1536[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp1535[i, j, 3, 1], tmp1536[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp1538[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp1539[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp1540[i, j, 1, 1], tmp1538[i, j, 1, 1], tmp1539[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp1541[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp1540[i, j, 1, 1], tmp1541[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp1543[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp1544[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp1545[i, j, 1, 2], tmp1543[i, j, 1, 2], tmp1544[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp1546[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp1545[i, j, 1, 2], tmp1546[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp1548[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp1549[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp1550[i, j, 1, 3], tmp1548[i, j, 1, 3], tmp1549[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp1551[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp1550[i, j, 1, 3], tmp1551[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1548[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp1549[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp1550[i, j, 1, 1], tmp1548[i, j, 1, 1], tmp1549[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1551[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp1550[i, j, 1, 1], tmp1551[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1553[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp1554[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp1555[i, j, 2, 1], tmp1553[i, j, 2, 1], tmp1554[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1556[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp1555[i, j, 2, 1], tmp1556[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1558[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp1559[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp1560[i, j, 3, 1], tmp1558[i, j, 3, 1], tmp1559[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1561[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp1560[i, j, 3, 1], tmp1561[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1563[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp1564[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp1565[i, j, 1, 1], tmp1563[i, j, 1, 1], tmp1564[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1566[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp1565[i, j, 1, 1], tmp1566[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1568[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp1569[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp1570[i, j, 2, 1], tmp1568[i, j, 2, 1], tmp1569[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1571[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp1570[i, j, 2, 1], tmp1571[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1573[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp1574[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp1575[i, j, 3, 1], tmp1573[i, j, 3, 1], tmp1574[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1576[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp1575[i, j, 3, 1], tmp1576[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1578[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp1579[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp1580[i, j, 1, 1], tmp1578[i, j, 1, 1], tmp1579[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1581[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp1580[i, j, 1, 1], tmp1581[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1583[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp1584[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp1585[i, j, 2, 1], tmp1583[i, j, 2, 1], tmp1584[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1586[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp1585[i, j, 2, 1], tmp1586[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1588[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp1589[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp1590[i, j, 3, 1], tmp1588[i, j, 3, 1], tmp1589[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1591[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp1590[i, j, 3, 1], tmp1591[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp1593[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) + TaylorSeries.mul!(tmp1594[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) + TaylorSeries.add!(tmp1595[i, j, 1, 1], tmp1593[i, j, 1, 1], tmp1594[i, j, 2, 1], ord) + TaylorSeries.mul!(tmp1596[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) + TaylorSeries.add!(F_JCS_x[i, j], tmp1595[i, j, 1, 1], tmp1596[i, j, 3, 1], ord) + TaylorSeries.mul!(tmp1598[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp1599[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) + TaylorSeries.add!(tmp1600[i, j, 1, 2], tmp1598[i, j, 1, 2], tmp1599[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp1601[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) + TaylorSeries.add!(F_JCS_y[i, j], tmp1600[i, j, 1, 2], tmp1601[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp1603[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp1604[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) + TaylorSeries.add!(tmp1605[i, j, 1, 3], tmp1603[i, j, 1, 3], tmp1604[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp1606[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) + TaylorSeries.add!(F_JCS_z[i, j], tmp1605[i, j, 1, 3], tmp1606[i, j, 3, 3], ord) end end end @@ -1926,45 +4394,45 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 continue else if UJ_interaction[i, j] - TaylorSeries.mul!(tmp1553[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp1553[i, j], ord) + TaylorSeries.mul!(tmp1608[i, j], μ[i], F_JCS_x[i, j], ord) + TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp1608[i, j], ord) TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp1555[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp1555[i, j], ord) + TaylorSeries.mul!(tmp1610[i, j], μ[i], F_JCS_y[i, j], ord) + TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp1610[i, j], ord) TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp1557[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp1557[i, j], ord) + TaylorSeries.mul!(tmp1612[i, j], μ[i], F_JCS_z[i, j], ord) + TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp1612[i, j], ord) TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp1559[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp1559[i, j], ord) + TaylorSeries.mul!(tmp1614[i, j], μ[j], F_JCS_x[i, j], ord) + TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp1614[i, j], ord) TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp1561[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp1561[i, j], ord) + TaylorSeries.mul!(tmp1616[i, j], μ[j], F_JCS_y[i, j], ord) + TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp1616[i, j], ord) TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp1563[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp1563[i, j], ord) + TaylorSeries.mul!(tmp1618[i, j], μ[j], F_JCS_z[i, j], ord) + TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp1618[i, j], ord) TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) if j == mo - TaylorSeries.mul!(tmp1565[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp1566[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp1567[i, j], tmp1565[i, j], tmp1566[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp1567[i, j], ord) - TaylorSeries.mul!(tmp1569[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp1570[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp1571[i, j], tmp1569[i, j], tmp1570[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp1571[i, j], ord) - TaylorSeries.mul!(tmp1573[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp1574[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp1575[i, j], tmp1573[i, j], tmp1574[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp1575[i, j], ord) - TaylorSeries.mul!(tmp1577[i], N_MfigM_pmA_x[i], μ[j], ord) - TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], tmp1577[i], ord) + TaylorSeries.mul!(tmp1620[i, j], Y[i, j], F_JCS_z[i, j], ord) + TaylorSeries.mul!(tmp1621[i, j], Z[i, j], F_JCS_y[i, j], ord) + TaylorSeries.subst!(tmp1622[i, j], tmp1620[i, j], tmp1621[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp1622[i, j], ord) + TaylorSeries.mul!(tmp1624[i, j], Z[i, j], F_JCS_x[i, j], ord) + TaylorSeries.mul!(tmp1625[i, j], X[i, j], F_JCS_z[i, j], ord) + TaylorSeries.subst!(tmp1626[i, j], tmp1624[i, j], tmp1625[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp1626[i, j], ord) + TaylorSeries.mul!(tmp1628[i, j], X[i, j], F_JCS_y[i, j], ord) + TaylorSeries.mul!(tmp1629[i, j], Y[i, j], F_JCS_x[i, j], ord) + TaylorSeries.subst!(tmp1630[i, j], tmp1628[i, j], tmp1629[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp1630[i, j], ord) + TaylorSeries.mul!(tmp1632[i], N_MfigM_pmA_x[i], μ[j], ord) + TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], tmp1632[i], ord) TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) - TaylorSeries.mul!(tmp1579[i], N_MfigM_pmA_y[i], μ[j], ord) - TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], tmp1579[i], ord) + TaylorSeries.mul!(tmp1634[i], N_MfigM_pmA_y[i], μ[j], ord) + TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], tmp1634[i], ord) TaylorSeries.identity!(N_MfigM[2], temp_N_M_y[i], ord) - TaylorSeries.mul!(tmp1581[i], N_MfigM_pmA_z[i], μ[j], ord) - TaylorSeries.subst!(temp_N_M_z[i], N_MfigM[3], tmp1581[i], ord) + TaylorSeries.mul!(tmp1636[i], N_MfigM_pmA_z[i], μ[j], ord) + TaylorSeries.subst!(temp_N_M_z[i], N_MfigM[3], tmp1636[i], ord) TaylorSeries.identity!(N_MfigM[3], temp_N_M_z[i], ord) end end @@ -1980,18 +4448,18 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp1590[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp1590[i, j], ord) + TaylorSeries.mul!(tmp1645[i, j], 4, vi_dot_vj[i, j], ord) + TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp1645[i, j], ord) TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp1596[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp1596[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp1599[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(pn1t7[i, j], tmp1599[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp1602[i, j], 1.5, pn1t7[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp1602[i, j], ord) + TaylorSeries.add!(tmp1651[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) + TaylorSeries.add!(Rij_dot_Vi[i, j], tmp1651[i, j], Zij_t_Wi[i, j], ord) + TaylorSeries.pow!(tmp1654[i, j], Rij_dot_Vi[i, j], 2, ord) + TaylorSeries.div!(pn1t7[i, j], tmp1654[i, j], r_p2[i, j], ord) + TaylorSeries.mul!(tmp1657[i, j], 1.5, pn1t7[i, j], ord) + TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp1657[i, j], ord) TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) end end @@ -2007,26 +4475,26 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp1609[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp1610[i, j], tmp1609[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp1611[i, j], 0.5, tmp1610[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp1611[i, j], ord) + TaylorSeries.add!(tmp1664[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) + TaylorSeries.add!(tmp1665[i, j], tmp1664[i, j], pNZ_t_Z[i, j], ord) + TaylorSeries.mul!(tmp1666[i, j], 0.5, tmp1665[i, j], ord) + TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp1666[i, j], ord) TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp1619[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp1619[i, j], ord) + TaylorSeries.add!(tmp1674[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) + TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp1674[i, j], ord) TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp1622[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp1622[i, j], ord) + TaylorSeries.add!(tmp1677[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) + TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp1677[i, j], ord) TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp1625[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp1625[i, j], ord) + TaylorSeries.add!(tmp1680[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) + TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp1680[i, j], ord) TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) end @@ -2045,264 +4513,264 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) end - TaylorSeries.mul!(tmp1634, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1635, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1636, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1637, tmp1635, tmp1636, ord) - TaylorSeries.add!(Iω_x, tmp1634, tmp1637, ord) - TaylorSeries.mul!(tmp1639, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1640, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1641, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1642, tmp1640, tmp1641, ord) - TaylorSeries.add!(Iω_y, tmp1639, tmp1642, ord) - TaylorSeries.mul!(tmp1644, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1645, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1646, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1647, tmp1645, tmp1646, ord) - TaylorSeries.add!(Iω_z, tmp1644, tmp1647, ord) - TaylorSeries.mul!(tmp1649, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp1650, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp1649, tmp1650, ord) - TaylorSeries.mul!(tmp1652, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp1653, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp1652, tmp1653, ord) - TaylorSeries.mul!(tmp1655, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp1656, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp1655, tmp1656, ord) - TaylorSeries.mul!(tmp1658, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1659, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1660, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1661, tmp1659, tmp1660, ord) - TaylorSeries.add!(dIω_x, tmp1658, tmp1661, ord) - TaylorSeries.mul!(tmp1663, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1664, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1665, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1666, tmp1664, tmp1665, ord) - TaylorSeries.add!(dIω_y, tmp1663, tmp1666, ord) - TaylorSeries.mul!(tmp1668, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp1669, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp1670, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp1671, tmp1669, tmp1670, ord) - TaylorSeries.add!(dIω_z, tmp1668, tmp1671, ord) + TaylorSeries.mul!(tmp1689, I_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1690, I_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1691, I_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1692, tmp1690, tmp1691, ord) + TaylorSeries.add!(Iω_x, tmp1689, tmp1692, ord) + TaylorSeries.mul!(tmp1694, I_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1695, I_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1696, I_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1697, tmp1695, tmp1696, ord) + TaylorSeries.add!(Iω_y, tmp1694, tmp1697, ord) + TaylorSeries.mul!(tmp1699, I_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1700, I_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1701, I_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1702, tmp1700, tmp1701, ord) + TaylorSeries.add!(Iω_z, tmp1699, tmp1702, ord) + TaylorSeries.mul!(tmp1704, q[6N + 5], Iω_z, ord) + TaylorSeries.mul!(tmp1705, q[6N + 6], Iω_y, ord) + TaylorSeries.subst!(ωxIω_x, tmp1704, tmp1705, ord) + TaylorSeries.mul!(tmp1707, q[6N + 6], Iω_x, ord) + TaylorSeries.mul!(tmp1708, q[6N + 4], Iω_z, ord) + TaylorSeries.subst!(ωxIω_y, tmp1707, tmp1708, ord) + TaylorSeries.mul!(tmp1710, q[6N + 4], Iω_y, ord) + TaylorSeries.mul!(tmp1711, q[6N + 5], Iω_x, ord) + TaylorSeries.subst!(ωxIω_z, tmp1710, tmp1711, ord) + TaylorSeries.mul!(tmp1713, dI_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1714, dI_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1715, dI_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1716, tmp1714, tmp1715, ord) + TaylorSeries.add!(dIω_x, tmp1713, tmp1716, ord) + TaylorSeries.mul!(tmp1718, dI_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1719, dI_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1720, dI_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1721, tmp1719, tmp1720, ord) + TaylorSeries.add!(dIω_y, tmp1718, tmp1721, ord) + TaylorSeries.mul!(tmp1723, dI_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp1724, dI_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp1725, dI_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp1726, tmp1724, tmp1725, ord) + TaylorSeries.add!(dIω_z, tmp1723, tmp1726, ord) TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp1676, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp1677, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp1678, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp1679, tmp1677, tmp1678, ord) - TaylorSeries.add!(er_EM_1, tmp1676, tmp1679, ord) - TaylorSeries.mul!(tmp1681, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp1682, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp1683, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp1684, tmp1682, tmp1683, ord) - TaylorSeries.add!(er_EM_2, tmp1681, tmp1684, ord) - TaylorSeries.mul!(tmp1686, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp1687, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp1688, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp1689, tmp1687, tmp1688, ord) - TaylorSeries.add!(er_EM_3, tmp1686, tmp1689, ord) - TaylorSeries.mul!(tmp1691, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp1692, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp1693, RotM[1, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp1694, tmp1692, tmp1693, ord) - TaylorSeries.add!(p_E_1, tmp1691, tmp1694, ord) - TaylorSeries.mul!(tmp1696, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp1697, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp1698, RotM[2, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp1699, tmp1697, tmp1698, ord) - TaylorSeries.add!(p_E_2, tmp1696, tmp1699, ord) - TaylorSeries.mul!(tmp1701, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp1702, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp1703, RotM[3, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp1704, tmp1702, tmp1703, ord) - TaylorSeries.add!(p_E_3, tmp1701, tmp1704, ord) - TaylorSeries.mul!(tmp1706, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp1707, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp1708, I_m_t[1, 3], er_EM_3, ord) - TaylorSeries.add!(tmp1709, tmp1707, tmp1708, ord) - TaylorSeries.add!(I_er_EM_1, tmp1706, tmp1709, ord) - TaylorSeries.mul!(tmp1711, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp1712, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp1713, I_m_t[2, 3], er_EM_3, ord) - TaylorSeries.add!(tmp1714, tmp1712, tmp1713, ord) - TaylorSeries.add!(I_er_EM_2, tmp1711, tmp1714, ord) - TaylorSeries.mul!(tmp1716, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp1717, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp1718, I_m_t[3, 3], er_EM_3, ord) - TaylorSeries.add!(tmp1719, tmp1717, tmp1718, ord) - TaylorSeries.add!(I_er_EM_3, tmp1716, tmp1719, ord) - TaylorSeries.mul!(tmp1721, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp1722, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp1723, I_m_t[1, 3], p_E_3, ord) - TaylorSeries.add!(tmp1724, tmp1722, tmp1723, ord) - TaylorSeries.add!(I_p_E_1, tmp1721, tmp1724, ord) - TaylorSeries.mul!(tmp1726, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp1727, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp1728, I_m_t[2, 3], p_E_3, ord) - TaylorSeries.add!(tmp1729, tmp1727, tmp1728, ord) - TaylorSeries.add!(I_p_E_2, tmp1726, tmp1729, ord) - TaylorSeries.mul!(tmp1731, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp1732, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp1733, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.mul!(tmp1731, RotM[1, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp1732, RotM[1, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp1733, RotM[1, 3, mo], er_EM_I_3, ord) TaylorSeries.add!(tmp1734, tmp1732, tmp1733, ord) - TaylorSeries.add!(I_p_E_3, tmp1731, tmp1734, ord) - TaylorSeries.mul!(tmp1736, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp1737, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp1736, tmp1737, ord) - TaylorSeries.mul!(tmp1739, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp1740, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp1739, tmp1740, ord) - TaylorSeries.mul!(tmp1742, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp1743, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp1742, tmp1743, ord) - TaylorSeries.mul!(tmp1745, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp1746, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp1745, tmp1746, ord) - TaylorSeries.mul!(tmp1748, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp1749, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp1748, tmp1749, ord) - TaylorSeries.mul!(tmp1751, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp1752, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp1751, tmp1752, ord) - TaylorSeries.mul!(tmp1754, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp1755, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp1754, tmp1755, ord) - TaylorSeries.mul!(tmp1757, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp1758, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp1757, tmp1758, ord) - TaylorSeries.mul!(tmp1760, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp1761, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp1760, tmp1761, ord) - TaylorSeries.mul!(tmp1763, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp1764, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp1763, tmp1764, ord) - TaylorSeries.mul!(tmp1766, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp1767, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp1766, tmp1767, ord) - TaylorSeries.mul!(tmp1769, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp1770, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp1769, tmp1770, ord) - TaylorSeries.pow!(tmp1774, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp1775, 7, tmp1774, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp1775, ord) + TaylorSeries.add!(er_EM_1, tmp1731, tmp1734, ord) + TaylorSeries.mul!(tmp1736, RotM[2, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp1737, RotM[2, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp1738, RotM[2, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp1739, tmp1737, tmp1738, ord) + TaylorSeries.add!(er_EM_2, tmp1736, tmp1739, ord) + TaylorSeries.mul!(tmp1741, RotM[3, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp1742, RotM[3, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp1743, RotM[3, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp1744, tmp1742, tmp1743, ord) + TaylorSeries.add!(er_EM_3, tmp1741, tmp1744, ord) + TaylorSeries.mul!(tmp1746, RotM[1, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp1747, RotM[1, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp1748, RotM[1, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp1749, tmp1747, tmp1748, ord) + TaylorSeries.add!(p_E_1, tmp1746, tmp1749, ord) + TaylorSeries.mul!(tmp1751, RotM[2, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp1752, RotM[2, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp1753, RotM[2, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp1754, tmp1752, tmp1753, ord) + TaylorSeries.add!(p_E_2, tmp1751, tmp1754, ord) + TaylorSeries.mul!(tmp1756, RotM[3, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp1757, RotM[3, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp1758, RotM[3, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp1759, tmp1757, tmp1758, ord) + TaylorSeries.add!(p_E_3, tmp1756, tmp1759, ord) + TaylorSeries.mul!(tmp1761, I_m_t[1, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp1762, I_m_t[1, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp1763, I_m_t[1, 3], er_EM_3, ord) + TaylorSeries.add!(tmp1764, tmp1762, tmp1763, ord) + TaylorSeries.add!(I_er_EM_1, tmp1761, tmp1764, ord) + TaylorSeries.mul!(tmp1766, I_m_t[2, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp1767, I_m_t[2, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp1768, I_m_t[2, 3], er_EM_3, ord) + TaylorSeries.add!(tmp1769, tmp1767, tmp1768, ord) + TaylorSeries.add!(I_er_EM_2, tmp1766, tmp1769, ord) + TaylorSeries.mul!(tmp1771, I_m_t[3, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp1772, I_m_t[3, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp1773, I_m_t[3, 3], er_EM_3, ord) + TaylorSeries.add!(tmp1774, tmp1772, tmp1773, ord) + TaylorSeries.add!(I_er_EM_3, tmp1771, tmp1774, ord) + TaylorSeries.mul!(tmp1776, I_m_t[1, 1], p_E_1, ord) + TaylorSeries.mul!(tmp1777, I_m_t[1, 2], p_E_2, ord) + TaylorSeries.mul!(tmp1778, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(tmp1779, tmp1777, tmp1778, ord) + TaylorSeries.add!(I_p_E_1, tmp1776, tmp1779, ord) + TaylorSeries.mul!(tmp1781, I_m_t[2, 1], p_E_1, ord) + TaylorSeries.mul!(tmp1782, I_m_t[2, 2], p_E_2, ord) + TaylorSeries.mul!(tmp1783, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(tmp1784, tmp1782, tmp1783, ord) + TaylorSeries.add!(I_p_E_2, tmp1781, tmp1784, ord) + TaylorSeries.mul!(tmp1786, I_m_t[3, 1], p_E_1, ord) + TaylorSeries.mul!(tmp1787, I_m_t[3, 2], p_E_2, ord) + TaylorSeries.mul!(tmp1788, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(tmp1789, tmp1787, tmp1788, ord) + TaylorSeries.add!(I_p_E_3, tmp1786, tmp1789, ord) + TaylorSeries.mul!(tmp1791, er_EM_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp1792, er_EM_3, I_er_EM_2, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp1791, tmp1792, ord) + TaylorSeries.mul!(tmp1794, er_EM_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp1795, er_EM_1, I_er_EM_3, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp1794, tmp1795, ord) + TaylorSeries.mul!(tmp1797, er_EM_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp1798, er_EM_2, I_er_EM_1, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp1797, tmp1798, ord) + TaylorSeries.mul!(tmp1800, er_EM_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp1801, er_EM_3, I_p_E_2, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp1800, tmp1801, ord) + TaylorSeries.mul!(tmp1803, er_EM_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp1804, er_EM_1, I_p_E_3, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp1803, tmp1804, ord) + TaylorSeries.mul!(tmp1806, er_EM_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp1807, er_EM_2, I_p_E_1, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp1806, tmp1807, ord) + TaylorSeries.mul!(tmp1809, p_E_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp1810, p_E_3, I_er_EM_2, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp1809, tmp1810, ord) + TaylorSeries.mul!(tmp1812, p_E_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp1813, p_E_1, I_er_EM_3, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp1812, tmp1813, ord) + TaylorSeries.mul!(tmp1815, p_E_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp1816, p_E_2, I_er_EM_1, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp1815, tmp1816, ord) + TaylorSeries.mul!(tmp1818, p_E_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp1819, p_E_3, I_p_E_2, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp1818, tmp1819, ord) + TaylorSeries.mul!(tmp1821, p_E_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp1822, p_E_1, I_p_E_3, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp1821, tmp1822, ord) + TaylorSeries.mul!(tmp1824, p_E_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp1825, p_E_2, I_p_E_1, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp1824, tmp1825, ord) + TaylorSeries.pow!(tmp1829, sin_ϕ[ea, mo], 2, ord) + TaylorSeries.mul!(tmp1830, 7, tmp1829, ord) + TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp1830, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp1780, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp1780, ord) - TaylorSeries.mul!(tmp1782, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp1783, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp1784, two_sinϕEM, tmp1783, ord) - TaylorSeries.add!(tmp1785, tmp1782, tmp1784, ord) - TaylorSeries.mul!(tmp1787, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp1788, tmp1785, tmp1787, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp1788, ord) - TaylorSeries.mul!(tmp1790, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp1791, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp1792, two_sinϕEM, tmp1791, ord) - TaylorSeries.add!(tmp1793, tmp1790, tmp1792, ord) - TaylorSeries.mul!(tmp1795, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp1796, tmp1793, tmp1795, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp1796, ord) - TaylorSeries.mul!(tmp1798, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp1799, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp1800, two_sinϕEM, tmp1799, ord) - TaylorSeries.add!(tmp1801, tmp1798, tmp1800, ord) - TaylorSeries.mul!(tmp1803, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp1804, tmp1801, tmp1803, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp1804, ord) - TaylorSeries.mul!(tmp1806, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp1807, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp1808, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp1809, tmp1807, tmp1808, ord) - TaylorSeries.add!(N_1_LMF, tmp1806, tmp1809, ord) - TaylorSeries.mul!(tmp1811, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp1812, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp1813, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp1814, tmp1812, tmp1813, ord) - TaylorSeries.add!(N_2_LMF, tmp1811, tmp1814, ord) - TaylorSeries.mul!(tmp1816, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp1817, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp1818, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp1819, tmp1817, tmp1818, ord) - TaylorSeries.add!(N_3_LMF, tmp1816, tmp1819, ord) - TaylorSeries.subst!(tmp1821, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp1822, k_ν, tmp1821, ord) - TaylorSeries.mul!(tmp1823, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp1824, tmp1823, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp1822, tmp1824, ord) - TaylorSeries.subst!(tmp1826, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp1827, k_ν, tmp1826, ord) - TaylorSeries.mul!(tmp1828, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp1829, tmp1828, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp1827, tmp1829, ord) - TaylorSeries.subst!(tmp1831, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp1831, ord) - TaylorSeries.add!(tmp1833, N_1_LMF, N_MfigM_figE_1, ord) - TaylorSeries.add!(tmp1834, tmp1833, N_cmb_1, ord) - TaylorSeries.add!(tmp1835, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp1834, tmp1835, ord) - TaylorSeries.add!(tmp1837, N_2_LMF, N_MfigM_figE_2, ord) - TaylorSeries.add!(tmp1838, tmp1837, N_cmb_2, ord) - TaylorSeries.add!(tmp1839, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp1838, tmp1839, ord) - TaylorSeries.add!(tmp1841, N_3_LMF, N_MfigM_figE_3, ord) - TaylorSeries.add!(tmp1842, tmp1841, N_cmb_3, ord) - TaylorSeries.add!(tmp1843, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp1842, tmp1843, ord) + TaylorSeries.pow!(tmp1835, r_p1d2[mo, ea], 5, ord) + TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp1835, ord) + TaylorSeries.mul!(tmp1837, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) + TaylorSeries.add!(tmp1838, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) + TaylorSeries.mul!(tmp1839, two_sinϕEM, tmp1838, ord) + TaylorSeries.add!(tmp1840, tmp1837, tmp1839, ord) + TaylorSeries.mul!(tmp1842, 0.4, p_E_cross_I_p_E_1, ord) + TaylorSeries.subst!(tmp1843, tmp1840, tmp1842, ord) + TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp1843, ord) + TaylorSeries.mul!(tmp1845, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) + TaylorSeries.add!(tmp1846, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) + TaylorSeries.mul!(tmp1847, two_sinϕEM, tmp1846, ord) + TaylorSeries.add!(tmp1848, tmp1845, tmp1847, ord) + TaylorSeries.mul!(tmp1850, 0.4, p_E_cross_I_p_E_2, ord) + TaylorSeries.subst!(tmp1851, tmp1848, tmp1850, ord) + TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp1851, ord) + TaylorSeries.mul!(tmp1853, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) + TaylorSeries.add!(tmp1854, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) + TaylorSeries.mul!(tmp1855, two_sinϕEM, tmp1854, ord) + TaylorSeries.add!(tmp1856, tmp1853, tmp1855, ord) + TaylorSeries.mul!(tmp1858, 0.4, p_E_cross_I_p_E_3, ord) + TaylorSeries.subst!(tmp1859, tmp1856, tmp1858, ord) + TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp1859, ord) + TaylorSeries.mul!(tmp1861, RotM[1, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp1862, RotM[1, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp1863, RotM[1, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp1864, tmp1862, tmp1863, ord) + TaylorSeries.add!(N_1_LMF, tmp1861, tmp1864, ord) + TaylorSeries.mul!(tmp1866, RotM[2, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp1867, RotM[2, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp1868, RotM[2, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp1869, tmp1867, tmp1868, ord) + TaylorSeries.add!(N_2_LMF, tmp1866, tmp1869, ord) + TaylorSeries.mul!(tmp1871, RotM[3, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp1872, RotM[3, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp1873, RotM[3, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp1874, tmp1872, tmp1873, ord) + TaylorSeries.add!(N_3_LMF, tmp1871, tmp1874, ord) + TaylorSeries.subst!(tmp1876, q[6N + 10], q[6N + 4], ord) + TaylorSeries.mul!(tmp1877, k_ν, tmp1876, ord) + TaylorSeries.mul!(tmp1878, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp1879, tmp1878, q[6N + 11], ord) + TaylorSeries.subst!(N_cmb_1, tmp1877, tmp1879, ord) + TaylorSeries.subst!(tmp1881, q[6N + 11], q[6N + 5], ord) + TaylorSeries.mul!(tmp1882, k_ν, tmp1881, ord) + TaylorSeries.mul!(tmp1883, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp1884, tmp1883, q[6N + 10], ord) + TaylorSeries.add!(N_cmb_2, tmp1882, tmp1884, ord) + TaylorSeries.subst!(tmp1886, q[6N + 12], q[6N + 6], ord) + TaylorSeries.mul!(N_cmb_3, k_ν, tmp1886, ord) + TaylorSeries.add!(tmp1888, N_1_LMF, N_MfigM_figE_1, ord) + TaylorSeries.add!(tmp1889, tmp1888, N_cmb_1, ord) + TaylorSeries.add!(tmp1890, dIω_x, ωxIω_x, ord) + TaylorSeries.subst!(I_dω_1, tmp1889, tmp1890, ord) + TaylorSeries.add!(tmp1892, N_2_LMF, N_MfigM_figE_2, ord) + TaylorSeries.add!(tmp1893, tmp1892, N_cmb_2, ord) + TaylorSeries.add!(tmp1894, dIω_y, ωxIω_y, ord) + TaylorSeries.subst!(I_dω_2, tmp1893, tmp1894, ord) + TaylorSeries.add!(tmp1896, N_3_LMF, N_MfigM_figE_3, ord) + TaylorSeries.add!(tmp1897, tmp1896, N_cmb_3, ord) + TaylorSeries.add!(tmp1898, dIω_z, ωxIω_z, ord) + TaylorSeries.subst!(I_dω_3, tmp1897, tmp1898, ord) TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp1848, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp1849, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp1848, tmp1849, ord) - TaylorSeries.mul!(tmp1851, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp1852, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp1851, tmp1852, ord) - TaylorSeries.mul!(tmp1854, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp1855, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp1854, tmp1855, ord) + TaylorSeries.mul!(tmp1903, q[6N + 6], Ic_ωc_2, ord) + TaylorSeries.mul!(tmp1904, q[6N + 5], Ic_ωc_3, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp1903, tmp1904, ord) + TaylorSeries.mul!(tmp1906, q[6N + 4], Ic_ωc_3, ord) + TaylorSeries.mul!(tmp1907, q[6N + 6], Ic_ωc_1, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp1906, tmp1907, ord) + TaylorSeries.mul!(tmp1909, q[6N + 5], Ic_ωc_1, ord) + TaylorSeries.mul!(tmp1910, q[6N + 4], Ic_ωc_2, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp1909, tmp1910, ord) TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp1860, tmp1940, q[6N + 3], ord) - TaylorSeries.mul!(tmp1861, q[6N + 4], tmp1860, ord) - TaylorSeries.sincos!(tmp1941, tmp1862, q[6N + 3], ord) - TaylorSeries.mul!(tmp1863, q[6N + 5], tmp1862, ord) - TaylorSeries.add!(tmp1864, tmp1861, tmp1863, ord) - TaylorSeries.sincos!(tmp1865, tmp1942, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp1864, tmp1865, ord) - TaylorSeries.sincos!(tmp1943, tmp1867, q[6N + 3], ord) - TaylorSeries.mul!(tmp1868, q[6N + 4], tmp1867, ord) - TaylorSeries.sincos!(tmp1869, tmp1944, q[6N + 3], ord) - TaylorSeries.mul!(tmp1870, q[6N + 5], tmp1869, ord) - TaylorSeries.subst!(dq[6N + 2], tmp1868, tmp1870, ord) - TaylorSeries.sincos!(tmp1945, tmp1872, q[6N + 2], ord) - TaylorSeries.mul!(tmp1873, dq[6N + 1], tmp1872, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp1873, ord) - TaylorSeries.mul!(tmp1875, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp1876, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp1877, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp1878, tmp1876, tmp1877, ord) - TaylorSeries.add!(dq[6N + 4], tmp1875, tmp1878, ord) - TaylorSeries.mul!(tmp1880, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp1881, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp1882, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp1883, tmp1881, tmp1882, ord) - TaylorSeries.add!(dq[6N + 5], tmp1880, tmp1883, ord) - TaylorSeries.mul!(tmp1885, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp1886, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp1887, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp1888, tmp1886, tmp1887, ord) - TaylorSeries.add!(dq[6N + 6], tmp1885, tmp1888, ord) - TaylorSeries.sincos!(tmp1890, tmp1946, q[6N + 8], ord) - TaylorSeries.div!(tmp1891, ω_c_CE_2, tmp1890, ord) - TaylorSeries.subst!(dq[6N + 9], tmp1891, ord) - TaylorSeries.sincos!(tmp1947, tmp1893, q[6N + 8], ord) - TaylorSeries.mul!(tmp1894, dq[6N + 9], tmp1893, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp1894, ord) + TaylorSeries.sincos!(tmp1915, tmp1995, q[6N + 3], ord) + TaylorSeries.mul!(tmp1916, q[6N + 4], tmp1915, ord) + TaylorSeries.sincos!(tmp1996, tmp1917, q[6N + 3], ord) + TaylorSeries.mul!(tmp1918, q[6N + 5], tmp1917, ord) + TaylorSeries.add!(tmp1919, tmp1916, tmp1918, ord) + TaylorSeries.sincos!(tmp1920, tmp1997, q[6N + 2], ord) + TaylorSeries.div!(dq[6N + 1], tmp1919, tmp1920, ord) + TaylorSeries.sincos!(tmp1998, tmp1922, q[6N + 3], ord) + TaylorSeries.mul!(tmp1923, q[6N + 4], tmp1922, ord) + TaylorSeries.sincos!(tmp1924, tmp1999, q[6N + 3], ord) + TaylorSeries.mul!(tmp1925, q[6N + 5], tmp1924, ord) + TaylorSeries.subst!(dq[6N + 2], tmp1923, tmp1925, ord) + TaylorSeries.sincos!(tmp2000, tmp1927, q[6N + 2], ord) + TaylorSeries.mul!(tmp1928, dq[6N + 1], tmp1927, ord) + TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp1928, ord) + TaylorSeries.mul!(tmp1930, inv_I_m_t[1, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp1931, inv_I_m_t[1, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp1932, inv_I_m_t[1, 3], I_dω_3, ord) + TaylorSeries.add!(tmp1933, tmp1931, tmp1932, ord) + TaylorSeries.add!(dq[6N + 4], tmp1930, tmp1933, ord) + TaylorSeries.mul!(tmp1935, inv_I_m_t[2, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp1936, inv_I_m_t[2, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp1937, inv_I_m_t[2, 3], I_dω_3, ord) + TaylorSeries.add!(tmp1938, tmp1936, tmp1937, ord) + TaylorSeries.add!(dq[6N + 5], tmp1935, tmp1938, ord) + TaylorSeries.mul!(tmp1940, inv_I_m_t[3, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp1941, inv_I_m_t[3, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp1942, inv_I_m_t[3, 3], I_dω_3, ord) + TaylorSeries.add!(tmp1943, tmp1941, tmp1942, ord) + TaylorSeries.add!(dq[6N + 6], tmp1940, tmp1943, ord) + TaylorSeries.sincos!(tmp1945, tmp2001, q[6N + 8], ord) + TaylorSeries.div!(tmp1946, ω_c_CE_2, tmp1945, ord) + TaylorSeries.subst!(dq[6N + 9], tmp1946, ord) + TaylorSeries.sincos!(tmp2002, tmp1948, q[6N + 8], ord) + TaylorSeries.mul!(tmp1949, dq[6N + 9], tmp1948, ord) + TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp1949, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) @@ -2315,12 +4783,11 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S!}, t::Taylor1 return nothing end -# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S_threads! -function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} +# TaylorIntegration._allocate_jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S_threads! +function TaylorIntegration._allocate_jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} order = t.order local (N, jd0) = params local S = eltype(q) - local N_ext = 11 local zero_q_1 = zero(q[1]) local one_t = one(t) local dsj2k = t + (jd0 - J2000) @@ -2466,158 +4933,158 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp2856 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3590 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2857 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3591 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2858 = Taylor1(constant_term(tmp2856) * constant_term(tmp2857), order) - tmp2859 = Taylor1(cos(constant_term(θ_m)), order) - tmp3592 = Taylor1(sin(constant_term(θ_m)), order) - tmp2860 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3593 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2861 = Taylor1(constant_term(tmp2859) * constant_term(tmp2860), order) - tmp2862 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3594 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2863 = Taylor1(constant_term(tmp2861) * constant_term(tmp2862), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp2858) - constant_term(tmp2863), order) - tmp2865 = Taylor1(cos(constant_term(θ_m)), order) - tmp3595 = Taylor1(sin(constant_term(θ_m)), order) - tmp2866 = Taylor1(-(constant_term(tmp2865)), order) - tmp2867 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3596 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2868 = Taylor1(constant_term(tmp2866) * constant_term(tmp2867), order) - tmp2869 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3597 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2870 = Taylor1(constant_term(tmp2868) * constant_term(tmp2869), order) - tmp2871 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3598 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2872 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3599 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2873 = Taylor1(constant_term(tmp2871) * constant_term(tmp2872), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp2870) - constant_term(tmp2873), order) - tmp2875 = Taylor1(sin(constant_term(θ_m)), order) - tmp3600 = Taylor1(cos(constant_term(θ_m)), order) - tmp2876 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3601 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp2875) * constant_term(tmp2876), order) - tmp2878 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3602 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2879 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3603 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2880 = Taylor1(constant_term(tmp2878) * constant_term(tmp2879), order) - tmp2881 = Taylor1(cos(constant_term(θ_m)), order) - tmp3604 = Taylor1(sin(constant_term(θ_m)), order) - tmp2882 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3605 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2883 = Taylor1(constant_term(tmp2881) * constant_term(tmp2882), order) - tmp2884 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3606 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2885 = Taylor1(constant_term(tmp2883) * constant_term(tmp2884), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp2880) + constant_term(tmp2885), order) - tmp2887 = Taylor1(cos(constant_term(θ_m)), order) - tmp3607 = Taylor1(sin(constant_term(θ_m)), order) - tmp2888 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3608 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2889 = Taylor1(constant_term(tmp2887) * constant_term(tmp2888), order) - tmp2890 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3609 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2891 = Taylor1(constant_term(tmp2889) * constant_term(tmp2890), order) - tmp2892 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp3610 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp2893 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3611 = Taylor1(cos(constant_term(ψ_m)), order) - tmp2894 = Taylor1(constant_term(tmp2892) * constant_term(tmp2893), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp2891) - constant_term(tmp2894), order) - tmp2896 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp3612 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp2897 = Taylor1(-(constant_term(tmp2896)), order) - tmp2898 = Taylor1(sin(constant_term(θ_m)), order) - tmp3613 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp2897) * constant_term(tmp2898), order) - tmp2900 = Taylor1(sin(constant_term(θ_m)), order) - tmp3614 = Taylor1(cos(constant_term(θ_m)), order) - tmp2901 = Taylor1(sin(constant_term(ψ_m)), order) - tmp3615 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp2900) * constant_term(tmp2901), order) - tmp2903 = Taylor1(cos(constant_term(ψ_m)), order) - tmp3616 = Taylor1(sin(constant_term(ψ_m)), order) - tmp2904 = Taylor1(sin(constant_term(θ_m)), order) - tmp3617 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp2903) * constant_term(tmp2904), order) + tmp2911 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3645 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2912 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3646 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2913 = Taylor1(constant_term(tmp2911) * constant_term(tmp2912), order) + tmp2914 = Taylor1(cos(constant_term(θ_m)), order) + tmp3647 = Taylor1(sin(constant_term(θ_m)), order) + tmp2915 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3648 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2916 = Taylor1(constant_term(tmp2914) * constant_term(tmp2915), order) + tmp2917 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3649 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2918 = Taylor1(constant_term(tmp2916) * constant_term(tmp2917), order) + RotM[1, 1, mo] = Taylor1(constant_term(tmp2913) - constant_term(tmp2918), order) + tmp2920 = Taylor1(cos(constant_term(θ_m)), order) + tmp3650 = Taylor1(sin(constant_term(θ_m)), order) + tmp2921 = Taylor1(-(constant_term(tmp2920)), order) + tmp2922 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3651 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2923 = Taylor1(constant_term(tmp2921) * constant_term(tmp2922), order) + tmp2924 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3652 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2925 = Taylor1(constant_term(tmp2923) * constant_term(tmp2924), order) + tmp2926 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3653 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2927 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3654 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2928 = Taylor1(constant_term(tmp2926) * constant_term(tmp2927), order) + RotM[2, 1, mo] = Taylor1(constant_term(tmp2925) - constant_term(tmp2928), order) + tmp2930 = Taylor1(sin(constant_term(θ_m)), order) + tmp3655 = Taylor1(cos(constant_term(θ_m)), order) + tmp2931 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3656 = Taylor1(cos(constant_term(ϕ_m)), order) + RotM[3, 1, mo] = Taylor1(constant_term(tmp2930) * constant_term(tmp2931), order) + tmp2933 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3657 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2934 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3658 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2935 = Taylor1(constant_term(tmp2933) * constant_term(tmp2934), order) + tmp2936 = Taylor1(cos(constant_term(θ_m)), order) + tmp3659 = Taylor1(sin(constant_term(θ_m)), order) + tmp2937 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3660 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2938 = Taylor1(constant_term(tmp2936) * constant_term(tmp2937), order) + tmp2939 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3661 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2940 = Taylor1(constant_term(tmp2938) * constant_term(tmp2939), order) + RotM[1, 2, mo] = Taylor1(constant_term(tmp2935) + constant_term(tmp2940), order) + tmp2942 = Taylor1(cos(constant_term(θ_m)), order) + tmp3662 = Taylor1(sin(constant_term(θ_m)), order) + tmp2943 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3663 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2944 = Taylor1(constant_term(tmp2942) * constant_term(tmp2943), order) + tmp2945 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3664 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2946 = Taylor1(constant_term(tmp2944) * constant_term(tmp2945), order) + tmp2947 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp3665 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp2948 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3666 = Taylor1(cos(constant_term(ψ_m)), order) + tmp2949 = Taylor1(constant_term(tmp2947) * constant_term(tmp2948), order) + RotM[2, 2, mo] = Taylor1(constant_term(tmp2946) - constant_term(tmp2949), order) + tmp2951 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp3667 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp2952 = Taylor1(-(constant_term(tmp2951)), order) + tmp2953 = Taylor1(sin(constant_term(θ_m)), order) + tmp3668 = Taylor1(cos(constant_term(θ_m)), order) + RotM[3, 2, mo] = Taylor1(constant_term(tmp2952) * constant_term(tmp2953), order) + tmp2955 = Taylor1(sin(constant_term(θ_m)), order) + tmp3669 = Taylor1(cos(constant_term(θ_m)), order) + tmp2956 = Taylor1(sin(constant_term(ψ_m)), order) + tmp3670 = Taylor1(cos(constant_term(ψ_m)), order) + RotM[1, 3, mo] = Taylor1(constant_term(tmp2955) * constant_term(tmp2956), order) + tmp2958 = Taylor1(cos(constant_term(ψ_m)), order) + tmp3671 = Taylor1(sin(constant_term(ψ_m)), order) + tmp2959 = Taylor1(sin(constant_term(θ_m)), order) + tmp3672 = Taylor1(cos(constant_term(θ_m)), order) + RotM[2, 3, mo] = Taylor1(constant_term(tmp2958) * constant_term(tmp2959), order) RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp3618 = Taylor1(sin(constant_term(θ_m)), order) + tmp3673 = Taylor1(sin(constant_term(θ_m)), order) mantlef2coref = Array{S}(undef, 3, 3) ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp2907 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3619 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2908 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp2907), order) - tmp2909 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3620 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2910 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp2909), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp2908) + constant_term(tmp2910), order) - tmp2912 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp2913 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3621 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2914 = Taylor1(constant_term(tmp2912) * constant_term(tmp2913), order) - tmp2915 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3622 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2916 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp2915), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp2914) + constant_term(tmp2916), order) + tmp2962 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3674 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp2963 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp2962), order) + tmp2964 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3675 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp2965 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp2964), order) + mantlef2coref[1, 1] = Taylor1(constant_term(tmp2963) + constant_term(tmp2965), order) + tmp2967 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) + tmp2968 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3676 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp2969 = Taylor1(constant_term(tmp2967) * constant_term(tmp2968), order) + tmp2970 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3677 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp2971 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp2970), order) + mantlef2coref[2, 1] = Taylor1(constant_term(tmp2969) + constant_term(tmp2971), order) mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp2918 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3623 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2919 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp2918), order) - tmp2920 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3624 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2921 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp2920), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp2919) + constant_term(tmp2921), order) - tmp2923 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) - tmp2924 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3625 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2925 = Taylor1(constant_term(tmp2923) * constant_term(tmp2924), order) - tmp2926 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3626 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2927 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp2926), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp2925) + constant_term(tmp2927), order) + tmp2973 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3678 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp2974 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp2973), order) + tmp2975 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3679 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp2976 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp2975), order) + mantlef2coref[1, 2] = Taylor1(constant_term(tmp2974) + constant_term(tmp2976), order) + tmp2978 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp2979 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3680 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp2980 = Taylor1(constant_term(tmp2978) * constant_term(tmp2979), order) + tmp2981 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3681 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp2982 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp2981), order) + mantlef2coref[2, 2] = Taylor1(constant_term(tmp2980) + constant_term(tmp2982), order) mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp2929 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3627 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2930 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp2929), order) - tmp2931 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3628 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2932 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp2931), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp2930) + constant_term(tmp2932), order) - tmp2934 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) - tmp2935 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp3629 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp2936 = Taylor1(constant_term(tmp2934) * constant_term(tmp2935), order) - tmp2937 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp3630 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp2938 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp2937), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp2936) + constant_term(tmp2938), order) + tmp2984 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3682 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp2985 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp2984), order) + tmp2986 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3683 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp2987 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp2986), order) + mantlef2coref[1, 3] = Taylor1(constant_term(tmp2985) + constant_term(tmp2987), order) + tmp2989 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp2990 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp3684 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp2991 = Taylor1(constant_term(tmp2989) * constant_term(tmp2990), order) + tmp2992 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp3685 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp2993 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp2992), order) + mantlef2coref[2, 3] = Taylor1(constant_term(tmp2991) + constant_term(tmp2993), order) mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp2940 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp2941 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp2942 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp2943 = Taylor1(constant_term(tmp2941) + constant_term(tmp2942), order) - ω_c_CE_1 = Taylor1(constant_term(tmp2940) + constant_term(tmp2943), order) - tmp2945 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp2946 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp2947 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp2948 = Taylor1(constant_term(tmp2946) + constant_term(tmp2947), order) - ω_c_CE_2 = Taylor1(constant_term(tmp2945) + constant_term(tmp2948), order) - tmp2950 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp2951 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp2952 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp2953 = Taylor1(constant_term(tmp2951) + constant_term(tmp2952), order) - ω_c_CE_3 = Taylor1(constant_term(tmp2950) + constant_term(tmp2953), order) + tmp2995 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) + tmp2996 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) + tmp2997 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) + tmp2998 = Taylor1(constant_term(tmp2996) + constant_term(tmp2997), order) + ω_c_CE_1 = Taylor1(constant_term(tmp2995) + constant_term(tmp2998), order) + tmp3000 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) + tmp3001 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) + tmp3002 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) + tmp3003 = Taylor1(constant_term(tmp3001) + constant_term(tmp3002), order) + ω_c_CE_2 = Taylor1(constant_term(tmp3000) + constant_term(tmp3003), order) + tmp3005 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) + tmp3006 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) + tmp3007 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) + tmp3008 = Taylor1(constant_term(tmp3006) + constant_term(tmp3007), order) + ω_c_CE_3 = Taylor1(constant_term(tmp3005) + constant_term(tmp3008), order) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t J2_t = Array{S}(undef, 5) J2_t[su] = Taylor1(identity(constant_term(J2S_t)), order) J2_t[ea] = Taylor1(identity(constant_term(J2E_t)), order) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - #= REPL[11]:307 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:307 =# Threads.@threads for j = 1:N newtonX[j] = Taylor1(identity(constant_term(zero_q_1)), order) newtonY[j] = Taylor1(identity(constant_term(zero_q_1)), order) newtonZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -2626,66 +5093,66 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: dq[3j - 1] = Taylor1(identity(constant_term(q[3 * (N + j) - 1])), order) dq[3j] = Taylor1(identity(constant_term(q[3 * (N + j)])), order) end - #= REPL[11]:319 =# Threads.@threads for j = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:319 =# Threads.@threads for j = 1:N_ext accX[j] = Taylor1(identity(constant_term(zero_q_1)), order) accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp2962 = Array{Taylor1{_S}}(undef, size(dq)) - tmp2962 .= Taylor1(zero(_S), order) - tmp2964 = Array{Taylor1{_S}}(undef, size(dq)) - tmp2964 .= Taylor1(zero(_S), order) - tmp2967 = Array{Taylor1{_S}}(undef, size(dq)) - tmp2967 .= Taylor1(zero(_S), order) - tmp2969 = Array{Taylor1{_S}}(undef, size(dq)) - tmp2969 .= Taylor1(zero(_S), order) - tmp2972 = Array{Taylor1{_S}}(undef, size(dq)) - tmp2972 .= Taylor1(zero(_S), order) - tmp2974 = Array{Taylor1{_S}}(undef, size(dq)) - tmp2974 .= Taylor1(zero(_S), order) + tmp3073 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3073 .= Taylor1(zero(_S), order) + tmp3075 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3075 .= Taylor1(zero(_S), order) + tmp3076 = Array{Taylor1{_S}}(undef, size(tmp3073)) + tmp3076 .= Taylor1(zero(_S), order) + tmp3078 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3078 .= Taylor1(zero(_S), order) + tmp3017 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3017 .= Taylor1(zero(_S), order) + tmp3019 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3019 .= Taylor1(zero(_S), order) + tmp3022 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3022 .= Taylor1(zero(_S), order) + tmp3024 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3024 .= Taylor1(zero(_S), order) + tmp3027 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3027 .= Taylor1(zero(_S), order) + tmp3029 = Array{Taylor1{_S}}(undef, size(dq)) + tmp3029 .= Taylor1(zero(_S), order) pn2x = Array{Taylor1{_S}}(undef, size(X)) pn2x .= Taylor1(zero(_S), order) pn2y = Array{Taylor1{_S}}(undef, size(Y)) pn2y .= Taylor1(zero(_S), order) pn2z = Array{Taylor1{_S}}(undef, size(Z)) pn2z .= Taylor1(zero(_S), order) - tmp2982 = Array{Taylor1{_S}}(undef, size(UU)) - tmp2982 .= Taylor1(zero(_S), order) - tmp2985 = Array{Taylor1{_S}}(undef, size(X)) - tmp2985 .= Taylor1(zero(_S), order) - tmp2987 = Array{Taylor1{_S}}(undef, size(Y)) - tmp2987 .= Taylor1(zero(_S), order) - tmp2988 = Array{Taylor1{_S}}(undef, size(tmp2985)) - tmp2988 .= Taylor1(zero(_S), order) - tmp2990 = Array{Taylor1{_S}}(undef, size(Z)) - tmp2990 .= Taylor1(zero(_S), order) - tmp2998 = Array{Taylor1{_S}}(undef, size(pn2x)) - tmp2998 .= Taylor1(zero(_S), order) - tmp2999 = Array{Taylor1{_S}}(undef, size(tmp2998)) - tmp2999 .= Taylor1(zero(_S), order) - tmp3010 = Array{Taylor1{_S}}(undef, size(X)) - tmp3010 .= Taylor1(zero(_S), order) - temp_001 = Array{Taylor1{_S}}(undef, size(tmp3010)) + tmp3037 = Array{Taylor1{_S}}(undef, size(UU)) + tmp3037 .= Taylor1(zero(_S), order) + tmp3040 = Array{Taylor1{_S}}(undef, size(X)) + tmp3040 .= Taylor1(zero(_S), order) + tmp3042 = Array{Taylor1{_S}}(undef, size(Y)) + tmp3042 .= Taylor1(zero(_S), order) + tmp3043 = Array{Taylor1{_S}}(undef, size(tmp3040)) + tmp3043 .= Taylor1(zero(_S), order) + tmp3045 = Array{Taylor1{_S}}(undef, size(Z)) + tmp3045 .= Taylor1(zero(_S), order) + tmp3053 = Array{Taylor1{_S}}(undef, size(pn2x)) + tmp3053 .= Taylor1(zero(_S), order) + tmp3054 = Array{Taylor1{_S}}(undef, size(tmp3053)) + tmp3054 .= Taylor1(zero(_S), order) + tmp3065 = Array{Taylor1{_S}}(undef, size(X)) + tmp3065 .= Taylor1(zero(_S), order) + temp_001 = Array{Taylor1{_S}}(undef, size(tmp3065)) temp_001 .= Taylor1(zero(_S), order) - tmp3012 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3012 .= Taylor1(zero(_S), order) - temp_002 = Array{Taylor1{_S}}(undef, size(tmp3012)) + tmp3067 = Array{Taylor1{_S}}(undef, size(Y)) + tmp3067 .= Taylor1(zero(_S), order) + temp_002 = Array{Taylor1{_S}}(undef, size(tmp3067)) temp_002 .= Taylor1(zero(_S), order) - tmp3014 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3014 .= Taylor1(zero(_S), order) - temp_003 = Array{Taylor1{_S}}(undef, size(tmp3014)) + tmp3069 = Array{Taylor1{_S}}(undef, size(Z)) + tmp3069 .= Taylor1(zero(_S), order) + temp_003 = Array{Taylor1{_S}}(undef, size(tmp3069)) temp_003 .= Taylor1(zero(_S), order) temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) temp_004 .= Taylor1(zero(_S), order) - tmp3018 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3018 .= Taylor1(zero(_S), order) - tmp3020 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3020 .= Taylor1(zero(_S), order) - tmp3021 = Array{Taylor1{_S}}(undef, size(tmp3018)) - tmp3021 .= Taylor1(zero(_S), order) - tmp3023 = Array{Taylor1{_S}}(undef, size(dq)) - tmp3023 .= Taylor1(zero(_S), order) - #= REPL[11]:325 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:325 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -2696,35 +5163,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp2962[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp2964[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp2962[3j - 2]) - constant_term(tmp2964[3i - 2]), order) - tmp2967[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp2969[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp2967[3j - 1]) - constant_term(tmp2969[3i - 1]), order) - tmp2972[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp2974[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp2972[3j]) - constant_term(tmp2974[3i]), order) + tmp3017[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) + tmp3019[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) + _4U_m_3X[i, j] = Taylor1(constant_term(tmp3017[3j - 2]) - constant_term(tmp3019[3i - 2]), order) + tmp3022[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) + tmp3024[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) + _4V_m_3Y[i, j] = Taylor1(constant_term(tmp3022[3j - 1]) - constant_term(tmp3024[3i - 1]), order) + tmp3027[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) + tmp3029[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) + _4W_m_3Z[i, j] = Taylor1(constant_term(tmp3027[3j]) - constant_term(tmp3029[3i]), order) pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp2982[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp2982[i, j]) + constant_term(WW[i, j]), order) - tmp2985[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp2987[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp2988[i, j] = Taylor1(constant_term(tmp2985[i, j]) + constant_term(tmp2987[i, j]), order) - tmp2990[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp2988[i, j]) + constant_term(tmp2990[i, j]), order) + tmp3037[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) + vi_dot_vj[i, j] = Taylor1(constant_term(tmp3037[i, j]) + constant_term(WW[i, j]), order) + tmp3040[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp3042[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp3043[i, j] = Taylor1(constant_term(tmp3040[i, j]) + constant_term(tmp3042[i, j]), order) + tmp3045[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + r_p2[i, j] = Taylor1(constant_term(tmp3043[i, j]) + constant_term(tmp3045[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp2998[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp2999[i, j] = Taylor1(constant_term(tmp2998[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp2999[i, j]), order) + tmp3053[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) + tmp3054[i, j] = Taylor1(constant_term(tmp3053[i, j]) + constant_term(pn2z[i, j]), order) + pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp3054[i, j]), order) newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) @@ -2733,305 +5200,305 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp3010[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3010[i, j]), order) + tmp3065[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp3065[i, j]), order) newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp3012[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3012[i, j]), order) + tmp3067[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp3067[i, j]), order) newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp3014[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3014[i, j]), order) + tmp3069[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp3069[i, j]), order) newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) end end - tmp3018[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp3020[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp3021[3j - 2] = Taylor1(constant_term(tmp3018[3j - 2]) + constant_term(tmp3020[3j - 1]), order) - tmp3023[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp3021[3j - 2]) + constant_term(tmp3023[3j]), order) + tmp3073[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp3075[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp3076[3j - 2] = Taylor1(constant_term(tmp3073[3j - 2]) + constant_term(tmp3075[3j - 1]), order) + tmp3078[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + v2[j] = Taylor1(constant_term(tmp3076[3j - 2]) + constant_term(tmp3078[3j]), order) end - tmp3025 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp3027 = Taylor1(constant_term(tmp3025) / constant_term(2), order) - tmp3028 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3027), order) - J2M_t = Taylor1(constant_term(tmp3028) / constant_term(μ[mo]), order) - tmp3030 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp3031 = Taylor1(constant_term(tmp3030) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp3031) / constant_term(4), order) - tmp3034 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp3034) / constant_term(μ[mo]), order) - tmp3036 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp3036) / constant_term(μ[mo]), order) - tmp3038 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp3039 = Taylor1(constant_term(tmp3038) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp3039) / constant_term(2), order) + tmp3080 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) + tmp3082 = Taylor1(constant_term(tmp3080) / constant_term(2), order) + tmp3083 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp3082), order) + J2M_t = Taylor1(constant_term(tmp3083) / constant_term(μ[mo]), order) + tmp3085 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) + tmp3086 = Taylor1(constant_term(tmp3085) / constant_term(μ[mo]), order) + C22M_t = Taylor1(constant_term(tmp3086) / constant_term(4), order) + tmp3089 = Taylor1(-(constant_term(I_M_t[1, 3])), order) + C21M_t = Taylor1(constant_term(tmp3089) / constant_term(μ[mo]), order) + tmp3091 = Taylor1(-(constant_term(I_M_t[3, 2])), order) + S21M_t = Taylor1(constant_term(tmp3091) / constant_term(μ[mo]), order) + tmp3093 = Taylor1(-(constant_term(I_M_t[2, 1])), order) + tmp3094 = Taylor1(constant_term(tmp3093) / constant_term(μ[mo]), order) + S22M_t = Taylor1(constant_term(tmp3094) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp3051 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - tmp3051 .= Taylor1(zero(_S), order) - tmp3053 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - tmp3053 .= Taylor1(zero(_S), order) - tmp3055 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - tmp3055 .= Taylor1(zero(_S), order) - tmp3059 = Array{Taylor1{_S}}(undef, size(X_bf)) - tmp3059 .= Taylor1(zero(_S), order) - tmp3061 = Array{Taylor1{_S}}(undef, size(Y_bf)) - tmp3061 .= Taylor1(zero(_S), order) - tmp3062 = Array{Taylor1{_S}}(undef, size(tmp3059)) - tmp3062 .= Taylor1(zero(_S), order) - tmp3067 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3067 .= Taylor1(zero(_S), order) - tmp3068 = Array{Taylor1{_S}}(undef, size(tmp3067)) - tmp3068 .= Taylor1(zero(_S), order) - tmp3069 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3069 .= Taylor1(zero(_S), order) - tmp3071 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3071 .= Taylor1(zero(_S), order) - tmp3072 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3072 .= Taylor1(zero(_S), order) - tmp3077 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3077 .= Taylor1(zero(_S), order) - tmp3078 = Array{Taylor1{_S}}(undef, size(tmp3077)) - tmp3078 .= Taylor1(zero(_S), order) - tmp3080 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3080 .= Taylor1(zero(_S), order) - tmp3081 = Array{Taylor1{_S}}(undef, size(tmp3080)) - tmp3081 .= Taylor1(zero(_S), order) - tmp3082 = Array{Taylor1{_S}}(undef, size(tmp3081)) - tmp3082 .= Taylor1(zero(_S), order) - tmp3084 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp3084 .= Taylor1(zero(_S), order) - tmp3085 = Array{Taylor1{_S}}(undef, size(tmp3084)) - tmp3085 .= Taylor1(zero(_S), order) - tmp3086 = Array{Taylor1{_S}}(undef, size(tmp3085)) - tmp3086 .= Taylor1(zero(_S), order) - tmp3088 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp3088 .= Taylor1(zero(_S), order) - tmp3089 = Array{Taylor1{_S}}(undef, size(tmp3088)) - tmp3089 .= Taylor1(zero(_S), order) - tmp3090 = Array{Taylor1{_S}}(undef, size(tmp3089)) - tmp3090 .= Taylor1(zero(_S), order) - tmp3091 = Array{Taylor1{_S}}(undef, size(tmp3090)) - tmp3091 .= Taylor1(zero(_S), order) - tmp3094 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3094 .= Taylor1(zero(_S), order) - tmp3095 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3095 .= Taylor1(zero(_S), order) - tmp3097 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3097 .= Taylor1(zero(_S), order) - tmp3098 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3098 .= Taylor1(zero(_S), order) - tmp3100 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3100 .= Taylor1(zero(_S), order) - tmp3103 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3103 .= Taylor1(zero(_S), order) - tmp3105 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3105 .= Taylor1(zero(_S), order) - tmp3107 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3107 .= Taylor1(zero(_S), order) - tmp3108 = Array{Taylor1{_S}}(undef, size(tmp3107)) + tmp3106 = Array{Taylor1{_S}}(undef, size(X_bf_1)) + tmp3106 .= Taylor1(zero(_S), order) + tmp3108 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) tmp3108 .= Taylor1(zero(_S), order) - tmp3109 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3109 .= Taylor1(zero(_S), order) - tmp3112 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3112 .= Taylor1(zero(_S), order) - tmp3113 = Array{Taylor1{_S}}(undef, size(tmp3112)) - tmp3113 .= Taylor1(zero(_S), order) - tmp3114 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3110 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) + tmp3110 .= Taylor1(zero(_S), order) + tmp3114 = Array{Taylor1{_S}}(undef, size(X_bf)) tmp3114 .= Taylor1(zero(_S), order) - tmp3116 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp3116 = Array{Taylor1{_S}}(undef, size(Y_bf)) tmp3116 .= Taylor1(zero(_S), order) - tmp3117 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp3117 = Array{Taylor1{_S}}(undef, size(tmp3114)) tmp3117 .= Taylor1(zero(_S), order) - tmp3118 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3118 .= Taylor1(zero(_S), order) - tmp3119 = Array{Taylor1{_S}}(undef, size(tmp3117)) - tmp3119 .= Taylor1(zero(_S), order) - tmp3120 = Array{Taylor1{_S}}(undef, size(tmp3116)) - tmp3120 .= Taylor1(zero(_S), order) - tmp3121 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3121 .= Taylor1(zero(_S), order) - tmp3122 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3122 .= Taylor1(zero(_S), order) - tmp3123 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3123 .= Taylor1(zero(_S), order) - tmp3124 = Array{Taylor1{_S}}(undef, size(tmp3122)) - tmp3124 .= Taylor1(zero(_S), order) - tmp3125 = Array{Taylor1{_S}}(undef, size(tmp3121)) - tmp3125 .= Taylor1(zero(_S), order) - tmp3126 = Array{Taylor1{_S}}(undef, size(tmp3120)) - tmp3126 .= Taylor1(zero(_S), order) - tmp3128 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3128 .= Taylor1(zero(_S), order) - tmp3129 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3129 .= Taylor1(zero(_S), order) - tmp3130 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp3130 .= Taylor1(zero(_S), order) - tmp3131 = Array{Taylor1{_S}}(undef, size(tmp3129)) - tmp3131 .= Taylor1(zero(_S), order) - tmp3132 = Array{Taylor1{_S}}(undef, size(tmp3128)) + tmp3132 = Array{Taylor1{_S}}(undef, size(P_n)) tmp3132 .= Taylor1(zero(_S), order) - tmp3133 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3133 = Array{Taylor1{_S}}(undef, size(tmp3132)) tmp3133 .= Taylor1(zero(_S), order) - tmp3134 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp3134 .= Taylor1(zero(_S), order) - tmp3135 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp3135 = Array{Taylor1{_S}}(undef, size(dP_n)) tmp3135 .= Taylor1(zero(_S), order) - tmp3136 = Array{Taylor1{_S}}(undef, size(tmp3134)) + tmp3136 = Array{Taylor1{_S}}(undef, size(tmp3135)) tmp3136 .= Taylor1(zero(_S), order) - tmp3137 = Array{Taylor1{_S}}(undef, size(tmp3133)) + tmp3137 = Array{Taylor1{_S}}(undef, size(tmp3136)) tmp3137 .= Taylor1(zero(_S), order) - tmp3138 = Array{Taylor1{_S}}(undef, size(tmp3132)) - tmp3138 .= Taylor1(zero(_S), order) - tmp3140 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp3234 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp3234 .= Taylor1(zero(_S), order) + tmp3237 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp3237 .= Taylor1(zero(_S), order) + tmp3239 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3239 .= Taylor1(zero(_S), order) + tmp3240 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3240 .= Taylor1(zero(_S), order) + tmp3241 = Array{Taylor1{_S}}(undef, size(tmp3239)) + tmp3241 .= Taylor1(zero(_S), order) + tmp3242 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3242 .= Taylor1(zero(_S), order) + tmp3244 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3244 .= Taylor1(zero(_S), order) + tmp3245 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3245 .= Taylor1(zero(_S), order) + tmp3246 = Array{Taylor1{_S}}(undef, size(tmp3244)) + tmp3246 .= Taylor1(zero(_S), order) + tmp3247 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3247 .= Taylor1(zero(_S), order) + tmp3249 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3249 .= Taylor1(zero(_S), order) + tmp3250 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3250 .= Taylor1(zero(_S), order) + tmp3251 = Array{Taylor1{_S}}(undef, size(tmp3249)) + tmp3251 .= Taylor1(zero(_S), order) + tmp3252 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3252 .= Taylor1(zero(_S), order) + tmp3254 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3254 .= Taylor1(zero(_S), order) + tmp3255 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3255 .= Taylor1(zero(_S), order) + tmp3256 = Array{Taylor1{_S}}(undef, size(tmp3254)) + tmp3256 .= Taylor1(zero(_S), order) + tmp3257 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3257 .= Taylor1(zero(_S), order) + tmp3259 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3259 .= Taylor1(zero(_S), order) + tmp3260 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3260 .= Taylor1(zero(_S), order) + tmp3261 = Array{Taylor1{_S}}(undef, size(tmp3259)) + tmp3261 .= Taylor1(zero(_S), order) + tmp3262 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3262 .= Taylor1(zero(_S), order) + tmp3264 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3264 .= Taylor1(zero(_S), order) + tmp3265 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3265 .= Taylor1(zero(_S), order) + tmp3266 = Array{Taylor1{_S}}(undef, size(tmp3264)) + tmp3266 .= Taylor1(zero(_S), order) + tmp3267 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3267 .= Taylor1(zero(_S), order) + tmp3269 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3269 .= Taylor1(zero(_S), order) + tmp3270 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3270 .= Taylor1(zero(_S), order) + tmp3271 = Array{Taylor1{_S}}(undef, size(tmp3269)) + tmp3271 .= Taylor1(zero(_S), order) + tmp3272 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3272 .= Taylor1(zero(_S), order) + tmp3274 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3274 .= Taylor1(zero(_S), order) + tmp3275 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3275 .= Taylor1(zero(_S), order) + tmp3276 = Array{Taylor1{_S}}(undef, size(tmp3274)) + tmp3276 .= Taylor1(zero(_S), order) + tmp3277 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3277 .= Taylor1(zero(_S), order) + tmp3279 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3279 .= Taylor1(zero(_S), order) + tmp3280 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3280 .= Taylor1(zero(_S), order) + tmp3281 = Array{Taylor1{_S}}(undef, size(tmp3279)) + tmp3281 .= Taylor1(zero(_S), order) + tmp3282 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3282 .= Taylor1(zero(_S), order) + tmp3284 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3284 .= Taylor1(zero(_S), order) + tmp3285 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3285 .= Taylor1(zero(_S), order) + tmp3286 = Array{Taylor1{_S}}(undef, size(tmp3284)) + tmp3286 .= Taylor1(zero(_S), order) + tmp3287 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3287 .= Taylor1(zero(_S), order) + tmp3289 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3289 .= Taylor1(zero(_S), order) + tmp3290 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3290 .= Taylor1(zero(_S), order) + tmp3291 = Array{Taylor1{_S}}(undef, size(tmp3289)) + tmp3291 .= Taylor1(zero(_S), order) + tmp3292 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3292 .= Taylor1(zero(_S), order) + tmp3294 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3294 .= Taylor1(zero(_S), order) + tmp3295 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3295 .= Taylor1(zero(_S), order) + tmp3296 = Array{Taylor1{_S}}(undef, size(tmp3294)) + tmp3296 .= Taylor1(zero(_S), order) + tmp3297 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp3297 .= Taylor1(zero(_S), order) + tmp3122 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp3122 .= Taylor1(zero(_S), order) + tmp3123 = Array{Taylor1{_S}}(undef, size(tmp3122)) + tmp3123 .= Taylor1(zero(_S), order) + tmp3124 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp3124 .= Taylor1(zero(_S), order) + tmp3126 = Array{Taylor1{_S}}(undef, size(dP_n)) + tmp3126 .= Taylor1(zero(_S), order) + tmp3127 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp3127 .= Taylor1(zero(_S), order) + tmp3139 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp3139 .= Taylor1(zero(_S), order) + tmp3140 = Array{Taylor1{_S}}(undef, size(tmp3139)) tmp3140 .= Taylor1(zero(_S), order) - tmp3141 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp3141 = Array{Taylor1{_S}}(undef, size(tmp3140)) tmp3141 .= Taylor1(zero(_S), order) - tmp3142 = Array{Taylor1{_S}}(undef, size(tmp3140)) - tmp3142 .= Taylor1(zero(_S), order) - tmp3143 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + tmp3143 = Array{Taylor1{_S}}(undef, size(dP_n)) tmp3143 .= Taylor1(zero(_S), order) - tmp3144 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp3144 = Array{Taylor1{_S}}(undef, size(tmp3143)) tmp3144 .= Taylor1(zero(_S), order) - tmp3145 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp3145 = Array{Taylor1{_S}}(undef, size(tmp3144)) tmp3145 .= Taylor1(zero(_S), order) - tmp3146 = Array{Taylor1{_S}}(undef, size(tmp3144)) + tmp3146 = Array{Taylor1{_S}}(undef, size(tmp3145)) tmp3146 .= Taylor1(zero(_S), order) - tmp3147 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3147 .= Taylor1(zero(_S), order) - tmp3148 = Array{Taylor1{_S}}(undef, size(tmp3143)) - tmp3148 .= Taylor1(zero(_S), order) - tmp3154 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp3154 .= Taylor1(zero(_S), order) - tmp3155 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp3155 .= Taylor1(zero(_S), order) - tmp3156 = Array{Taylor1{_S}}(undef, size(tmp3154)) - tmp3156 .= Taylor1(zero(_S), order) - tmp3157 = Array{Taylor1{_S}}(undef, size(tmp3156)) - tmp3157 .= Taylor1(zero(_S), order) - tmp3159 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp3159 .= Taylor1(zero(_S), order) - tmp3160 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - tmp3160 .= Taylor1(zero(_S), order) - tmp3161 = Array{Taylor1{_S}}(undef, size(tmp3159)) - tmp3161 .= Taylor1(zero(_S), order) - tmp3162 = Array{Taylor1{_S}}(undef, size(tmp3161)) - tmp3162 .= Taylor1(zero(_S), order) - tmp3164 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp3164 .= Taylor1(zero(_S), order) - tmp3165 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp3165 .= Taylor1(zero(_S), order) - tmp3166 = Array{Taylor1{_S}}(undef, size(tmp3165)) - tmp3166 .= Taylor1(zero(_S), order) - tmp3168 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - tmp3168 .= Taylor1(zero(_S), order) - tmp3169 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) - tmp3169 .= Taylor1(zero(_S), order) - tmp3172 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + tmp3171 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp3171 .= Taylor1(zero(_S), order) + tmp3172 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp3172 .= Taylor1(zero(_S), order) - tmp3173 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + tmp3173 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp3173 .= Taylor1(zero(_S), order) - tmp3179 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp3174 = Array{Taylor1{_S}}(undef, size(tmp3172)) + tmp3174 .= Taylor1(zero(_S), order) + tmp3175 = Array{Taylor1{_S}}(undef, size(tmp3171)) + tmp3175 .= Taylor1(zero(_S), order) + tmp3176 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp3176 .= Taylor1(zero(_S), order) + tmp3177 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp3177 .= Taylor1(zero(_S), order) + tmp3178 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp3178 .= Taylor1(zero(_S), order) + tmp3179 = Array{Taylor1{_S}}(undef, size(tmp3177)) tmp3179 .= Taylor1(zero(_S), order) - tmp3182 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) - tmp3182 .= Taylor1(zero(_S), order) - tmp3184 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3180 = Array{Taylor1{_S}}(undef, size(tmp3176)) + tmp3180 .= Taylor1(zero(_S), order) + tmp3181 = Array{Taylor1{_S}}(undef, size(tmp3175)) + tmp3181 .= Taylor1(zero(_S), order) + tmp3183 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3183 .= Taylor1(zero(_S), order) + tmp3184 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp3184 .= Taylor1(zero(_S), order) - tmp3185 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3185 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp3185 .= Taylor1(zero(_S), order) tmp3186 = Array{Taylor1{_S}}(undef, size(tmp3184)) tmp3186 .= Taylor1(zero(_S), order) - tmp3187 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3187 = Array{Taylor1{_S}}(undef, size(tmp3183)) tmp3187 .= Taylor1(zero(_S), order) - tmp3189 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3188 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3188 .= Taylor1(zero(_S), order) + tmp3189 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp3189 .= Taylor1(zero(_S), order) - tmp3190 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3190 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp3190 .= Taylor1(zero(_S), order) tmp3191 = Array{Taylor1{_S}}(undef, size(tmp3189)) tmp3191 .= Taylor1(zero(_S), order) - tmp3192 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3192 = Array{Taylor1{_S}}(undef, size(tmp3188)) tmp3192 .= Taylor1(zero(_S), order) - tmp3194 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3194 .= Taylor1(zero(_S), order) - tmp3195 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3193 = Array{Taylor1{_S}}(undef, size(tmp3187)) + tmp3193 .= Taylor1(zero(_S), order) + tmp3195 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp3195 .= Taylor1(zero(_S), order) - tmp3196 = Array{Taylor1{_S}}(undef, size(tmp3194)) + tmp3196 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp3196 .= Taylor1(zero(_S), order) - tmp3197 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3197 = Array{Taylor1{_S}}(undef, size(tmp3195)) tmp3197 .= Taylor1(zero(_S), order) - tmp3199 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3198 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + tmp3198 .= Taylor1(zero(_S), order) + tmp3199 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp3199 .= Taylor1(zero(_S), order) - tmp3200 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3200 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp3200 .= Taylor1(zero(_S), order) tmp3201 = Array{Taylor1{_S}}(undef, size(tmp3199)) tmp3201 .= Taylor1(zero(_S), order) - tmp3202 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3202 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) tmp3202 .= Taylor1(zero(_S), order) - tmp3204 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3204 .= Taylor1(zero(_S), order) - tmp3205 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3205 .= Taylor1(zero(_S), order) - tmp3206 = Array{Taylor1{_S}}(undef, size(tmp3204)) - tmp3206 .= Taylor1(zero(_S), order) - tmp3207 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3207 .= Taylor1(zero(_S), order) - tmp3209 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3203 = Array{Taylor1{_S}}(undef, size(tmp3198)) + tmp3203 .= Taylor1(zero(_S), order) + tmp3223 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) + tmp3223 .= Taylor1(zero(_S), order) + tmp3224 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + tmp3224 .= Taylor1(zero(_S), order) + tmp3227 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + tmp3227 .= Taylor1(zero(_S), order) + tmp3228 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + tmp3228 .= Taylor1(zero(_S), order) + tmp3149 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp3149 .= Taylor1(zero(_S), order) + tmp3150 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp3150 .= Taylor1(zero(_S), order) + tmp3152 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp3152 .= Taylor1(zero(_S), order) + tmp3153 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp3153 .= Taylor1(zero(_S), order) + tmp3155 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3155 .= Taylor1(zero(_S), order) + tmp3158 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3158 .= Taylor1(zero(_S), order) + tmp3167 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3167 .= Taylor1(zero(_S), order) + tmp3168 = Array{Taylor1{_S}}(undef, size(tmp3167)) + tmp3168 .= Taylor1(zero(_S), order) + tmp3169 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3169 .= Taylor1(zero(_S), order) + tmp3160 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3160 .= Taylor1(zero(_S), order) + tmp3162 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3162 .= Taylor1(zero(_S), order) + tmp3163 = Array{Taylor1{_S}}(undef, size(tmp3162)) + tmp3163 .= Taylor1(zero(_S), order) + tmp3164 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp3164 .= Taylor1(zero(_S), order) + tmp3209 = Array{Taylor1{_S}}(undef, size(P_nm)) tmp3209 .= Taylor1(zero(_S), order) - tmp3210 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3210 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) tmp3210 .= Taylor1(zero(_S), order) tmp3211 = Array{Taylor1{_S}}(undef, size(tmp3209)) tmp3211 .= Taylor1(zero(_S), order) - tmp3212 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3212 = Array{Taylor1{_S}}(undef, size(tmp3211)) tmp3212 .= Taylor1(zero(_S), order) - tmp3214 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3214 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) tmp3214 .= Taylor1(zero(_S), order) - tmp3215 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3215 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) tmp3215 .= Taylor1(zero(_S), order) tmp3216 = Array{Taylor1{_S}}(undef, size(tmp3214)) tmp3216 .= Taylor1(zero(_S), order) - tmp3217 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3217 = Array{Taylor1{_S}}(undef, size(tmp3216)) tmp3217 .= Taylor1(zero(_S), order) - tmp3219 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3219 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) tmp3219 .= Taylor1(zero(_S), order) - tmp3220 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp3220 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) tmp3220 .= Taylor1(zero(_S), order) - tmp3221 = Array{Taylor1{_S}}(undef, size(tmp3219)) + tmp3221 = Array{Taylor1{_S}}(undef, size(tmp3220)) tmp3221 .= Taylor1(zero(_S), order) - tmp3222 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3222 .= Taylor1(zero(_S), order) - tmp3224 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3224 .= Taylor1(zero(_S), order) - tmp3225 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3225 .= Taylor1(zero(_S), order) - tmp3226 = Array{Taylor1{_S}}(undef, size(tmp3224)) - tmp3226 .= Taylor1(zero(_S), order) - tmp3227 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp3227 .= Taylor1(zero(_S), order) - tmp3229 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3229 .= Taylor1(zero(_S), order) - tmp3230 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3230 .= Taylor1(zero(_S), order) - tmp3231 = Array{Taylor1{_S}}(undef, size(tmp3229)) - tmp3231 .= Taylor1(zero(_S), order) - tmp3232 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3232 .= Taylor1(zero(_S), order) - tmp3234 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3234 .= Taylor1(zero(_S), order) - tmp3235 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3235 .= Taylor1(zero(_S), order) - tmp3236 = Array{Taylor1{_S}}(undef, size(tmp3234)) - tmp3236 .= Taylor1(zero(_S), order) - tmp3237 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3237 .= Taylor1(zero(_S), order) - tmp3239 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3239 .= Taylor1(zero(_S), order) - tmp3240 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3240 .= Taylor1(zero(_S), order) - tmp3241 = Array{Taylor1{_S}}(undef, size(tmp3239)) - tmp3241 .= Taylor1(zero(_S), order) - tmp3242 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp3242 .= Taylor1(zero(_S), order) - #= REPL[11]:416 =# Threads.@threads for j = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:416 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -3046,17 +5513,17 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp3051[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp3051[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp3053[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp3053[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp3055[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp3055[i, j]) + constant_term(Z_bf_3[i, j]), order) + tmp3106[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) + X_bf[i, j] = Taylor1(constant_term(tmp3106[i, j]) + constant_term(X_bf_3[i, j]), order) + tmp3108[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) + Y_bf[i, j] = Taylor1(constant_term(tmp3108[i, j]) + constant_term(Y_bf_3[i, j]), order) + tmp3110[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) + Z_bf[i, j] = Taylor1(constant_term(tmp3110[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp3059[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp3061[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp3062[i, j] = Taylor1(constant_term(tmp3059[i, j]) + constant_term(tmp3061[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3062[i, j])), order) + tmp3114[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp3116[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp3117[i, j] = Taylor1(constant_term(tmp3114[i, j]) + constant_term(tmp3116[i, j]), order) + r_xy[i, j] = Taylor1(sqrt(constant_term(tmp3117[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) @@ -3065,35 +5532,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) for n = 2:n1SEM[j] - tmp3067[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3068[i, j, n] = Taylor1(constant_term(tmp3067[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp3069[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp3068[i, j, n]) - constant_term(tmp3069[i, j, n - 1]), order) - tmp3071[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp3072[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3071[i, j, n]) + constant_term(tmp3072[i, j, n]), order) + tmp3122[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp3123[i, j, n] = Taylor1(constant_term(tmp3122[i, j, n]) * constant_term(fact1_jsem[n]), order) + tmp3124[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) + P_n[i, j, n + 1] = Taylor1(constant_term(tmp3123[i, j, n]) - constant_term(tmp3124[i, j, n - 1]), order) + tmp3126[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp3127[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) + dP_n[i, j, n + 1] = Taylor1(constant_term(tmp3126[i, j, n]) + constant_term(tmp3127[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp3077[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp3078[i, j, 3] = Taylor1(constant_term(tmp3077[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp3078[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp3080[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp3081[i, j, 3] = Taylor1(constant_term(tmp3080[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp3082[i, j, 3] = Taylor1(constant_term(tmp3081[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp3082[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp3132[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) + tmp3133[i, j, 3] = Taylor1(constant_term(tmp3132[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ξ[i, j] = Taylor1(constant_term(tmp3133[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp3135[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) + tmp3136[i, j, 3] = Taylor1(constant_term(tmp3135[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) + tmp3137[i, j, 3] = Taylor1(constant_term(tmp3136[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ζ[i, j] = Taylor1(constant_term(tmp3137[i, j, 3]) / constant_term(r_p4[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) for n = 3:n1SEM[j] - tmp3084[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp3085[i, j, n + 1] = Taylor1(constant_term(tmp3084[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3086[i, j, n + 1] = Taylor1(constant_term(tmp3085[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3086[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3088[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp3089[i, j, n + 1] = Taylor1(constant_term(tmp3088[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp3090[i, j, n + 1] = Taylor1(constant_term(tmp3089[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp3091[i, j, n + 1] = Taylor1(constant_term(tmp3090[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3091[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) + tmp3139[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) + tmp3140[i, j, n + 1] = Taylor1(constant_term(tmp3139[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp3141[i, j, n + 1] = Taylor1(constant_term(tmp3140[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjξ[i, j, n] = Taylor1(constant_term(tmp3141[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) + tmp3143[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) + tmp3144[i, j, n + 1] = Taylor1(constant_term(tmp3143[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) + tmp3145[i, j, n + 1] = Taylor1(constant_term(tmp3144[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp3146[i, j, n + 1] = Taylor1(constant_term(tmp3145[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjζ[i, j, n] = Taylor1(constant_term(tmp3146[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) end @@ -3106,69 +5573,69 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) else - tmp3094[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp3095[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp3094[i, j, m - 1]) + constant_term(tmp3095[i, j, m - 1]), order) - tmp3097[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp3098[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp3097[i, j, m - 1]) - constant_term(tmp3098[i, j, m - 1]), order) - tmp3100[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3100[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) + tmp3149[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + tmp3150[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + sin_mλ[i, j, m] = Taylor1(constant_term(tmp3149[i, j, m - 1]) + constant_term(tmp3150[i, j, m - 1]), order) + tmp3152[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + tmp3153[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + cos_mλ[i, j, m] = Taylor1(constant_term(tmp3152[i, j, m - 1]) - constant_term(tmp3153[i, j, m - 1]), order) + tmp3155[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) + secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp3155[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3103[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3103[i, j, m, m]) * constant_term(lnm3[m]), order) + tmp3158[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) + cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp3158[i, j, m, m]) * constant_term(lnm3[m]), order) end for n = m + 1:n1SEM[mo] if n == m + 1 - tmp3105[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3105[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp3160[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3160[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) else - tmp3107[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3108[i, j, n - 1, m] = Taylor1(constant_term(tmp3107[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp3109[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3108[i, j, n - 1, m]) + constant_term(tmp3109[i, j, n - 2, m]), order) + tmp3162[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + tmp3163[i, j, n - 1, m] = Taylor1(constant_term(tmp3162[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp3164[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp3163[i, j, n - 1, m]) + constant_term(tmp3164[i, j, n - 2, m]), order) end P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp3112[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp3113[i, j, n, m] = Taylor1(constant_term(tmp3112[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp3114[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3113[i, j, n, m]) + constant_term(tmp3114[i, j, n - 1, m]), order) + tmp3167[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) + tmp3168[i, j, n, m] = Taylor1(constant_term(tmp3167[i, j, n, m]) * constant_term(lnm3[n]), order) + tmp3169[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) + cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp3168[i, j, n, m]) + constant_term(tmp3169[i, j, n - 1, m]), order) end end - tmp3116[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp3117[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3118[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3119[i, j, 1] = Taylor1(constant_term(tmp3117[i, j, 1]) + constant_term(tmp3118[i, j, 1]), order) - tmp3120[i, j, 2, 1] = Taylor1(constant_term(tmp3116[i, j, 2, 1]) * constant_term(tmp3119[i, j, 1]), order) - tmp3121[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp3122[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3123[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3124[i, j, 2] = Taylor1(constant_term(tmp3122[i, j, 2]) + constant_term(tmp3123[i, j, 2]), order) - tmp3125[i, j, 2, 2] = Taylor1(constant_term(tmp3121[i, j, 2, 2]) * constant_term(tmp3124[i, j, 2]), order) - tmp3126[i, j, 2, 1] = Taylor1(constant_term(tmp3120[i, j, 2, 1]) + constant_term(tmp3125[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp3126[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3128[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp3129[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3130[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3131[i, j, 1] = Taylor1(constant_term(tmp3129[i, j, 1]) - constant_term(tmp3130[i, j, 1]), order) - tmp3132[i, j, 2, 1] = Taylor1(constant_term(tmp3128[i, j, 2, 1]) * constant_term(tmp3131[i, j, 1]), order) - tmp3133[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp3134[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3135[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3136[i, j, 2] = Taylor1(constant_term(tmp3134[i, j, 2]) - constant_term(tmp3135[i, j, 2]), order) - tmp3137[i, j, 2, 2] = Taylor1(constant_term(tmp3133[i, j, 2, 2]) * constant_term(tmp3136[i, j, 2]), order) - tmp3138[i, j, 2, 1] = Taylor1(constant_term(tmp3132[i, j, 2, 1]) + constant_term(tmp3137[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp3138[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp3140[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp3141[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp3142[i, j, 1] = Taylor1(constant_term(tmp3140[i, j, 1]) + constant_term(tmp3141[i, j, 1]), order) - tmp3143[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3142[i, j, 1]), order) - tmp3144[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp3145[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp3146[i, j, 2] = Taylor1(constant_term(tmp3144[i, j, 2]) + constant_term(tmp3145[i, j, 2]), order) - tmp3147[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3146[i, j, 2]), order) - tmp3148[i, j, 2, 1] = Taylor1(constant_term(tmp3143[i, j, 2, 1]) + constant_term(tmp3147[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp3148[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3171[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) + tmp3172[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3173[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3174[i, j, 1] = Taylor1(constant_term(tmp3172[i, j, 1]) + constant_term(tmp3173[i, j, 1]), order) + tmp3175[i, j, 2, 1] = Taylor1(constant_term(tmp3171[i, j, 2, 1]) * constant_term(tmp3174[i, j, 1]), order) + tmp3176[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) + tmp3177[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3178[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3179[i, j, 2] = Taylor1(constant_term(tmp3177[i, j, 2]) + constant_term(tmp3178[i, j, 2]), order) + tmp3180[i, j, 2, 2] = Taylor1(constant_term(tmp3176[i, j, 2, 2]) * constant_term(tmp3179[i, j, 2]), order) + tmp3181[i, j, 2, 1] = Taylor1(constant_term(tmp3175[i, j, 2, 1]) + constant_term(tmp3180[i, j, 2, 2]), order) + F_CS_ξ[i, j] = Taylor1(constant_term(tmp3181[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3183[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) + tmp3184[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3185[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3186[i, j, 1] = Taylor1(constant_term(tmp3184[i, j, 1]) - constant_term(tmp3185[i, j, 1]), order) + tmp3187[i, j, 2, 1] = Taylor1(constant_term(tmp3183[i, j, 2, 1]) * constant_term(tmp3186[i, j, 1]), order) + tmp3188[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) + tmp3189[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3190[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3191[i, j, 2] = Taylor1(constant_term(tmp3189[i, j, 2]) - constant_term(tmp3190[i, j, 2]), order) + tmp3192[i, j, 2, 2] = Taylor1(constant_term(tmp3188[i, j, 2, 2]) * constant_term(tmp3191[i, j, 2]), order) + tmp3193[i, j, 2, 1] = Taylor1(constant_term(tmp3187[i, j, 2, 1]) + constant_term(tmp3192[i, j, 2, 2]), order) + F_CS_η[i, j] = Taylor1(constant_term(tmp3193[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp3195[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp3196[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp3197[i, j, 1] = Taylor1(constant_term(tmp3195[i, j, 1]) + constant_term(tmp3196[i, j, 1]), order) + tmp3198[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3197[i, j, 1]), order) + tmp3199[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp3200[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp3201[i, j, 2] = Taylor1(constant_term(tmp3199[i, j, 2]) + constant_term(tmp3200[i, j, 2]), order) + tmp3202[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3201[i, j, 2]), order) + tmp3203[i, j, 2, 1] = Taylor1(constant_term(tmp3198[i, j, 2, 1]) + constant_term(tmp3202[i, j, 2, 2]), order) + F_CS_ζ[i, j] = Taylor1(constant_term(tmp3203[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -3178,32 +5645,32 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp3154[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp3155[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3156[i, j, n, m] = Taylor1(constant_term(tmp3154[i, j, n, m]) * constant_term(tmp3155[i, j, n, m]), order) - tmp3157[i, j, n, m] = Taylor1(constant_term(tmp3156[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3157[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp3159[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp3160[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp3161[i, j, n, m] = Taylor1(constant_term(tmp3159[i, j, n, m]) * constant_term(tmp3160[i, j, n, m]), order) - tmp3162[i, j, n, m] = Taylor1(constant_term(tmp3161[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3162[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp3164[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp3165[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3164[i, j, n, m]), order) - tmp3166[i, j, n, m] = Taylor1(constant_term(tmp3165[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3166[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) + tmp3209[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) + tmp3210[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp3211[i, j, n, m] = Taylor1(constant_term(tmp3209[i, j, n, m]) * constant_term(tmp3210[i, j, n, m]), order) + tmp3212[i, j, n, m] = Taylor1(constant_term(tmp3211[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp3212[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) + tmp3214[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) + tmp3215[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) + tmp3216[i, j, n, m] = Taylor1(constant_term(tmp3214[i, j, n, m]) * constant_term(tmp3215[i, j, n, m]), order) + tmp3217[i, j, n, m] = Taylor1(constant_term(tmp3216[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp3217[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) + tmp3219[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp3220[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3219[i, j, n, m]), order) + tmp3221[i, j, n, m] = Taylor1(constant_term(tmp3220[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp3221[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) end end - tmp3168[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp3169[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3168[i, j]) + constant_term(tmp3169[i, j]), order) + tmp3223[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) + tmp3224[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) + F_JCS_ξ[i, j] = Taylor1(constant_term(tmp3223[i, j]) + constant_term(tmp3224[i, j]), order) F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp3172[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp3173[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3172[i, j]) + constant_term(tmp3173[i, j]), order) + tmp3227[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) + tmp3228[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) + F_JCS_ζ[i, j] = Taylor1(constant_term(tmp3227[i, j]) + constant_term(tmp3228[i, j]), order) else F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -3211,146 +5678,146 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: end Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp3179[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3179[i, j]) * constant_term(cos_λ[i, j]), order) + tmp3234[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp3234[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp3182[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3182[i, j]) * constant_term(sin_λ[i, j]), order) + tmp3237[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp3237[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp3184[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3185[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3186[i, j, 1, 1] = Taylor1(constant_term(tmp3184[i, j, 1, 1]) + constant_term(tmp3185[i, j, 1, 2]), order) - tmp3187[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3186[i, j, 1, 1]) + constant_term(tmp3187[i, j, 1, 3]), order) - tmp3189[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3190[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3191[i, j, 2, 1] = Taylor1(constant_term(tmp3189[i, j, 2, 1]) + constant_term(tmp3190[i, j, 2, 2]), order) - tmp3192[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3191[i, j, 2, 1]) + constant_term(tmp3192[i, j, 2, 3]), order) - tmp3194[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp3195[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp3196[i, j, 3, 1] = Taylor1(constant_term(tmp3194[i, j, 3, 1]) + constant_term(tmp3195[i, j, 3, 2]), order) - tmp3197[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3196[i, j, 3, 1]) + constant_term(tmp3197[i, j, 3, 3]), order) - tmp3199[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3200[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3201[i, j, 1, 1] = Taylor1(constant_term(tmp3199[i, j, 1, 1]) + constant_term(tmp3200[i, j, 1, 2]), order) - tmp3202[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3201[i, j, 1, 1]) + constant_term(tmp3202[i, j, 1, 3]), order) - tmp3204[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3205[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3206[i, j, 2, 1] = Taylor1(constant_term(tmp3204[i, j, 2, 1]) + constant_term(tmp3205[i, j, 2, 2]), order) - tmp3207[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3206[i, j, 2, 1]) + constant_term(tmp3207[i, j, 2, 3]), order) - tmp3209[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp3210[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) - tmp3211[i, j, 3, 1] = Taylor1(constant_term(tmp3209[i, j, 3, 1]) + constant_term(tmp3210[i, j, 3, 2]), order) - tmp3212[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3211[i, j, 3, 1]) + constant_term(tmp3212[i, j, 3, 3]), order) - tmp3214[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3215[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3216[i, j, 1, 1] = Taylor1(constant_term(tmp3214[i, j, 1, 1]) + constant_term(tmp3215[i, j, 1, 2]), order) - tmp3217[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3216[i, j, 1, 1]) + constant_term(tmp3217[i, j, 1, 3]), order) - tmp3219[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3220[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3221[i, j, 2, 1] = Taylor1(constant_term(tmp3219[i, j, 2, 1]) + constant_term(tmp3220[i, j, 2, 2]), order) - tmp3222[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3221[i, j, 2, 1]) + constant_term(tmp3222[i, j, 2, 3]), order) - tmp3224[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp3225[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) - tmp3226[i, j, 3, 1] = Taylor1(constant_term(tmp3224[i, j, 3, 1]) + constant_term(tmp3225[i, j, 3, 2]), order) - tmp3227[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3226[i, j, 3, 1]) + constant_term(tmp3227[i, j, 3, 3]), order) - tmp3229[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp3230[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp3231[i, j, 1, 1] = Taylor1(constant_term(tmp3229[i, j, 1, 1]) + constant_term(tmp3230[i, j, 2, 1]), order) - tmp3232[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp3231[i, j, 1, 1]) + constant_term(tmp3232[i, j, 3, 1]), order) - tmp3234[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp3235[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp3236[i, j, 1, 2] = Taylor1(constant_term(tmp3234[i, j, 1, 2]) + constant_term(tmp3235[i, j, 2, 2]), order) - tmp3237[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp3236[i, j, 1, 2]) + constant_term(tmp3237[i, j, 3, 2]), order) - tmp3239[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp3240[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp3241[i, j, 1, 3] = Taylor1(constant_term(tmp3239[i, j, 1, 3]) + constant_term(tmp3240[i, j, 2, 3]), order) - tmp3242[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp3241[i, j, 1, 3]) + constant_term(tmp3242[i, j, 3, 3]), order) + tmp3239[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3240[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) + tmp3241[i, j, 1, 1] = Taylor1(constant_term(tmp3239[i, j, 1, 1]) + constant_term(tmp3240[i, j, 1, 2]), order) + tmp3242[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp3241[i, j, 1, 1]) + constant_term(tmp3242[i, j, 1, 3]), order) + tmp3244[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3245[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) + tmp3246[i, j, 2, 1] = Taylor1(constant_term(tmp3244[i, j, 2, 1]) + constant_term(tmp3245[i, j, 2, 2]), order) + tmp3247[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp3246[i, j, 2, 1]) + constant_term(tmp3247[i, j, 2, 3]), order) + tmp3249[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) + tmp3250[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) + tmp3251[i, j, 3, 1] = Taylor1(constant_term(tmp3249[i, j, 3, 1]) + constant_term(tmp3250[i, j, 3, 2]), order) + tmp3252[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp3251[i, j, 3, 1]) + constant_term(tmp3252[i, j, 3, 3]), order) + tmp3254[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3255[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3256[i, j, 1, 1] = Taylor1(constant_term(tmp3254[i, j, 1, 1]) + constant_term(tmp3255[i, j, 1, 2]), order) + tmp3257[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp3256[i, j, 1, 1]) + constant_term(tmp3257[i, j, 1, 3]), order) + tmp3259[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3260[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3261[i, j, 2, 1] = Taylor1(constant_term(tmp3259[i, j, 2, 1]) + constant_term(tmp3260[i, j, 2, 2]), order) + tmp3262[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp3261[i, j, 2, 1]) + constant_term(tmp3262[i, j, 2, 3]), order) + tmp3264[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) + tmp3265[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) + tmp3266[i, j, 3, 1] = Taylor1(constant_term(tmp3264[i, j, 3, 1]) + constant_term(tmp3265[i, j, 3, 2]), order) + tmp3267[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp3266[i, j, 3, 1]) + constant_term(tmp3267[i, j, 3, 3]), order) + tmp3269[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3270[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3271[i, j, 1, 1] = Taylor1(constant_term(tmp3269[i, j, 1, 1]) + constant_term(tmp3270[i, j, 1, 2]), order) + tmp3272[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp3271[i, j, 1, 1]) + constant_term(tmp3272[i, j, 1, 3]), order) + tmp3274[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3275[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3276[i, j, 2, 1] = Taylor1(constant_term(tmp3274[i, j, 2, 1]) + constant_term(tmp3275[i, j, 2, 2]), order) + tmp3277[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp3276[i, j, 2, 1]) + constant_term(tmp3277[i, j, 2, 3]), order) + tmp3279[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) + tmp3280[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp3281[i, j, 3, 1] = Taylor1(constant_term(tmp3279[i, j, 3, 1]) + constant_term(tmp3280[i, j, 3, 2]), order) + tmp3282[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp3281[i, j, 3, 1]) + constant_term(tmp3282[i, j, 3, 3]), order) + tmp3284[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) + tmp3285[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) + tmp3286[i, j, 1, 1] = Taylor1(constant_term(tmp3284[i, j, 1, 1]) + constant_term(tmp3285[i, j, 2, 1]), order) + tmp3287[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) + F_JCS_x[i, j] = Taylor1(constant_term(tmp3286[i, j, 1, 1]) + constant_term(tmp3287[i, j, 3, 1]), order) + tmp3289[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) + tmp3290[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) + tmp3291[i, j, 1, 2] = Taylor1(constant_term(tmp3289[i, j, 1, 2]) + constant_term(tmp3290[i, j, 2, 2]), order) + tmp3292[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) + F_JCS_y[i, j] = Taylor1(constant_term(tmp3291[i, j, 1, 2]) + constant_term(tmp3292[i, j, 3, 2]), order) + tmp3294[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) + tmp3295[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) + tmp3296[i, j, 1, 3] = Taylor1(constant_term(tmp3294[i, j, 1, 3]) + constant_term(tmp3295[i, j, 2, 3]), order) + tmp3297[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) + F_JCS_z[i, j] = Taylor1(constant_term(tmp3296[i, j, 1, 3]) + constant_term(tmp3297[i, j, 3, 3]), order) end end end end - tmp3244 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp3244 .= Taylor1(zero(_S), order) - tmp3246 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp3246 .= Taylor1(zero(_S), order) - tmp3248 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp3248 .= Taylor1(zero(_S), order) - tmp3250 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp3250 .= Taylor1(zero(_S), order) - tmp3252 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp3252 .= Taylor1(zero(_S), order) - tmp3254 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp3254 .= Taylor1(zero(_S), order) - tmp3256 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3256 .= Taylor1(zero(_S), order) - tmp3257 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3257 .= Taylor1(zero(_S), order) - tmp3258 = Array{Taylor1{_S}}(undef, size(tmp3256)) - tmp3258 .= Taylor1(zero(_S), order) - tmp3260 = Array{Taylor1{_S}}(undef, size(Z)) - tmp3260 .= Taylor1(zero(_S), order) - tmp3261 = Array{Taylor1{_S}}(undef, size(X)) - tmp3261 .= Taylor1(zero(_S), order) - tmp3262 = Array{Taylor1{_S}}(undef, size(tmp3260)) - tmp3262 .= Taylor1(zero(_S), order) - tmp3264 = Array{Taylor1{_S}}(undef, size(X)) - tmp3264 .= Taylor1(zero(_S), order) - tmp3265 = Array{Taylor1{_S}}(undef, size(Y)) - tmp3265 .= Taylor1(zero(_S), order) - tmp3266 = Array{Taylor1{_S}}(undef, size(tmp3264)) - tmp3266 .= Taylor1(zero(_S), order) + tmp3299 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + tmp3299 .= Taylor1(zero(_S), order) + tmp3301 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + tmp3301 .= Taylor1(zero(_S), order) + tmp3303 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + tmp3303 .= Taylor1(zero(_S), order) + tmp3305 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + tmp3305 .= Taylor1(zero(_S), order) + tmp3307 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + tmp3307 .= Taylor1(zero(_S), order) + tmp3309 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + tmp3309 .= Taylor1(zero(_S), order) + tmp3311 = Array{Taylor1{_S}}(undef, size(Y)) + tmp3311 .= Taylor1(zero(_S), order) + tmp3312 = Array{Taylor1{_S}}(undef, size(Z)) + tmp3312 .= Taylor1(zero(_S), order) + tmp3313 = Array{Taylor1{_S}}(undef, size(tmp3311)) + tmp3313 .= Taylor1(zero(_S), order) + tmp3315 = Array{Taylor1{_S}}(undef, size(Z)) + tmp3315 .= Taylor1(zero(_S), order) + tmp3316 = Array{Taylor1{_S}}(undef, size(X)) + tmp3316 .= Taylor1(zero(_S), order) + tmp3317 = Array{Taylor1{_S}}(undef, size(tmp3315)) + tmp3317 .= Taylor1(zero(_S), order) + tmp3319 = Array{Taylor1{_S}}(undef, size(X)) + tmp3319 .= Taylor1(zero(_S), order) + tmp3320 = Array{Taylor1{_S}}(undef, size(Y)) + tmp3320 .= Taylor1(zero(_S), order) + tmp3321 = Array{Taylor1{_S}}(undef, size(tmp3319)) + tmp3321 .= Taylor1(zero(_S), order) for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] - tmp3244[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3244[i, j]), order) + tmp3299[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp3299[i, j]), order) accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp3246[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3246[i, j]), order) + tmp3301[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp3301[i, j]), order) accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp3248[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3248[i, j]), order) + tmp3303[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp3303[i, j]), order) accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp3250[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3250[i, j]), order) + tmp3305[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp3305[i, j]), order) accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp3252[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3252[i, j]), order) + tmp3307[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp3307[i, j]), order) accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp3254[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3254[i, j]), order) + tmp3309[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp3309[i, j]), order) accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) if j == mo - tmp3256[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3257[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3258[i, j] = Taylor1(constant_term(tmp3256[i, j]) - constant_term(tmp3257[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3258[i, j]), order) - tmp3260[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3261[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp3262[i, j] = Taylor1(constant_term(tmp3260[i, j]) - constant_term(tmp3261[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3262[i, j]), order) - tmp3264[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp3265[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp3266[i, j] = Taylor1(constant_term(tmp3264[i, j]) - constant_term(tmp3265[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3266[i, j]), order) + tmp3311[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp3312[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp3313[i, j] = Taylor1(constant_term(tmp3311[i, j]) - constant_term(tmp3312[i, j]), order) + N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3313[i, j]), order) + tmp3315[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp3316[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp3317[i, j] = Taylor1(constant_term(tmp3315[i, j]) - constant_term(tmp3316[i, j]), order) + N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3317[i, j]), order) + tmp3319[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp3320[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp3321[i, j] = Taylor1(constant_term(tmp3319[i, j]) - constant_term(tmp3320[i, j]), order) + N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp3321[i, j]), order) temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]), order) N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]), order) @@ -3362,27 +5829,27 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: end end end - tmp3278 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - tmp3278 .= Taylor1(zero(_S), order) + tmp3333 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) + tmp3333 .= Taylor1(zero(_S), order) Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) Xij_t_Ui .= Taylor1(zero(_S), order) Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) Yij_t_Vi .= Taylor1(zero(_S), order) Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) Zij_t_Wi .= Taylor1(zero(_S), order) - tmp3284 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - tmp3284 .= Taylor1(zero(_S), order) - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3284)) + tmp3339 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) + tmp3339 .= Taylor1(zero(_S), order) + Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp3339)) Rij_dot_Vi .= Taylor1(zero(_S), order) - tmp3287 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - tmp3287 .= Taylor1(zero(_S), order) - pn1t7 = Array{Taylor1{_S}}(undef, size(tmp3287)) + tmp3342 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + tmp3342 .= Taylor1(zero(_S), order) + pn1t7 = Array{Taylor1{_S}}(undef, size(tmp3342)) pn1t7 .= Taylor1(zero(_S), order) - tmp3290 = Array{Taylor1{_S}}(undef, size(pn1t7)) - tmp3290 .= Taylor1(zero(_S), order) + tmp3345 = Array{Taylor1{_S}}(undef, size(pn1t7)) + tmp3345 .= Taylor1(zero(_S), order) pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) pn1t2_7 .= Taylor1(zero(_S), order) - #= REPL[11]:656 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:656 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -3391,18 +5858,18 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp3278[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3278[i, j]), order) + tmp3333[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) + sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3333[i, j]), order) ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp3284[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3284[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp3287[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - pn1t7[i, j] = Taylor1(constant_term(tmp3287[i, j]) / constant_term(r_p2[i, j]), order) - tmp3290[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3290[i, j]), order) + tmp3339[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) + Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp3339[i, j]) + constant_term(Zij_t_Wi[i, j]), order) + tmp3342[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + pn1t7[i, j] = Taylor1(constant_term(tmp3342[i, j]) / constant_term(r_p2[i, j]), order) + tmp3345[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) + pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3345[i, j]), order) pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) end end @@ -3410,31 +5877,31 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp3297 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - tmp3297 .= Taylor1(zero(_S), order) - tmp3298 = Array{Taylor1{_S}}(undef, size(tmp3297)) - tmp3298 .= Taylor1(zero(_S), order) - tmp3299 = Array{Taylor1{_S}}(undef, size(tmp3298)) - tmp3299 .= Taylor1(zero(_S), order) - tmp3307 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - tmp3307 .= Taylor1(zero(_S), order) + tmp3352 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) + tmp3352 .= Taylor1(zero(_S), order) + tmp3353 = Array{Taylor1{_S}}(undef, size(tmp3352)) + tmp3353 .= Taylor1(zero(_S), order) + tmp3354 = Array{Taylor1{_S}}(undef, size(tmp3353)) + tmp3354 .= Taylor1(zero(_S), order) + tmp3362 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) + tmp3362 .= Taylor1(zero(_S), order) termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) termpnx .= Taylor1(zero(_S), order) sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) sumpnx .= Taylor1(zero(_S), order) - tmp3310 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - tmp3310 .= Taylor1(zero(_S), order) + tmp3365 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) + tmp3365 .= Taylor1(zero(_S), order) termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) termpny .= Taylor1(zero(_S), order) sumpny = Array{Taylor1{_S}}(undef, size(termpny)) sumpny .= Taylor1(zero(_S), order) - tmp3313 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - tmp3313 .= Taylor1(zero(_S), order) + tmp3368 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) + tmp3368 .= Taylor1(zero(_S), order) termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) termpnz .= Taylor1(zero(_S), order) sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) sumpnz .= Taylor1(zero(_S), order) - #= REPL[11]:695 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:695 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -3442,26 +5909,26 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp3297[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp3298[i, j] = Taylor1(constant_term(tmp3297[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp3299[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3298[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3299[i, j]), order) + tmp3352[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) + tmp3353[i, j] = Taylor1(constant_term(tmp3352[i, j]) + constant_term(pNZ_t_Z[i, j]), order) + tmp3354[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp3353[i, j]), order) + pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp3354[i, j]), order) X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp3307[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3307[i, j]), order) + tmp3362[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) + termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp3362[i, j]), order) sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp3310[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3310[i, j]), order) + tmp3365[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) + termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp3365[i, j]), order) sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp3313[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3313[i, j]), order) + tmp3368[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) + termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp3368[i, j]), order) sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) end @@ -3470,290 +5937,2759 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: postNewtonY[j] = Taylor1(constant_term(pntempY[j]) * constant_term(c_m2), order) postNewtonZ[j] = Taylor1(constant_term(pntempZ[j]) * constant_term(c_m2), order) end - #= REPL[11]:741 =# Threads.@threads for i = 1:N_ext - dq[3 * (N + i) - 2] = Taylor1(constant_term(postNewtonX[i]) + constant_term(accX[i]), order) - dq[3 * (N + i) - 1] = Taylor1(constant_term(postNewtonY[i]) + constant_term(accY[i]), order) - dq[3 * (N + i)] = Taylor1(constant_term(postNewtonZ[i]) + constant_term(accZ[i]), order) + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:741 =# Threads.@threads for i = 1:N_ext + dq[3 * (N + i) - 2] = Taylor1(constant_term(postNewtonX[i]) + constant_term(accX[i]), order) + dq[3 * (N + i) - 1] = Taylor1(constant_term(postNewtonY[i]) + constant_term(accY[i]), order) + dq[3 * (N + i)] = Taylor1(constant_term(postNewtonZ[i]) + constant_term(accZ[i]), order) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:746 =# Threads.@threads for i = N_ext + 1:N + dq[3 * (N + i) - 2] = Taylor1(identity(constant_term(postNewtonX[i])), order) + dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) + dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) + end + tmp3377 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp3378 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp3379 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp3380 = Taylor1(constant_term(tmp3378) + constant_term(tmp3379), order) + Iω_x = Taylor1(constant_term(tmp3377) + constant_term(tmp3380), order) + tmp3382 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp3383 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp3384 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp3385 = Taylor1(constant_term(tmp3383) + constant_term(tmp3384), order) + Iω_y = Taylor1(constant_term(tmp3382) + constant_term(tmp3385), order) + tmp3387 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp3388 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp3389 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp3390 = Taylor1(constant_term(tmp3388) + constant_term(tmp3389), order) + Iω_z = Taylor1(constant_term(tmp3387) + constant_term(tmp3390), order) + tmp3392 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) + tmp3393 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) + ωxIω_x = Taylor1(constant_term(tmp3392) - constant_term(tmp3393), order) + tmp3395 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) + tmp3396 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) + ωxIω_y = Taylor1(constant_term(tmp3395) - constant_term(tmp3396), order) + tmp3398 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) + tmp3399 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) + ωxIω_z = Taylor1(constant_term(tmp3398) - constant_term(tmp3399), order) + tmp3401 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp3402 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp3403 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp3404 = Taylor1(constant_term(tmp3402) + constant_term(tmp3403), order) + dIω_x = Taylor1(constant_term(tmp3401) + constant_term(tmp3404), order) + tmp3406 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp3407 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp3408 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp3409 = Taylor1(constant_term(tmp3407) + constant_term(tmp3408), order) + dIω_y = Taylor1(constant_term(tmp3406) + constant_term(tmp3409), order) + tmp3411 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp3412 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp3413 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp3414 = Taylor1(constant_term(tmp3412) + constant_term(tmp3413), order) + dIω_z = Taylor1(constant_term(tmp3411) + constant_term(tmp3414), order) + er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) + er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) + er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) + p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) + p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) + p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) + tmp3419 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3420 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3421 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) + tmp3422 = Taylor1(constant_term(tmp3420) + constant_term(tmp3421), order) + er_EM_1 = Taylor1(constant_term(tmp3419) + constant_term(tmp3422), order) + tmp3424 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3425 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3426 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) + tmp3427 = Taylor1(constant_term(tmp3425) + constant_term(tmp3426), order) + er_EM_2 = Taylor1(constant_term(tmp3424) + constant_term(tmp3427), order) + tmp3429 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) + tmp3430 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) + tmp3431 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) + tmp3432 = Taylor1(constant_term(tmp3430) + constant_term(tmp3431), order) + er_EM_3 = Taylor1(constant_term(tmp3429) + constant_term(tmp3432), order) + tmp3434 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) + tmp3435 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) + tmp3436 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) + tmp3437 = Taylor1(constant_term(tmp3435) + constant_term(tmp3436), order) + p_E_1 = Taylor1(constant_term(tmp3434) + constant_term(tmp3437), order) + tmp3439 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) + tmp3440 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) + tmp3441 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) + tmp3442 = Taylor1(constant_term(tmp3440) + constant_term(tmp3441), order) + p_E_2 = Taylor1(constant_term(tmp3439) + constant_term(tmp3442), order) + tmp3444 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) + tmp3445 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) + tmp3446 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) + tmp3447 = Taylor1(constant_term(tmp3445) + constant_term(tmp3446), order) + p_E_3 = Taylor1(constant_term(tmp3444) + constant_term(tmp3447), order) + tmp3449 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) + tmp3450 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) + tmp3451 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) + tmp3452 = Taylor1(constant_term(tmp3450) + constant_term(tmp3451), order) + I_er_EM_1 = Taylor1(constant_term(tmp3449) + constant_term(tmp3452), order) + tmp3454 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) + tmp3455 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) + tmp3456 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) + tmp3457 = Taylor1(constant_term(tmp3455) + constant_term(tmp3456), order) + I_er_EM_2 = Taylor1(constant_term(tmp3454) + constant_term(tmp3457), order) + tmp3459 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) + tmp3460 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) + tmp3461 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) + tmp3462 = Taylor1(constant_term(tmp3460) + constant_term(tmp3461), order) + I_er_EM_3 = Taylor1(constant_term(tmp3459) + constant_term(tmp3462), order) + tmp3464 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) + tmp3465 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) + tmp3466 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + tmp3467 = Taylor1(constant_term(tmp3465) + constant_term(tmp3466), order) + I_p_E_1 = Taylor1(constant_term(tmp3464) + constant_term(tmp3467), order) + tmp3469 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) + tmp3470 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) + tmp3471 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + tmp3472 = Taylor1(constant_term(tmp3470) + constant_term(tmp3471), order) + I_p_E_2 = Taylor1(constant_term(tmp3469) + constant_term(tmp3472), order) + tmp3474 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) + tmp3475 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) + tmp3476 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp3477 = Taylor1(constant_term(tmp3475) + constant_term(tmp3476), order) + I_p_E_3 = Taylor1(constant_term(tmp3474) + constant_term(tmp3477), order) + tmp3479 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) + tmp3480 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) + er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp3479) - constant_term(tmp3480), order) + tmp3482 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) + tmp3483 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) + er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp3482) - constant_term(tmp3483), order) + tmp3485 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) + tmp3486 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) + er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp3485) - constant_term(tmp3486), order) + tmp3488 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) + tmp3489 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) + er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp3488) - constant_term(tmp3489), order) + tmp3491 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) + tmp3492 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) + er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp3491) - constant_term(tmp3492), order) + tmp3494 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) + tmp3495 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) + er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp3494) - constant_term(tmp3495), order) + tmp3497 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) + tmp3498 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) + p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp3497) - constant_term(tmp3498), order) + tmp3500 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) + tmp3501 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) + p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp3500) - constant_term(tmp3501), order) + tmp3503 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) + tmp3504 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) + p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp3503) - constant_term(tmp3504), order) + tmp3506 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) + tmp3507 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) + p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp3506) - constant_term(tmp3507), order) + tmp3509 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) + tmp3510 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) + p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp3509) - constant_term(tmp3510), order) + tmp3512 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) + tmp3513 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) + p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp3512) - constant_term(tmp3513), order) + tmp3517 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp3518 = Taylor1(constant_term(7) * constant_term(tmp3517), order) + one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp3518), order) + two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) + tmp3523 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp3523), order) + tmp3525 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) + tmp3526 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) + tmp3527 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3526), order) + tmp3528 = Taylor1(constant_term(tmp3525) + constant_term(tmp3527), order) + tmp3530 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) + tmp3531 = Taylor1(constant_term(tmp3528) - constant_term(tmp3530), order) + N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3531), order) + tmp3533 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) + tmp3534 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) + tmp3535 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3534), order) + tmp3536 = Taylor1(constant_term(tmp3533) + constant_term(tmp3535), order) + tmp3538 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) + tmp3539 = Taylor1(constant_term(tmp3536) - constant_term(tmp3538), order) + N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3539), order) + tmp3541 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) + tmp3542 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) + tmp3543 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3542), order) + tmp3544 = Taylor1(constant_term(tmp3541) + constant_term(tmp3543), order) + tmp3546 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) + tmp3547 = Taylor1(constant_term(tmp3544) - constant_term(tmp3546), order) + N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3547), order) + tmp3549 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3550 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3551 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3552 = Taylor1(constant_term(tmp3550) + constant_term(tmp3551), order) + N_1_LMF = Taylor1(constant_term(tmp3549) + constant_term(tmp3552), order) + tmp3554 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3555 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3556 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3557 = Taylor1(constant_term(tmp3555) + constant_term(tmp3556), order) + N_2_LMF = Taylor1(constant_term(tmp3554) + constant_term(tmp3557), order) + tmp3559 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp3560 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp3561 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp3562 = Taylor1(constant_term(tmp3560) + constant_term(tmp3561), order) + N_3_LMF = Taylor1(constant_term(tmp3559) + constant_term(tmp3562), order) + tmp3564 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) + tmp3565 = Taylor1(constant_term(k_ν) * constant_term(tmp3564), order) + tmp3566 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp3567 = Taylor1(constant_term(tmp3566) * constant_term(q[6N + 11]), order) + N_cmb_1 = Taylor1(constant_term(tmp3565) - constant_term(tmp3567), order) + tmp3569 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) + tmp3570 = Taylor1(constant_term(k_ν) * constant_term(tmp3569), order) + tmp3571 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp3572 = Taylor1(constant_term(tmp3571) * constant_term(q[6N + 10]), order) + N_cmb_2 = Taylor1(constant_term(tmp3570) + constant_term(tmp3572), order) + tmp3574 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) + N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp3574), order) + tmp3576 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) + tmp3577 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp3576), order) + tmp3578 = Taylor1(constant_term(tmp3577) + constant_term(N_cmb_1), order) + tmp3579 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) + I_dω_1 = Taylor1(constant_term(tmp3578) - constant_term(tmp3579), order) + tmp3581 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) + tmp3582 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp3581), order) + tmp3583 = Taylor1(constant_term(tmp3582) + constant_term(N_cmb_2), order) + tmp3584 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) + I_dω_2 = Taylor1(constant_term(tmp3583) - constant_term(tmp3584), order) + tmp3586 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) + tmp3587 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp3586), order) + tmp3588 = Taylor1(constant_term(tmp3587) + constant_term(N_cmb_3), order) + tmp3589 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) + I_dω_3 = Taylor1(constant_term(tmp3588) - constant_term(tmp3589), order) + Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) + Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) + Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) + tmp3594 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) + tmp3595 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) + m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp3594) - constant_term(tmp3595), order) + tmp3597 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) + tmp3598 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) + m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp3597) - constant_term(tmp3598), order) + tmp3600 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) + tmp3601 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) + m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp3600) - constant_term(tmp3601), order) + Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) + Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) + Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) + tmp3606 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3686 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3607 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3606), order) + tmp3608 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3687 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3609 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3608), order) + tmp3610 = Taylor1(constant_term(tmp3607) + constant_term(tmp3609), order) + tmp3611 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp3688 = Taylor1(cos(constant_term(q[6N + 2])), order) + dq[6N + 1] = Taylor1(constant_term(tmp3610) / constant_term(tmp3611), order) + tmp3613 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3689 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3614 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3613), order) + tmp3615 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp3690 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp3616 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3615), order) + dq[6N + 2] = Taylor1(constant_term(tmp3614) - constant_term(tmp3616), order) + tmp3618 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp3691 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp3619 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp3618), order) + dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp3619), order) + tmp3621 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) + tmp3622 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) + tmp3623 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) + tmp3624 = Taylor1(constant_term(tmp3622) + constant_term(tmp3623), order) + dq[6N + 4] = Taylor1(constant_term(tmp3621) + constant_term(tmp3624), order) + tmp3626 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) + tmp3627 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) + tmp3628 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) + tmp3629 = Taylor1(constant_term(tmp3627) + constant_term(tmp3628), order) + dq[6N + 5] = Taylor1(constant_term(tmp3626) + constant_term(tmp3629), order) + tmp3631 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) + tmp3632 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) + tmp3633 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) + tmp3634 = Taylor1(constant_term(tmp3632) + constant_term(tmp3633), order) + dq[6N + 6] = Taylor1(constant_term(tmp3631) + constant_term(tmp3634), order) + tmp3636 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp3692 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp3637 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp3636), order) + dq[6N + 9] = Taylor1(-(constant_term(tmp3637)), order) + tmp3639 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp3693 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp3640 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp3639), order) + dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp3640), order) + dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) + dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) + dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) + dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) + dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp2911, tmp2912, tmp2913, tmp2914, tmp2915, tmp2916, tmp2917, tmp2918, tmp2920, tmp2921, tmp2922, tmp2923, tmp2924, tmp2925, tmp2926, tmp2927, tmp2928, tmp2930, tmp2931, tmp2933, tmp2934, tmp2935, tmp2936, tmp2937, tmp2938, tmp2939, tmp2940, tmp2942, tmp2943, tmp2944, tmp2945, tmp2946, tmp2947, tmp2948, tmp2949, tmp2951, tmp2952, tmp2953, tmp2955, tmp2956, tmp2958, tmp2959, tmp2962, tmp2963, tmp2964, tmp2965, tmp2967, tmp2968, tmp2969, tmp2970, tmp2971, tmp2973, tmp2974, tmp2975, tmp2976, tmp2978, tmp2979, tmp2980, tmp2981, tmp2982, tmp2984, tmp2985, tmp2986, tmp2987, tmp2989, tmp2990, tmp2991, tmp2992, tmp2993, tmp2995, tmp2996, tmp2997, tmp2998, tmp3000, tmp3001, tmp3002, tmp3003, tmp3005, tmp3006, tmp3007, tmp3008, tmp3080, tmp3082, tmp3083, tmp3085, tmp3086, tmp3089, tmp3091, tmp3093, tmp3094, tmp3377, tmp3378, tmp3379, tmp3380, tmp3382, tmp3383, tmp3384, tmp3385, tmp3387, tmp3388, tmp3389, tmp3390, tmp3392, tmp3393, tmp3395, tmp3396, tmp3398, tmp3399, tmp3401, tmp3402, tmp3403, tmp3404, tmp3406, tmp3407, tmp3408, tmp3409, tmp3411, tmp3412, tmp3413, tmp3414, tmp3419, tmp3420, tmp3421, tmp3422, tmp3424, tmp3425, tmp3426, tmp3427, tmp3429, tmp3430, tmp3431, tmp3432, tmp3434, tmp3435, tmp3436, tmp3437, tmp3439, tmp3440, tmp3441, tmp3442, tmp3444, tmp3445, tmp3446, tmp3447, tmp3449, tmp3450, tmp3451, tmp3452, tmp3454, tmp3455, tmp3456, tmp3457, tmp3459, tmp3460, tmp3461, tmp3462, tmp3464, tmp3465, tmp3466, tmp3467, tmp3469, tmp3470, tmp3471, tmp3472, tmp3474, tmp3475, tmp3476, tmp3477, tmp3479, tmp3480, tmp3482, tmp3483, tmp3485, tmp3486, tmp3488, tmp3489, tmp3491, tmp3492, tmp3494, tmp3495, tmp3497, tmp3498, tmp3500, tmp3501, tmp3503, tmp3504, tmp3506, tmp3507, tmp3509, tmp3510, tmp3512, tmp3513, tmp3517, tmp3518, tmp3523, tmp3525, tmp3526, tmp3527, tmp3528, tmp3530, tmp3531, tmp3533, tmp3534, tmp3535, tmp3536, tmp3538, tmp3539, tmp3541, tmp3542, tmp3543, tmp3544, tmp3546, tmp3547, tmp3549, tmp3550, tmp3551, tmp3552, tmp3554, tmp3555, tmp3556, tmp3557, tmp3559, tmp3560, tmp3561, tmp3562, tmp3564, tmp3565, tmp3566, tmp3567, tmp3569, tmp3570, tmp3571, tmp3572, tmp3574, tmp3576, tmp3577, tmp3578, tmp3579, tmp3581, tmp3582, tmp3583, tmp3584, tmp3586, tmp3587, tmp3588, tmp3589, tmp3594, tmp3595, tmp3597, tmp3598, tmp3600, tmp3601, tmp3606, tmp3607, tmp3608, tmp3609, tmp3610, tmp3611, tmp3613, tmp3614, tmp3615, tmp3616, tmp3618, tmp3619, tmp3621, tmp3622, tmp3623, tmp3624, tmp3626, tmp3627, tmp3628, tmp3629, tmp3631, tmp3632, tmp3633, tmp3634, tmp3636, tmp3637, tmp3639, tmp3640, ϕ_m, θ_m, ψ_m, tmp3645, tmp3646, tmp3647, tmp3648, tmp3649, tmp3650, tmp3651, tmp3652, tmp3653, tmp3654, tmp3655, tmp3656, tmp3657, tmp3658, tmp3659, tmp3660, tmp3661, tmp3662, tmp3663, tmp3664, tmp3665, tmp3666, tmp3667, tmp3668, tmp3669, tmp3670, tmp3671, tmp3672, tmp3673, ϕ_c, tmp3674, tmp3675, tmp3676, tmp3677, tmp3678, tmp3679, tmp3680, tmp3681, tmp3682, tmp3683, tmp3684, tmp3685, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp3686, tmp3687, tmp3688, tmp3689, tmp3690, tmp3691, tmp3692, tmp3693], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp3017, tmp3019, tmp3022, tmp3024, tmp3027, tmp3029, tmp3073, tmp3075, tmp3076, tmp3078], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp3037, tmp3040, tmp3042, tmp3043, tmp3045, tmp3053, tmp3054, tmp3065, temp_001, tmp3067, temp_002, tmp3069, temp_003, temp_004, tmp3106, tmp3108, tmp3110, tmp3114, tmp3116, tmp3117, tmp3223, tmp3224, tmp3227, tmp3228, tmp3234, tmp3237, tmp3299, tmp3301, tmp3303, tmp3305, tmp3307, tmp3309, tmp3311, tmp3312, tmp3313, tmp3315, tmp3316, tmp3317, tmp3319, tmp3320, tmp3321, tmp3333, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp3339, Rij_dot_Vi, tmp3342, pn1t7, tmp3345, pn1t2_7, tmp3352, tmp3353, tmp3354, tmp3362, termpnx, sumpnx, tmp3365, termpny, sumpny, tmp3368, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp3122, tmp3123, tmp3124, tmp3126, tmp3127, tmp3132, tmp3133, tmp3135, tmp3136, tmp3137, tmp3139, tmp3140, tmp3141, tmp3143, tmp3144, tmp3145, tmp3146, tmp3149, tmp3150, tmp3152, tmp3153, tmp3172, tmp3173, tmp3174, tmp3177, tmp3178, tmp3179, tmp3184, tmp3185, tmp3186, tmp3189, tmp3190, tmp3191, tmp3195, tmp3196, tmp3197, tmp3199, tmp3200, tmp3201], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp3155, tmp3158, tmp3160, tmp3162, tmp3163, tmp3164, tmp3167, tmp3168, tmp3169, tmp3171, tmp3175, tmp3176, tmp3180, tmp3181, tmp3183, tmp3187, tmp3188, tmp3192, tmp3193, tmp3198, tmp3202, tmp3203, tmp3209, tmp3210, tmp3211, tmp3212, tmp3214, tmp3215, tmp3216, tmp3217, tmp3219, tmp3220, tmp3221, tmp3239, tmp3240, tmp3241, tmp3242, tmp3244, tmp3245, tmp3246, tmp3247, tmp3249, tmp3250, tmp3251, tmp3252, tmp3254, tmp3255, tmp3256, tmp3257, tmp3259, tmp3260, tmp3261, tmp3262, tmp3264, tmp3265, tmp3266, tmp3267, tmp3269, tmp3270, tmp3271, tmp3272, tmp3274, tmp3275, tmp3276, tmp3277, tmp3279, tmp3280, tmp3281, tmp3282, tmp3284, tmp3285, tmp3286, tmp3287, tmp3289, tmp3290, tmp3291, tmp3292, tmp3294, tmp3295, tmp3296, tmp3297]) +end +# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: NBP_pN_A_J23E_J23M_J2S_threads! +function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} + order = t.order + tmp2911 = __ralloc.v0[1]::Taylor1{_S} + tmp2912 = __ralloc.v0[2]::Taylor1{_S} + tmp2913 = __ralloc.v0[3]::Taylor1{_S} + tmp2914 = __ralloc.v0[4]::Taylor1{_S} + tmp2915 = __ralloc.v0[5]::Taylor1{_S} + tmp2916 = __ralloc.v0[6]::Taylor1{_S} + tmp2917 = __ralloc.v0[7]::Taylor1{_S} + tmp2918 = __ralloc.v0[8]::Taylor1{_S} + tmp2920 = __ralloc.v0[9]::Taylor1{_S} + tmp2921 = __ralloc.v0[10]::Taylor1{_S} + tmp2922 = __ralloc.v0[11]::Taylor1{_S} + tmp2923 = __ralloc.v0[12]::Taylor1{_S} + tmp2924 = __ralloc.v0[13]::Taylor1{_S} + tmp2925 = __ralloc.v0[14]::Taylor1{_S} + tmp2926 = __ralloc.v0[15]::Taylor1{_S} + tmp2927 = __ralloc.v0[16]::Taylor1{_S} + tmp2928 = __ralloc.v0[17]::Taylor1{_S} + tmp2930 = __ralloc.v0[18]::Taylor1{_S} + tmp2931 = __ralloc.v0[19]::Taylor1{_S} + tmp2933 = __ralloc.v0[20]::Taylor1{_S} + tmp2934 = __ralloc.v0[21]::Taylor1{_S} + tmp2935 = __ralloc.v0[22]::Taylor1{_S} + tmp2936 = __ralloc.v0[23]::Taylor1{_S} + tmp2937 = __ralloc.v0[24]::Taylor1{_S} + tmp2938 = __ralloc.v0[25]::Taylor1{_S} + tmp2939 = __ralloc.v0[26]::Taylor1{_S} + tmp2940 = __ralloc.v0[27]::Taylor1{_S} + tmp2942 = __ralloc.v0[28]::Taylor1{_S} + tmp2943 = __ralloc.v0[29]::Taylor1{_S} + tmp2944 = __ralloc.v0[30]::Taylor1{_S} + tmp2945 = __ralloc.v0[31]::Taylor1{_S} + tmp2946 = __ralloc.v0[32]::Taylor1{_S} + tmp2947 = __ralloc.v0[33]::Taylor1{_S} + tmp2948 = __ralloc.v0[34]::Taylor1{_S} + tmp2949 = __ralloc.v0[35]::Taylor1{_S} + tmp2951 = __ralloc.v0[36]::Taylor1{_S} + tmp2952 = __ralloc.v0[37]::Taylor1{_S} + tmp2953 = __ralloc.v0[38]::Taylor1{_S} + tmp2955 = __ralloc.v0[39]::Taylor1{_S} + tmp2956 = __ralloc.v0[40]::Taylor1{_S} + tmp2958 = __ralloc.v0[41]::Taylor1{_S} + tmp2959 = __ralloc.v0[42]::Taylor1{_S} + tmp2962 = __ralloc.v0[43]::Taylor1{_S} + tmp2963 = __ralloc.v0[44]::Taylor1{_S} + tmp2964 = __ralloc.v0[45]::Taylor1{_S} + tmp2965 = __ralloc.v0[46]::Taylor1{_S} + tmp2967 = __ralloc.v0[47]::Taylor1{_S} + tmp2968 = __ralloc.v0[48]::Taylor1{_S} + tmp2969 = __ralloc.v0[49]::Taylor1{_S} + tmp2970 = __ralloc.v0[50]::Taylor1{_S} + tmp2971 = __ralloc.v0[51]::Taylor1{_S} + tmp2973 = __ralloc.v0[52]::Taylor1{_S} + tmp2974 = __ralloc.v0[53]::Taylor1{_S} + tmp2975 = __ralloc.v0[54]::Taylor1{_S} + tmp2976 = __ralloc.v0[55]::Taylor1{_S} + tmp2978 = __ralloc.v0[56]::Taylor1{_S} + tmp2979 = __ralloc.v0[57]::Taylor1{_S} + tmp2980 = __ralloc.v0[58]::Taylor1{_S} + tmp2981 = __ralloc.v0[59]::Taylor1{_S} + tmp2982 = __ralloc.v0[60]::Taylor1{_S} + tmp2984 = __ralloc.v0[61]::Taylor1{_S} + tmp2985 = __ralloc.v0[62]::Taylor1{_S} + tmp2986 = __ralloc.v0[63]::Taylor1{_S} + tmp2987 = __ralloc.v0[64]::Taylor1{_S} + tmp2989 = __ralloc.v0[65]::Taylor1{_S} + tmp2990 = __ralloc.v0[66]::Taylor1{_S} + tmp2991 = __ralloc.v0[67]::Taylor1{_S} + tmp2992 = __ralloc.v0[68]::Taylor1{_S} + tmp2993 = __ralloc.v0[69]::Taylor1{_S} + tmp2995 = __ralloc.v0[70]::Taylor1{_S} + tmp2996 = __ralloc.v0[71]::Taylor1{_S} + tmp2997 = __ralloc.v0[72]::Taylor1{_S} + tmp2998 = __ralloc.v0[73]::Taylor1{_S} + tmp3000 = __ralloc.v0[74]::Taylor1{_S} + tmp3001 = __ralloc.v0[75]::Taylor1{_S} + tmp3002 = __ralloc.v0[76]::Taylor1{_S} + tmp3003 = __ralloc.v0[77]::Taylor1{_S} + tmp3005 = __ralloc.v0[78]::Taylor1{_S} + tmp3006 = __ralloc.v0[79]::Taylor1{_S} + tmp3007 = __ralloc.v0[80]::Taylor1{_S} + tmp3008 = __ralloc.v0[81]::Taylor1{_S} + tmp3080 = __ralloc.v0[82]::Taylor1{_S} + tmp3082 = __ralloc.v0[83]::Taylor1{_S} + tmp3083 = __ralloc.v0[84]::Taylor1{_S} + tmp3085 = __ralloc.v0[85]::Taylor1{_S} + tmp3086 = __ralloc.v0[86]::Taylor1{_S} + tmp3089 = __ralloc.v0[87]::Taylor1{_S} + tmp3091 = __ralloc.v0[88]::Taylor1{_S} + tmp3093 = __ralloc.v0[89]::Taylor1{_S} + tmp3094 = __ralloc.v0[90]::Taylor1{_S} + tmp3377 = __ralloc.v0[91]::Taylor1{_S} + tmp3378 = __ralloc.v0[92]::Taylor1{_S} + tmp3379 = __ralloc.v0[93]::Taylor1{_S} + tmp3380 = __ralloc.v0[94]::Taylor1{_S} + tmp3382 = __ralloc.v0[95]::Taylor1{_S} + tmp3383 = __ralloc.v0[96]::Taylor1{_S} + tmp3384 = __ralloc.v0[97]::Taylor1{_S} + tmp3385 = __ralloc.v0[98]::Taylor1{_S} + tmp3387 = __ralloc.v0[99]::Taylor1{_S} + tmp3388 = __ralloc.v0[100]::Taylor1{_S} + tmp3389 = __ralloc.v0[101]::Taylor1{_S} + tmp3390 = __ralloc.v0[102]::Taylor1{_S} + tmp3392 = __ralloc.v0[103]::Taylor1{_S} + tmp3393 = __ralloc.v0[104]::Taylor1{_S} + tmp3395 = __ralloc.v0[105]::Taylor1{_S} + tmp3396 = __ralloc.v0[106]::Taylor1{_S} + tmp3398 = __ralloc.v0[107]::Taylor1{_S} + tmp3399 = __ralloc.v0[108]::Taylor1{_S} + tmp3401 = __ralloc.v0[109]::Taylor1{_S} + tmp3402 = __ralloc.v0[110]::Taylor1{_S} + tmp3403 = __ralloc.v0[111]::Taylor1{_S} + tmp3404 = __ralloc.v0[112]::Taylor1{_S} + tmp3406 = __ralloc.v0[113]::Taylor1{_S} + tmp3407 = __ralloc.v0[114]::Taylor1{_S} + tmp3408 = __ralloc.v0[115]::Taylor1{_S} + tmp3409 = __ralloc.v0[116]::Taylor1{_S} + tmp3411 = __ralloc.v0[117]::Taylor1{_S} + tmp3412 = __ralloc.v0[118]::Taylor1{_S} + tmp3413 = __ralloc.v0[119]::Taylor1{_S} + tmp3414 = __ralloc.v0[120]::Taylor1{_S} + tmp3419 = __ralloc.v0[121]::Taylor1{_S} + tmp3420 = __ralloc.v0[122]::Taylor1{_S} + tmp3421 = __ralloc.v0[123]::Taylor1{_S} + tmp3422 = __ralloc.v0[124]::Taylor1{_S} + tmp3424 = __ralloc.v0[125]::Taylor1{_S} + tmp3425 = __ralloc.v0[126]::Taylor1{_S} + tmp3426 = __ralloc.v0[127]::Taylor1{_S} + tmp3427 = __ralloc.v0[128]::Taylor1{_S} + tmp3429 = __ralloc.v0[129]::Taylor1{_S} + tmp3430 = __ralloc.v0[130]::Taylor1{_S} + tmp3431 = __ralloc.v0[131]::Taylor1{_S} + tmp3432 = __ralloc.v0[132]::Taylor1{_S} + tmp3434 = __ralloc.v0[133]::Taylor1{_S} + tmp3435 = __ralloc.v0[134]::Taylor1{_S} + tmp3436 = __ralloc.v0[135]::Taylor1{_S} + tmp3437 = __ralloc.v0[136]::Taylor1{_S} + tmp3439 = __ralloc.v0[137]::Taylor1{_S} + tmp3440 = __ralloc.v0[138]::Taylor1{_S} + tmp3441 = __ralloc.v0[139]::Taylor1{_S} + tmp3442 = __ralloc.v0[140]::Taylor1{_S} + tmp3444 = __ralloc.v0[141]::Taylor1{_S} + tmp3445 = __ralloc.v0[142]::Taylor1{_S} + tmp3446 = __ralloc.v0[143]::Taylor1{_S} + tmp3447 = __ralloc.v0[144]::Taylor1{_S} + tmp3449 = __ralloc.v0[145]::Taylor1{_S} + tmp3450 = __ralloc.v0[146]::Taylor1{_S} + tmp3451 = __ralloc.v0[147]::Taylor1{_S} + tmp3452 = __ralloc.v0[148]::Taylor1{_S} + tmp3454 = __ralloc.v0[149]::Taylor1{_S} + tmp3455 = __ralloc.v0[150]::Taylor1{_S} + tmp3456 = __ralloc.v0[151]::Taylor1{_S} + tmp3457 = __ralloc.v0[152]::Taylor1{_S} + tmp3459 = __ralloc.v0[153]::Taylor1{_S} + tmp3460 = __ralloc.v0[154]::Taylor1{_S} + tmp3461 = __ralloc.v0[155]::Taylor1{_S} + tmp3462 = __ralloc.v0[156]::Taylor1{_S} + tmp3464 = __ralloc.v0[157]::Taylor1{_S} + tmp3465 = __ralloc.v0[158]::Taylor1{_S} + tmp3466 = __ralloc.v0[159]::Taylor1{_S} + tmp3467 = __ralloc.v0[160]::Taylor1{_S} + tmp3469 = __ralloc.v0[161]::Taylor1{_S} + tmp3470 = __ralloc.v0[162]::Taylor1{_S} + tmp3471 = __ralloc.v0[163]::Taylor1{_S} + tmp3472 = __ralloc.v0[164]::Taylor1{_S} + tmp3474 = __ralloc.v0[165]::Taylor1{_S} + tmp3475 = __ralloc.v0[166]::Taylor1{_S} + tmp3476 = __ralloc.v0[167]::Taylor1{_S} + tmp3477 = __ralloc.v0[168]::Taylor1{_S} + tmp3479 = __ralloc.v0[169]::Taylor1{_S} + tmp3480 = __ralloc.v0[170]::Taylor1{_S} + tmp3482 = __ralloc.v0[171]::Taylor1{_S} + tmp3483 = __ralloc.v0[172]::Taylor1{_S} + tmp3485 = __ralloc.v0[173]::Taylor1{_S} + tmp3486 = __ralloc.v0[174]::Taylor1{_S} + tmp3488 = __ralloc.v0[175]::Taylor1{_S} + tmp3489 = __ralloc.v0[176]::Taylor1{_S} + tmp3491 = __ralloc.v0[177]::Taylor1{_S} + tmp3492 = __ralloc.v0[178]::Taylor1{_S} + tmp3494 = __ralloc.v0[179]::Taylor1{_S} + tmp3495 = __ralloc.v0[180]::Taylor1{_S} + tmp3497 = __ralloc.v0[181]::Taylor1{_S} + tmp3498 = __ralloc.v0[182]::Taylor1{_S} + tmp3500 = __ralloc.v0[183]::Taylor1{_S} + tmp3501 = __ralloc.v0[184]::Taylor1{_S} + tmp3503 = __ralloc.v0[185]::Taylor1{_S} + tmp3504 = __ralloc.v0[186]::Taylor1{_S} + tmp3506 = __ralloc.v0[187]::Taylor1{_S} + tmp3507 = __ralloc.v0[188]::Taylor1{_S} + tmp3509 = __ralloc.v0[189]::Taylor1{_S} + tmp3510 = __ralloc.v0[190]::Taylor1{_S} + tmp3512 = __ralloc.v0[191]::Taylor1{_S} + tmp3513 = __ralloc.v0[192]::Taylor1{_S} + tmp3517 = __ralloc.v0[193]::Taylor1{_S} + tmp3518 = __ralloc.v0[194]::Taylor1{_S} + tmp3523 = __ralloc.v0[195]::Taylor1{_S} + tmp3525 = __ralloc.v0[196]::Taylor1{_S} + tmp3526 = __ralloc.v0[197]::Taylor1{_S} + tmp3527 = __ralloc.v0[198]::Taylor1{_S} + tmp3528 = __ralloc.v0[199]::Taylor1{_S} + tmp3530 = __ralloc.v0[200]::Taylor1{_S} + tmp3531 = __ralloc.v0[201]::Taylor1{_S} + tmp3533 = __ralloc.v0[202]::Taylor1{_S} + tmp3534 = __ralloc.v0[203]::Taylor1{_S} + tmp3535 = __ralloc.v0[204]::Taylor1{_S} + tmp3536 = __ralloc.v0[205]::Taylor1{_S} + tmp3538 = __ralloc.v0[206]::Taylor1{_S} + tmp3539 = __ralloc.v0[207]::Taylor1{_S} + tmp3541 = __ralloc.v0[208]::Taylor1{_S} + tmp3542 = __ralloc.v0[209]::Taylor1{_S} + tmp3543 = __ralloc.v0[210]::Taylor1{_S} + tmp3544 = __ralloc.v0[211]::Taylor1{_S} + tmp3546 = __ralloc.v0[212]::Taylor1{_S} + tmp3547 = __ralloc.v0[213]::Taylor1{_S} + tmp3549 = __ralloc.v0[214]::Taylor1{_S} + tmp3550 = __ralloc.v0[215]::Taylor1{_S} + tmp3551 = __ralloc.v0[216]::Taylor1{_S} + tmp3552 = __ralloc.v0[217]::Taylor1{_S} + tmp3554 = __ralloc.v0[218]::Taylor1{_S} + tmp3555 = __ralloc.v0[219]::Taylor1{_S} + tmp3556 = __ralloc.v0[220]::Taylor1{_S} + tmp3557 = __ralloc.v0[221]::Taylor1{_S} + tmp3559 = __ralloc.v0[222]::Taylor1{_S} + tmp3560 = __ralloc.v0[223]::Taylor1{_S} + tmp3561 = __ralloc.v0[224]::Taylor1{_S} + tmp3562 = __ralloc.v0[225]::Taylor1{_S} + tmp3564 = __ralloc.v0[226]::Taylor1{_S} + tmp3565 = __ralloc.v0[227]::Taylor1{_S} + tmp3566 = __ralloc.v0[228]::Taylor1{_S} + tmp3567 = __ralloc.v0[229]::Taylor1{_S} + tmp3569 = __ralloc.v0[230]::Taylor1{_S} + tmp3570 = __ralloc.v0[231]::Taylor1{_S} + tmp3571 = __ralloc.v0[232]::Taylor1{_S} + tmp3572 = __ralloc.v0[233]::Taylor1{_S} + tmp3574 = __ralloc.v0[234]::Taylor1{_S} + tmp3576 = __ralloc.v0[235]::Taylor1{_S} + tmp3577 = __ralloc.v0[236]::Taylor1{_S} + tmp3578 = __ralloc.v0[237]::Taylor1{_S} + tmp3579 = __ralloc.v0[238]::Taylor1{_S} + tmp3581 = __ralloc.v0[239]::Taylor1{_S} + tmp3582 = __ralloc.v0[240]::Taylor1{_S} + tmp3583 = __ralloc.v0[241]::Taylor1{_S} + tmp3584 = __ralloc.v0[242]::Taylor1{_S} + tmp3586 = __ralloc.v0[243]::Taylor1{_S} + tmp3587 = __ralloc.v0[244]::Taylor1{_S} + tmp3588 = __ralloc.v0[245]::Taylor1{_S} + tmp3589 = __ralloc.v0[246]::Taylor1{_S} + tmp3594 = __ralloc.v0[247]::Taylor1{_S} + tmp3595 = __ralloc.v0[248]::Taylor1{_S} + tmp3597 = __ralloc.v0[249]::Taylor1{_S} + tmp3598 = __ralloc.v0[250]::Taylor1{_S} + tmp3600 = __ralloc.v0[251]::Taylor1{_S} + tmp3601 = __ralloc.v0[252]::Taylor1{_S} + tmp3606 = __ralloc.v0[253]::Taylor1{_S} + tmp3607 = __ralloc.v0[254]::Taylor1{_S} + tmp3608 = __ralloc.v0[255]::Taylor1{_S} + tmp3609 = __ralloc.v0[256]::Taylor1{_S} + tmp3610 = __ralloc.v0[257]::Taylor1{_S} + tmp3611 = __ralloc.v0[258]::Taylor1{_S} + tmp3613 = __ralloc.v0[259]::Taylor1{_S} + tmp3614 = __ralloc.v0[260]::Taylor1{_S} + tmp3615 = __ralloc.v0[261]::Taylor1{_S} + tmp3616 = __ralloc.v0[262]::Taylor1{_S} + tmp3618 = __ralloc.v0[263]::Taylor1{_S} + tmp3619 = __ralloc.v0[264]::Taylor1{_S} + tmp3621 = __ralloc.v0[265]::Taylor1{_S} + tmp3622 = __ralloc.v0[266]::Taylor1{_S} + tmp3623 = __ralloc.v0[267]::Taylor1{_S} + tmp3624 = __ralloc.v0[268]::Taylor1{_S} + tmp3626 = __ralloc.v0[269]::Taylor1{_S} + tmp3627 = __ralloc.v0[270]::Taylor1{_S} + tmp3628 = __ralloc.v0[271]::Taylor1{_S} + tmp3629 = __ralloc.v0[272]::Taylor1{_S} + tmp3631 = __ralloc.v0[273]::Taylor1{_S} + tmp3632 = __ralloc.v0[274]::Taylor1{_S} + tmp3633 = __ralloc.v0[275]::Taylor1{_S} + tmp3634 = __ralloc.v0[276]::Taylor1{_S} + tmp3636 = __ralloc.v0[277]::Taylor1{_S} + tmp3637 = __ralloc.v0[278]::Taylor1{_S} + tmp3639 = __ralloc.v0[279]::Taylor1{_S} + tmp3640 = __ralloc.v0[280]::Taylor1{_S} + ϕ_m = __ralloc.v0[281]::Taylor1{_S} + θ_m = __ralloc.v0[282]::Taylor1{_S} + ψ_m = __ralloc.v0[283]::Taylor1{_S} + tmp3645 = __ralloc.v0[284]::Taylor1{_S} + tmp3646 = __ralloc.v0[285]::Taylor1{_S} + tmp3647 = __ralloc.v0[286]::Taylor1{_S} + tmp3648 = __ralloc.v0[287]::Taylor1{_S} + tmp3649 = __ralloc.v0[288]::Taylor1{_S} + tmp3650 = __ralloc.v0[289]::Taylor1{_S} + tmp3651 = __ralloc.v0[290]::Taylor1{_S} + tmp3652 = __ralloc.v0[291]::Taylor1{_S} + tmp3653 = __ralloc.v0[292]::Taylor1{_S} + tmp3654 = __ralloc.v0[293]::Taylor1{_S} + tmp3655 = __ralloc.v0[294]::Taylor1{_S} + tmp3656 = __ralloc.v0[295]::Taylor1{_S} + tmp3657 = __ralloc.v0[296]::Taylor1{_S} + tmp3658 = __ralloc.v0[297]::Taylor1{_S} + tmp3659 = __ralloc.v0[298]::Taylor1{_S} + tmp3660 = __ralloc.v0[299]::Taylor1{_S} + tmp3661 = __ralloc.v0[300]::Taylor1{_S} + tmp3662 = __ralloc.v0[301]::Taylor1{_S} + tmp3663 = __ralloc.v0[302]::Taylor1{_S} + tmp3664 = __ralloc.v0[303]::Taylor1{_S} + tmp3665 = __ralloc.v0[304]::Taylor1{_S} + tmp3666 = __ralloc.v0[305]::Taylor1{_S} + tmp3667 = __ralloc.v0[306]::Taylor1{_S} + tmp3668 = __ralloc.v0[307]::Taylor1{_S} + tmp3669 = __ralloc.v0[308]::Taylor1{_S} + tmp3670 = __ralloc.v0[309]::Taylor1{_S} + tmp3671 = __ralloc.v0[310]::Taylor1{_S} + tmp3672 = __ralloc.v0[311]::Taylor1{_S} + tmp3673 = __ralloc.v0[312]::Taylor1{_S} + ϕ_c = __ralloc.v0[313]::Taylor1{_S} + tmp3674 = __ralloc.v0[314]::Taylor1{_S} + tmp3675 = __ralloc.v0[315]::Taylor1{_S} + tmp3676 = __ralloc.v0[316]::Taylor1{_S} + tmp3677 = __ralloc.v0[317]::Taylor1{_S} + tmp3678 = __ralloc.v0[318]::Taylor1{_S} + tmp3679 = __ralloc.v0[319]::Taylor1{_S} + tmp3680 = __ralloc.v0[320]::Taylor1{_S} + tmp3681 = __ralloc.v0[321]::Taylor1{_S} + tmp3682 = __ralloc.v0[322]::Taylor1{_S} + tmp3683 = __ralloc.v0[323]::Taylor1{_S} + tmp3684 = __ralloc.v0[324]::Taylor1{_S} + tmp3685 = __ralloc.v0[325]::Taylor1{_S} + ω_c_CE_1 = __ralloc.v0[326]::Taylor1{_S} + ω_c_CE_2 = __ralloc.v0[327]::Taylor1{_S} + ω_c_CE_3 = __ralloc.v0[328]::Taylor1{_S} + J2M_t = __ralloc.v0[329]::Taylor1{_S} + C22M_t = __ralloc.v0[330]::Taylor1{_S} + C21M_t = __ralloc.v0[331]::Taylor1{_S} + S21M_t = __ralloc.v0[332]::Taylor1{_S} + S22M_t = __ralloc.v0[333]::Taylor1{_S} + Iω_x = __ralloc.v0[334]::Taylor1{_S} + Iω_y = __ralloc.v0[335]::Taylor1{_S} + Iω_z = __ralloc.v0[336]::Taylor1{_S} + ωxIω_x = __ralloc.v0[337]::Taylor1{_S} + ωxIω_y = __ralloc.v0[338]::Taylor1{_S} + ωxIω_z = __ralloc.v0[339]::Taylor1{_S} + dIω_x = __ralloc.v0[340]::Taylor1{_S} + dIω_y = __ralloc.v0[341]::Taylor1{_S} + dIω_z = __ralloc.v0[342]::Taylor1{_S} + er_EM_I_1 = __ralloc.v0[343]::Taylor1{_S} + er_EM_I_2 = __ralloc.v0[344]::Taylor1{_S} + er_EM_I_3 = __ralloc.v0[345]::Taylor1{_S} + p_E_I_1 = __ralloc.v0[346]::Taylor1{_S} + p_E_I_2 = __ralloc.v0[347]::Taylor1{_S} + p_E_I_3 = __ralloc.v0[348]::Taylor1{_S} + er_EM_1 = __ralloc.v0[349]::Taylor1{_S} + er_EM_2 = __ralloc.v0[350]::Taylor1{_S} + er_EM_3 = __ralloc.v0[351]::Taylor1{_S} + p_E_1 = __ralloc.v0[352]::Taylor1{_S} + p_E_2 = __ralloc.v0[353]::Taylor1{_S} + p_E_3 = __ralloc.v0[354]::Taylor1{_S} + I_er_EM_1 = __ralloc.v0[355]::Taylor1{_S} + I_er_EM_2 = __ralloc.v0[356]::Taylor1{_S} + I_er_EM_3 = __ralloc.v0[357]::Taylor1{_S} + I_p_E_1 = __ralloc.v0[358]::Taylor1{_S} + I_p_E_2 = __ralloc.v0[359]::Taylor1{_S} + I_p_E_3 = __ralloc.v0[360]::Taylor1{_S} + er_EM_cross_I_er_EM_1 = __ralloc.v0[361]::Taylor1{_S} + er_EM_cross_I_er_EM_2 = __ralloc.v0[362]::Taylor1{_S} + er_EM_cross_I_er_EM_3 = __ralloc.v0[363]::Taylor1{_S} + er_EM_cross_I_p_E_1 = __ralloc.v0[364]::Taylor1{_S} + er_EM_cross_I_p_E_2 = __ralloc.v0[365]::Taylor1{_S} + er_EM_cross_I_p_E_3 = __ralloc.v0[366]::Taylor1{_S} + p_E_cross_I_er_EM_1 = __ralloc.v0[367]::Taylor1{_S} + p_E_cross_I_er_EM_2 = __ralloc.v0[368]::Taylor1{_S} + p_E_cross_I_er_EM_3 = __ralloc.v0[369]::Taylor1{_S} + p_E_cross_I_p_E_1 = __ralloc.v0[370]::Taylor1{_S} + p_E_cross_I_p_E_2 = __ralloc.v0[371]::Taylor1{_S} + p_E_cross_I_p_E_3 = __ralloc.v0[372]::Taylor1{_S} + one_minus_7sin2ϕEM = __ralloc.v0[373]::Taylor1{_S} + two_sinϕEM = __ralloc.v0[374]::Taylor1{_S} + N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[375]::Taylor1{_S} + N_MfigM_figE_1 = __ralloc.v0[376]::Taylor1{_S} + N_MfigM_figE_2 = __ralloc.v0[377]::Taylor1{_S} + N_MfigM_figE_3 = __ralloc.v0[378]::Taylor1{_S} + N_1_LMF = __ralloc.v0[379]::Taylor1{_S} + N_2_LMF = __ralloc.v0[380]::Taylor1{_S} + N_3_LMF = __ralloc.v0[381]::Taylor1{_S} + N_cmb_1 = __ralloc.v0[382]::Taylor1{_S} + N_cmb_2 = __ralloc.v0[383]::Taylor1{_S} + N_cmb_3 = __ralloc.v0[384]::Taylor1{_S} + I_dω_1 = __ralloc.v0[385]::Taylor1{_S} + I_dω_2 = __ralloc.v0[386]::Taylor1{_S} + I_dω_3 = __ralloc.v0[387]::Taylor1{_S} + Ic_ωc_1 = __ralloc.v0[388]::Taylor1{_S} + Ic_ωc_2 = __ralloc.v0[389]::Taylor1{_S} + Ic_ωc_3 = __ralloc.v0[390]::Taylor1{_S} + m_ωm_x_Icωc_1 = __ralloc.v0[391]::Taylor1{_S} + m_ωm_x_Icωc_2 = __ralloc.v0[392]::Taylor1{_S} + m_ωm_x_Icωc_3 = __ralloc.v0[393]::Taylor1{_S} + Ic_dωc_1 = __ralloc.v0[394]::Taylor1{_S} + Ic_dωc_2 = __ralloc.v0[395]::Taylor1{_S} + Ic_dωc_3 = __ralloc.v0[396]::Taylor1{_S} + tmp3686 = __ralloc.v0[397]::Taylor1{_S} + tmp3687 = __ralloc.v0[398]::Taylor1{_S} + tmp3688 = __ralloc.v0[399]::Taylor1{_S} + tmp3689 = __ralloc.v0[400]::Taylor1{_S} + tmp3690 = __ralloc.v0[401]::Taylor1{_S} + tmp3691 = __ralloc.v0[402]::Taylor1{_S} + tmp3692 = __ralloc.v0[403]::Taylor1{_S} + tmp3693 = __ralloc.v0[404]::Taylor1{_S} + newtonX = __ralloc.v1[1]::Vector{Taylor1{_S}} + newtonY = __ralloc.v1[2]::Vector{Taylor1{_S}} + newtonZ = __ralloc.v1[3]::Vector{Taylor1{_S}} + newtonianNb_Potential = __ralloc.v1[4]::Vector{Taylor1{_S}} + v2 = __ralloc.v1[5]::Vector{Taylor1{_S}} + pntempX = __ralloc.v1[6]::Vector{Taylor1{_S}} + pntempY = __ralloc.v1[7]::Vector{Taylor1{_S}} + pntempZ = __ralloc.v1[8]::Vector{Taylor1{_S}} + postNewtonX = __ralloc.v1[9]::Vector{Taylor1{_S}} + postNewtonY = __ralloc.v1[10]::Vector{Taylor1{_S}} + postNewtonZ = __ralloc.v1[11]::Vector{Taylor1{_S}} + accX = __ralloc.v1[12]::Vector{Taylor1{_S}} + accY = __ralloc.v1[13]::Vector{Taylor1{_S}} + accZ = __ralloc.v1[14]::Vector{Taylor1{_S}} + N_MfigM_pmA_x = __ralloc.v1[15]::Vector{Taylor1{_S}} + N_MfigM_pmA_y = __ralloc.v1[16]::Vector{Taylor1{_S}} + N_MfigM_pmA_z = __ralloc.v1[17]::Vector{Taylor1{_S}} + temp_N_M_x = __ralloc.v1[18]::Vector{Taylor1{_S}} + temp_N_M_y = __ralloc.v1[19]::Vector{Taylor1{_S}} + temp_N_M_z = __ralloc.v1[20]::Vector{Taylor1{_S}} + N_MfigM = __ralloc.v1[21]::Vector{Taylor1{_S}} + J2_t = __ralloc.v1[22]::Vector{Taylor1{_S}} + tmp3017 = __ralloc.v1[23]::Vector{Taylor1{_S}} + tmp3019 = __ralloc.v1[24]::Vector{Taylor1{_S}} + tmp3022 = __ralloc.v1[25]::Vector{Taylor1{_S}} + tmp3024 = __ralloc.v1[26]::Vector{Taylor1{_S}} + tmp3027 = __ralloc.v1[27]::Vector{Taylor1{_S}} + tmp3029 = __ralloc.v1[28]::Vector{Taylor1{_S}} + tmp3073 = __ralloc.v1[29]::Vector{Taylor1{_S}} + tmp3075 = __ralloc.v1[30]::Vector{Taylor1{_S}} + tmp3076 = __ralloc.v1[31]::Vector{Taylor1{_S}} + tmp3078 = __ralloc.v1[32]::Vector{Taylor1{_S}} + X = __ralloc.v2[1]::Array{Taylor1{_S}, 2} + Y = __ralloc.v2[2]::Array{Taylor1{_S}, 2} + Z = __ralloc.v2[3]::Array{Taylor1{_S}, 2} + r_p2 = __ralloc.v2[4]::Array{Taylor1{_S}, 2} + r_p1d2 = __ralloc.v2[5]::Array{Taylor1{_S}, 2} + r_p3d2 = __ralloc.v2[6]::Array{Taylor1{_S}, 2} + r_p7d2 = __ralloc.v2[7]::Array{Taylor1{_S}, 2} + newtonianCoeff = __ralloc.v2[8]::Array{Taylor1{_S}, 2} + U = __ralloc.v2[9]::Array{Taylor1{_S}, 2} + V = __ralloc.v2[10]::Array{Taylor1{_S}, 2} + W = __ralloc.v2[11]::Array{Taylor1{_S}, 2} + _4U_m_3X = __ralloc.v2[12]::Array{Taylor1{_S}, 2} + _4V_m_3Y = __ralloc.v2[13]::Array{Taylor1{_S}, 2} + _4W_m_3Z = __ralloc.v2[14]::Array{Taylor1{_S}, 2} + UU = __ralloc.v2[15]::Array{Taylor1{_S}, 2} + VV = __ralloc.v2[16]::Array{Taylor1{_S}, 2} + WW = __ralloc.v2[17]::Array{Taylor1{_S}, 2} + newtonian1b_Potential = __ralloc.v2[18]::Array{Taylor1{_S}, 2} + newton_acc_X = __ralloc.v2[19]::Array{Taylor1{_S}, 2} + newton_acc_Y = __ralloc.v2[20]::Array{Taylor1{_S}, 2} + newton_acc_Z = __ralloc.v2[21]::Array{Taylor1{_S}, 2} + _2v2 = __ralloc.v2[22]::Array{Taylor1{_S}, 2} + vi_dot_vj = __ralloc.v2[23]::Array{Taylor1{_S}, 2} + pn2 = __ralloc.v2[24]::Array{Taylor1{_S}, 2} + U_t_pn2 = __ralloc.v2[25]::Array{Taylor1{_S}, 2} + V_t_pn2 = __ralloc.v2[26]::Array{Taylor1{_S}, 2} + W_t_pn2 = __ralloc.v2[27]::Array{Taylor1{_S}, 2} + pn3 = __ralloc.v2[28]::Array{Taylor1{_S}, 2} + pNX_t_pn3 = __ralloc.v2[29]::Array{Taylor1{_S}, 2} + pNY_t_pn3 = __ralloc.v2[30]::Array{Taylor1{_S}, 2} + pNZ_t_pn3 = __ralloc.v2[31]::Array{Taylor1{_S}, 2} + _4ϕj = __ralloc.v2[32]::Array{Taylor1{_S}, 2} + ϕi_plus_4ϕj = __ralloc.v2[33]::Array{Taylor1{_S}, 2} + sj2_plus_2si2 = __ralloc.v2[34]::Array{Taylor1{_S}, 2} + sj2_plus_2si2_minus_4vivj = __ralloc.v2[35]::Array{Taylor1{_S}, 2} + ϕs_and_vs = __ralloc.v2[36]::Array{Taylor1{_S}, 2} + pn1t1_7 = __ralloc.v2[37]::Array{Taylor1{_S}, 2} + pNX_t_X = __ralloc.v2[38]::Array{Taylor1{_S}, 2} + pNY_t_Y = __ralloc.v2[39]::Array{Taylor1{_S}, 2} + pNZ_t_Z = __ralloc.v2[40]::Array{Taylor1{_S}, 2} + pn1 = __ralloc.v2[41]::Array{Taylor1{_S}, 2} + X_t_pn1 = __ralloc.v2[42]::Array{Taylor1{_S}, 2} + Y_t_pn1 = __ralloc.v2[43]::Array{Taylor1{_S}, 2} + Z_t_pn1 = __ralloc.v2[44]::Array{Taylor1{_S}, 2} + X_bf_1 = __ralloc.v2[45]::Array{Taylor1{_S}, 2} + Y_bf_1 = __ralloc.v2[46]::Array{Taylor1{_S}, 2} + Z_bf_1 = __ralloc.v2[47]::Array{Taylor1{_S}, 2} + X_bf_2 = __ralloc.v2[48]::Array{Taylor1{_S}, 2} + Y_bf_2 = __ralloc.v2[49]::Array{Taylor1{_S}, 2} + Z_bf_2 = __ralloc.v2[50]::Array{Taylor1{_S}, 2} + X_bf_3 = __ralloc.v2[51]::Array{Taylor1{_S}, 2} + Y_bf_3 = __ralloc.v2[52]::Array{Taylor1{_S}, 2} + Z_bf_3 = __ralloc.v2[53]::Array{Taylor1{_S}, 2} + X_bf = __ralloc.v2[54]::Array{Taylor1{_S}, 2} + Y_bf = __ralloc.v2[55]::Array{Taylor1{_S}, 2} + Z_bf = __ralloc.v2[56]::Array{Taylor1{_S}, 2} + F_JCS_x = __ralloc.v2[57]::Array{Taylor1{_S}, 2} + F_JCS_y = __ralloc.v2[58]::Array{Taylor1{_S}, 2} + F_JCS_z = __ralloc.v2[59]::Array{Taylor1{_S}, 2} + temp_accX_j = __ralloc.v2[60]::Array{Taylor1{_S}, 2} + temp_accY_j = __ralloc.v2[61]::Array{Taylor1{_S}, 2} + temp_accZ_j = __ralloc.v2[62]::Array{Taylor1{_S}, 2} + temp_accX_i = __ralloc.v2[63]::Array{Taylor1{_S}, 2} + temp_accY_i = __ralloc.v2[64]::Array{Taylor1{_S}, 2} + temp_accZ_i = __ralloc.v2[65]::Array{Taylor1{_S}, 2} + sin_ϕ = __ralloc.v2[66]::Array{Taylor1{_S}, 2} + cos_ϕ = __ralloc.v2[67]::Array{Taylor1{_S}, 2} + sin_λ = __ralloc.v2[68]::Array{Taylor1{_S}, 2} + cos_λ = __ralloc.v2[69]::Array{Taylor1{_S}, 2} + r_xy = __ralloc.v2[70]::Array{Taylor1{_S}, 2} + r_p4 = __ralloc.v2[71]::Array{Taylor1{_S}, 2} + F_CS_ξ_36 = __ralloc.v2[72]::Array{Taylor1{_S}, 2} + F_CS_η_36 = __ralloc.v2[73]::Array{Taylor1{_S}, 2} + F_CS_ζ_36 = __ralloc.v2[74]::Array{Taylor1{_S}, 2} + F_J_ξ_36 = __ralloc.v2[75]::Array{Taylor1{_S}, 2} + F_J_ζ_36 = __ralloc.v2[76]::Array{Taylor1{_S}, 2} + F_J_ξ = __ralloc.v2[77]::Array{Taylor1{_S}, 2} + F_J_ζ = __ralloc.v2[78]::Array{Taylor1{_S}, 2} + F_CS_ξ = __ralloc.v2[79]::Array{Taylor1{_S}, 2} + F_CS_η = __ralloc.v2[80]::Array{Taylor1{_S}, 2} + F_CS_ζ = __ralloc.v2[81]::Array{Taylor1{_S}, 2} + F_JCS_ξ = __ralloc.v2[82]::Array{Taylor1{_S}, 2} + F_JCS_η = __ralloc.v2[83]::Array{Taylor1{_S}, 2} + F_JCS_ζ = __ralloc.v2[84]::Array{Taylor1{_S}, 2} + mantlef2coref = __ralloc.v2[85]::Array{Taylor1{_S}, 2} + pn2x = __ralloc.v2[86]::Array{Taylor1{_S}, 2} + pn2y = __ralloc.v2[87]::Array{Taylor1{_S}, 2} + pn2z = __ralloc.v2[88]::Array{Taylor1{_S}, 2} + tmp3037 = __ralloc.v2[89]::Array{Taylor1{_S}, 2} + tmp3040 = __ralloc.v2[90]::Array{Taylor1{_S}, 2} + tmp3042 = __ralloc.v2[91]::Array{Taylor1{_S}, 2} + tmp3043 = __ralloc.v2[92]::Array{Taylor1{_S}, 2} + tmp3045 = __ralloc.v2[93]::Array{Taylor1{_S}, 2} + tmp3053 = __ralloc.v2[94]::Array{Taylor1{_S}, 2} + tmp3054 = __ralloc.v2[95]::Array{Taylor1{_S}, 2} + tmp3065 = __ralloc.v2[96]::Array{Taylor1{_S}, 2} + temp_001 = __ralloc.v2[97]::Array{Taylor1{_S}, 2} + tmp3067 = __ralloc.v2[98]::Array{Taylor1{_S}, 2} + temp_002 = __ralloc.v2[99]::Array{Taylor1{_S}, 2} + tmp3069 = __ralloc.v2[100]::Array{Taylor1{_S}, 2} + temp_003 = __ralloc.v2[101]::Array{Taylor1{_S}, 2} + temp_004 = __ralloc.v2[102]::Array{Taylor1{_S}, 2} + tmp3106 = __ralloc.v2[103]::Array{Taylor1{_S}, 2} + tmp3108 = __ralloc.v2[104]::Array{Taylor1{_S}, 2} + tmp3110 = __ralloc.v2[105]::Array{Taylor1{_S}, 2} + tmp3114 = __ralloc.v2[106]::Array{Taylor1{_S}, 2} + tmp3116 = __ralloc.v2[107]::Array{Taylor1{_S}, 2} + tmp3117 = __ralloc.v2[108]::Array{Taylor1{_S}, 2} + tmp3223 = __ralloc.v2[109]::Array{Taylor1{_S}, 2} + tmp3224 = __ralloc.v2[110]::Array{Taylor1{_S}, 2} + tmp3227 = __ralloc.v2[111]::Array{Taylor1{_S}, 2} + tmp3228 = __ralloc.v2[112]::Array{Taylor1{_S}, 2} + tmp3234 = __ralloc.v2[113]::Array{Taylor1{_S}, 2} + tmp3237 = __ralloc.v2[114]::Array{Taylor1{_S}, 2} + tmp3299 = __ralloc.v2[115]::Array{Taylor1{_S}, 2} + tmp3301 = __ralloc.v2[116]::Array{Taylor1{_S}, 2} + tmp3303 = __ralloc.v2[117]::Array{Taylor1{_S}, 2} + tmp3305 = __ralloc.v2[118]::Array{Taylor1{_S}, 2} + tmp3307 = __ralloc.v2[119]::Array{Taylor1{_S}, 2} + tmp3309 = __ralloc.v2[120]::Array{Taylor1{_S}, 2} + tmp3311 = __ralloc.v2[121]::Array{Taylor1{_S}, 2} + tmp3312 = __ralloc.v2[122]::Array{Taylor1{_S}, 2} + tmp3313 = __ralloc.v2[123]::Array{Taylor1{_S}, 2} + tmp3315 = __ralloc.v2[124]::Array{Taylor1{_S}, 2} + tmp3316 = __ralloc.v2[125]::Array{Taylor1{_S}, 2} + tmp3317 = __ralloc.v2[126]::Array{Taylor1{_S}, 2} + tmp3319 = __ralloc.v2[127]::Array{Taylor1{_S}, 2} + tmp3320 = __ralloc.v2[128]::Array{Taylor1{_S}, 2} + tmp3321 = __ralloc.v2[129]::Array{Taylor1{_S}, 2} + tmp3333 = __ralloc.v2[130]::Array{Taylor1{_S}, 2} + Xij_t_Ui = __ralloc.v2[131]::Array{Taylor1{_S}, 2} + Yij_t_Vi = __ralloc.v2[132]::Array{Taylor1{_S}, 2} + Zij_t_Wi = __ralloc.v2[133]::Array{Taylor1{_S}, 2} + tmp3339 = __ralloc.v2[134]::Array{Taylor1{_S}, 2} + Rij_dot_Vi = __ralloc.v2[135]::Array{Taylor1{_S}, 2} + tmp3342 = __ralloc.v2[136]::Array{Taylor1{_S}, 2} + pn1t7 = __ralloc.v2[137]::Array{Taylor1{_S}, 2} + tmp3345 = __ralloc.v2[138]::Array{Taylor1{_S}, 2} + pn1t2_7 = __ralloc.v2[139]::Array{Taylor1{_S}, 2} + tmp3352 = __ralloc.v2[140]::Array{Taylor1{_S}, 2} + tmp3353 = __ralloc.v2[141]::Array{Taylor1{_S}, 2} + tmp3354 = __ralloc.v2[142]::Array{Taylor1{_S}, 2} + tmp3362 = __ralloc.v2[143]::Array{Taylor1{_S}, 2} + termpnx = __ralloc.v2[144]::Array{Taylor1{_S}, 2} + sumpnx = __ralloc.v2[145]::Array{Taylor1{_S}, 2} + tmp3365 = __ralloc.v2[146]::Array{Taylor1{_S}, 2} + termpny = __ralloc.v2[147]::Array{Taylor1{_S}, 2} + sumpny = __ralloc.v2[148]::Array{Taylor1{_S}, 2} + tmp3368 = __ralloc.v2[149]::Array{Taylor1{_S}, 2} + termpnz = __ralloc.v2[150]::Array{Taylor1{_S}, 2} + sumpnz = __ralloc.v2[151]::Array{Taylor1{_S}, 2} + P_n = __ralloc.v3[1]::Array{Taylor1{_S}, 3} + dP_n = __ralloc.v3[2]::Array{Taylor1{_S}, 3} + temp_fjξ = __ralloc.v3[3]::Array{Taylor1{_S}, 3} + temp_fjζ = __ralloc.v3[4]::Array{Taylor1{_S}, 3} + temp_rn = __ralloc.v3[5]::Array{Taylor1{_S}, 3} + sin_mλ = __ralloc.v3[6]::Array{Taylor1{_S}, 3} + cos_mλ = __ralloc.v3[7]::Array{Taylor1{_S}, 3} + RotM = __ralloc.v3[8]::Array{Taylor1{_S}, 3} + tmp3122 = __ralloc.v3[9]::Array{Taylor1{_S}, 3} + tmp3123 = __ralloc.v3[10]::Array{Taylor1{_S}, 3} + tmp3124 = __ralloc.v3[11]::Array{Taylor1{_S}, 3} + tmp3126 = __ralloc.v3[12]::Array{Taylor1{_S}, 3} + tmp3127 = __ralloc.v3[13]::Array{Taylor1{_S}, 3} + tmp3132 = __ralloc.v3[14]::Array{Taylor1{_S}, 3} + tmp3133 = __ralloc.v3[15]::Array{Taylor1{_S}, 3} + tmp3135 = __ralloc.v3[16]::Array{Taylor1{_S}, 3} + tmp3136 = __ralloc.v3[17]::Array{Taylor1{_S}, 3} + tmp3137 = __ralloc.v3[18]::Array{Taylor1{_S}, 3} + tmp3139 = __ralloc.v3[19]::Array{Taylor1{_S}, 3} + tmp3140 = __ralloc.v3[20]::Array{Taylor1{_S}, 3} + tmp3141 = __ralloc.v3[21]::Array{Taylor1{_S}, 3} + tmp3143 = __ralloc.v3[22]::Array{Taylor1{_S}, 3} + tmp3144 = __ralloc.v3[23]::Array{Taylor1{_S}, 3} + tmp3145 = __ralloc.v3[24]::Array{Taylor1{_S}, 3} + tmp3146 = __ralloc.v3[25]::Array{Taylor1{_S}, 3} + tmp3149 = __ralloc.v3[26]::Array{Taylor1{_S}, 3} + tmp3150 = __ralloc.v3[27]::Array{Taylor1{_S}, 3} + tmp3152 = __ralloc.v3[28]::Array{Taylor1{_S}, 3} + tmp3153 = __ralloc.v3[29]::Array{Taylor1{_S}, 3} + tmp3172 = __ralloc.v3[30]::Array{Taylor1{_S}, 3} + tmp3173 = __ralloc.v3[31]::Array{Taylor1{_S}, 3} + tmp3174 = __ralloc.v3[32]::Array{Taylor1{_S}, 3} + tmp3177 = __ralloc.v3[33]::Array{Taylor1{_S}, 3} + tmp3178 = __ralloc.v3[34]::Array{Taylor1{_S}, 3} + tmp3179 = __ralloc.v3[35]::Array{Taylor1{_S}, 3} + tmp3184 = __ralloc.v3[36]::Array{Taylor1{_S}, 3} + tmp3185 = __ralloc.v3[37]::Array{Taylor1{_S}, 3} + tmp3186 = __ralloc.v3[38]::Array{Taylor1{_S}, 3} + tmp3189 = __ralloc.v3[39]::Array{Taylor1{_S}, 3} + tmp3190 = __ralloc.v3[40]::Array{Taylor1{_S}, 3} + tmp3191 = __ralloc.v3[41]::Array{Taylor1{_S}, 3} + tmp3195 = __ralloc.v3[42]::Array{Taylor1{_S}, 3} + tmp3196 = __ralloc.v3[43]::Array{Taylor1{_S}, 3} + tmp3197 = __ralloc.v3[44]::Array{Taylor1{_S}, 3} + tmp3199 = __ralloc.v3[45]::Array{Taylor1{_S}, 3} + tmp3200 = __ralloc.v3[46]::Array{Taylor1{_S}, 3} + tmp3201 = __ralloc.v3[47]::Array{Taylor1{_S}, 3} + temp_CS_ξ = __ralloc.v4[1]::Array{Taylor1{_S}, 4} + temp_CS_η = __ralloc.v4[2]::Array{Taylor1{_S}, 4} + temp_CS_ζ = __ralloc.v4[3]::Array{Taylor1{_S}, 4} + Cnm_cosmλ = __ralloc.v4[4]::Array{Taylor1{_S}, 4} + Cnm_sinmλ = __ralloc.v4[5]::Array{Taylor1{_S}, 4} + Snm_cosmλ = __ralloc.v4[6]::Array{Taylor1{_S}, 4} + Snm_sinmλ = __ralloc.v4[7]::Array{Taylor1{_S}, 4} + secϕ_P_nm = __ralloc.v4[8]::Array{Taylor1{_S}, 4} + P_nm = __ralloc.v4[9]::Array{Taylor1{_S}, 4} + cosϕ_dP_nm = __ralloc.v4[10]::Array{Taylor1{_S}, 4} + Rb2p = __ralloc.v4[11]::Array{Taylor1{_S}, 4} + Gc2p = __ralloc.v4[12]::Array{Taylor1{_S}, 4} + tmp3155 = __ralloc.v4[13]::Array{Taylor1{_S}, 4} + tmp3158 = __ralloc.v4[14]::Array{Taylor1{_S}, 4} + tmp3160 = __ralloc.v4[15]::Array{Taylor1{_S}, 4} + tmp3162 = __ralloc.v4[16]::Array{Taylor1{_S}, 4} + tmp3163 = __ralloc.v4[17]::Array{Taylor1{_S}, 4} + tmp3164 = __ralloc.v4[18]::Array{Taylor1{_S}, 4} + tmp3167 = __ralloc.v4[19]::Array{Taylor1{_S}, 4} + tmp3168 = __ralloc.v4[20]::Array{Taylor1{_S}, 4} + tmp3169 = __ralloc.v4[21]::Array{Taylor1{_S}, 4} + tmp3171 = __ralloc.v4[22]::Array{Taylor1{_S}, 4} + tmp3175 = __ralloc.v4[23]::Array{Taylor1{_S}, 4} + tmp3176 = __ralloc.v4[24]::Array{Taylor1{_S}, 4} + tmp3180 = __ralloc.v4[25]::Array{Taylor1{_S}, 4} + tmp3181 = __ralloc.v4[26]::Array{Taylor1{_S}, 4} + tmp3183 = __ralloc.v4[27]::Array{Taylor1{_S}, 4} + tmp3187 = __ralloc.v4[28]::Array{Taylor1{_S}, 4} + tmp3188 = __ralloc.v4[29]::Array{Taylor1{_S}, 4} + tmp3192 = __ralloc.v4[30]::Array{Taylor1{_S}, 4} + tmp3193 = __ralloc.v4[31]::Array{Taylor1{_S}, 4} + tmp3198 = __ralloc.v4[32]::Array{Taylor1{_S}, 4} + tmp3202 = __ralloc.v4[33]::Array{Taylor1{_S}, 4} + tmp3203 = __ralloc.v4[34]::Array{Taylor1{_S}, 4} + tmp3209 = __ralloc.v4[35]::Array{Taylor1{_S}, 4} + tmp3210 = __ralloc.v4[36]::Array{Taylor1{_S}, 4} + tmp3211 = __ralloc.v4[37]::Array{Taylor1{_S}, 4} + tmp3212 = __ralloc.v4[38]::Array{Taylor1{_S}, 4} + tmp3214 = __ralloc.v4[39]::Array{Taylor1{_S}, 4} + tmp3215 = __ralloc.v4[40]::Array{Taylor1{_S}, 4} + tmp3216 = __ralloc.v4[41]::Array{Taylor1{_S}, 4} + tmp3217 = __ralloc.v4[42]::Array{Taylor1{_S}, 4} + tmp3219 = __ralloc.v4[43]::Array{Taylor1{_S}, 4} + tmp3220 = __ralloc.v4[44]::Array{Taylor1{_S}, 4} + tmp3221 = __ralloc.v4[45]::Array{Taylor1{_S}, 4} + tmp3239 = __ralloc.v4[46]::Array{Taylor1{_S}, 4} + tmp3240 = __ralloc.v4[47]::Array{Taylor1{_S}, 4} + tmp3241 = __ralloc.v4[48]::Array{Taylor1{_S}, 4} + tmp3242 = __ralloc.v4[49]::Array{Taylor1{_S}, 4} + tmp3244 = __ralloc.v4[50]::Array{Taylor1{_S}, 4} + tmp3245 = __ralloc.v4[51]::Array{Taylor1{_S}, 4} + tmp3246 = __ralloc.v4[52]::Array{Taylor1{_S}, 4} + tmp3247 = __ralloc.v4[53]::Array{Taylor1{_S}, 4} + tmp3249 = __ralloc.v4[54]::Array{Taylor1{_S}, 4} + tmp3250 = __ralloc.v4[55]::Array{Taylor1{_S}, 4} + tmp3251 = __ralloc.v4[56]::Array{Taylor1{_S}, 4} + tmp3252 = __ralloc.v4[57]::Array{Taylor1{_S}, 4} + tmp3254 = __ralloc.v4[58]::Array{Taylor1{_S}, 4} + tmp3255 = __ralloc.v4[59]::Array{Taylor1{_S}, 4} + tmp3256 = __ralloc.v4[60]::Array{Taylor1{_S}, 4} + tmp3257 = __ralloc.v4[61]::Array{Taylor1{_S}, 4} + tmp3259 = __ralloc.v4[62]::Array{Taylor1{_S}, 4} + tmp3260 = __ralloc.v4[63]::Array{Taylor1{_S}, 4} + tmp3261 = __ralloc.v4[64]::Array{Taylor1{_S}, 4} + tmp3262 = __ralloc.v4[65]::Array{Taylor1{_S}, 4} + tmp3264 = __ralloc.v4[66]::Array{Taylor1{_S}, 4} + tmp3265 = __ralloc.v4[67]::Array{Taylor1{_S}, 4} + tmp3266 = __ralloc.v4[68]::Array{Taylor1{_S}, 4} + tmp3267 = __ralloc.v4[69]::Array{Taylor1{_S}, 4} + tmp3269 = __ralloc.v4[70]::Array{Taylor1{_S}, 4} + tmp3270 = __ralloc.v4[71]::Array{Taylor1{_S}, 4} + tmp3271 = __ralloc.v4[72]::Array{Taylor1{_S}, 4} + tmp3272 = __ralloc.v4[73]::Array{Taylor1{_S}, 4} + tmp3274 = __ralloc.v4[74]::Array{Taylor1{_S}, 4} + tmp3275 = __ralloc.v4[75]::Array{Taylor1{_S}, 4} + tmp3276 = __ralloc.v4[76]::Array{Taylor1{_S}, 4} + tmp3277 = __ralloc.v4[77]::Array{Taylor1{_S}, 4} + tmp3279 = __ralloc.v4[78]::Array{Taylor1{_S}, 4} + tmp3280 = __ralloc.v4[79]::Array{Taylor1{_S}, 4} + tmp3281 = __ralloc.v4[80]::Array{Taylor1{_S}, 4} + tmp3282 = __ralloc.v4[81]::Array{Taylor1{_S}, 4} + tmp3284 = __ralloc.v4[82]::Array{Taylor1{_S}, 4} + tmp3285 = __ralloc.v4[83]::Array{Taylor1{_S}, 4} + tmp3286 = __ralloc.v4[84]::Array{Taylor1{_S}, 4} + tmp3287 = __ralloc.v4[85]::Array{Taylor1{_S}, 4} + tmp3289 = __ralloc.v4[86]::Array{Taylor1{_S}, 4} + tmp3290 = __ralloc.v4[87]::Array{Taylor1{_S}, 4} + tmp3291 = __ralloc.v4[88]::Array{Taylor1{_S}, 4} + tmp3292 = __ralloc.v4[89]::Array{Taylor1{_S}, 4} + tmp3294 = __ralloc.v4[90]::Array{Taylor1{_S}, 4} + tmp3295 = __ralloc.v4[91]::Array{Taylor1{_S}, 4} + tmp3296 = __ralloc.v4[92]::Array{Taylor1{_S}, 4} + tmp3297 = __ralloc.v4[93]::Array{Taylor1{_S}, 4} + local (N, jd0) = params + local S = eltype(q) + local zero_q_1 = zero(q[1]) + local one_t = one(t) + local dsj2k = t + (jd0 - J2000) + local I_m_t = (ITM_und - I_c) .* one_t + local dI_m_t = ordpres_differentiate.(I_m_t) + local inv_I_m_t = inv(I_m_t) + local I_c_t = I_c .* one_t + local inv_I_c_t = inv(I_c_t) + local I_M_t = I_m_t + I_c_t + (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) + local αs = deg2rad(α_p_sun * one_t) + local δs = deg2rad(δ_p_sun * one_t) + local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) + local RotM[:, :, su] = pole_rotation(αs, δs) + ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) + ϕ_m.coeffs[2:order + 1] .= zero(ϕ_m.coeffs[1]) + θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) + θ_m.coeffs[2:order + 1] .= zero(θ_m.coeffs[1]) + ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) + ψ_m.coeffs[2:order + 1] .= zero(ψ_m.coeffs[1]) + tmp2911.coeffs[1] = cos(constant_term(ϕ_m)) + tmp2911.coeffs[2:order + 1] .= zero(tmp2911.coeffs[1]) + tmp3645.coeffs[1] = sin(constant_term(ϕ_m)) + tmp3645.coeffs[2:order + 1] .= zero(tmp3645.coeffs[1]) + tmp2912.coeffs[1] = cos(constant_term(ψ_m)) + tmp2912.coeffs[2:order + 1] .= zero(tmp2912.coeffs[1]) + tmp3646.coeffs[1] = sin(constant_term(ψ_m)) + tmp3646.coeffs[2:order + 1] .= zero(tmp3646.coeffs[1]) + tmp2913.coeffs[1] = constant_term(tmp2911) * constant_term(tmp2912) + tmp2913.coeffs[2:order + 1] .= zero(tmp2913.coeffs[1]) + tmp2914.coeffs[1] = cos(constant_term(θ_m)) + tmp2914.coeffs[2:order + 1] .= zero(tmp2914.coeffs[1]) + tmp3647.coeffs[1] = sin(constant_term(θ_m)) + tmp3647.coeffs[2:order + 1] .= zero(tmp3647.coeffs[1]) + tmp2915.coeffs[1] = sin(constant_term(ϕ_m)) + tmp2915.coeffs[2:order + 1] .= zero(tmp2915.coeffs[1]) + tmp3648.coeffs[1] = cos(constant_term(ϕ_m)) + tmp3648.coeffs[2:order + 1] .= zero(tmp3648.coeffs[1]) + tmp2916.coeffs[1] = constant_term(tmp2914) * constant_term(tmp2915) + tmp2916.coeffs[2:order + 1] .= zero(tmp2916.coeffs[1]) + tmp2917.coeffs[1] = sin(constant_term(ψ_m)) + tmp2917.coeffs[2:order + 1] .= zero(tmp2917.coeffs[1]) + tmp3649.coeffs[1] = cos(constant_term(ψ_m)) + tmp3649.coeffs[2:order + 1] .= zero(tmp3649.coeffs[1]) + tmp2918.coeffs[1] = constant_term(tmp2916) * constant_term(tmp2917) + tmp2918.coeffs[2:order + 1] .= zero(tmp2918.coeffs[1]) + (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp2913) - constant_term(tmp2918) + (RotM[1, 1, mo]).coeffs[2:order + 1] .= zero((RotM[1, 1, mo]).coeffs[1]) + tmp2920.coeffs[1] = cos(constant_term(θ_m)) + tmp2920.coeffs[2:order + 1] .= zero(tmp2920.coeffs[1]) + tmp3650.coeffs[1] = sin(constant_term(θ_m)) + tmp3650.coeffs[2:order + 1] .= zero(tmp3650.coeffs[1]) + tmp2921.coeffs[1] = -(constant_term(tmp2920)) + tmp2921.coeffs[2:order + 1] .= zero(tmp2921.coeffs[1]) + tmp2922.coeffs[1] = cos(constant_term(ψ_m)) + tmp2922.coeffs[2:order + 1] .= zero(tmp2922.coeffs[1]) + tmp3651.coeffs[1] = sin(constant_term(ψ_m)) + tmp3651.coeffs[2:order + 1] .= zero(tmp3651.coeffs[1]) + tmp2923.coeffs[1] = constant_term(tmp2921) * constant_term(tmp2922) + tmp2923.coeffs[2:order + 1] .= zero(tmp2923.coeffs[1]) + tmp2924.coeffs[1] = sin(constant_term(ϕ_m)) + tmp2924.coeffs[2:order + 1] .= zero(tmp2924.coeffs[1]) + tmp3652.coeffs[1] = cos(constant_term(ϕ_m)) + tmp3652.coeffs[2:order + 1] .= zero(tmp3652.coeffs[1]) + tmp2925.coeffs[1] = constant_term(tmp2923) * constant_term(tmp2924) + tmp2925.coeffs[2:order + 1] .= zero(tmp2925.coeffs[1]) + tmp2926.coeffs[1] = cos(constant_term(ϕ_m)) + tmp2926.coeffs[2:order + 1] .= zero(tmp2926.coeffs[1]) + tmp3653.coeffs[1] = sin(constant_term(ϕ_m)) + tmp3653.coeffs[2:order + 1] .= zero(tmp3653.coeffs[1]) + tmp2927.coeffs[1] = sin(constant_term(ψ_m)) + tmp2927.coeffs[2:order + 1] .= zero(tmp2927.coeffs[1]) + tmp3654.coeffs[1] = cos(constant_term(ψ_m)) + tmp3654.coeffs[2:order + 1] .= zero(tmp3654.coeffs[1]) + tmp2928.coeffs[1] = constant_term(tmp2926) * constant_term(tmp2927) + tmp2928.coeffs[2:order + 1] .= zero(tmp2928.coeffs[1]) + (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp2925) - constant_term(tmp2928) + (RotM[2, 1, mo]).coeffs[2:order + 1] .= zero((RotM[2, 1, mo]).coeffs[1]) + tmp2930.coeffs[1] = sin(constant_term(θ_m)) + tmp2930.coeffs[2:order + 1] .= zero(tmp2930.coeffs[1]) + tmp3655.coeffs[1] = cos(constant_term(θ_m)) + tmp3655.coeffs[2:order + 1] .= zero(tmp3655.coeffs[1]) + tmp2931.coeffs[1] = sin(constant_term(ϕ_m)) + tmp2931.coeffs[2:order + 1] .= zero(tmp2931.coeffs[1]) + tmp3656.coeffs[1] = cos(constant_term(ϕ_m)) + tmp3656.coeffs[2:order + 1] .= zero(tmp3656.coeffs[1]) + (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp2930) * constant_term(tmp2931) + (RotM[3, 1, mo]).coeffs[2:order + 1] .= zero((RotM[3, 1, mo]).coeffs[1]) + tmp2933.coeffs[1] = cos(constant_term(ψ_m)) + tmp2933.coeffs[2:order + 1] .= zero(tmp2933.coeffs[1]) + tmp3657.coeffs[1] = sin(constant_term(ψ_m)) + tmp3657.coeffs[2:order + 1] .= zero(tmp3657.coeffs[1]) + tmp2934.coeffs[1] = sin(constant_term(ϕ_m)) + tmp2934.coeffs[2:order + 1] .= zero(tmp2934.coeffs[1]) + tmp3658.coeffs[1] = cos(constant_term(ϕ_m)) + tmp3658.coeffs[2:order + 1] .= zero(tmp3658.coeffs[1]) + tmp2935.coeffs[1] = constant_term(tmp2933) * constant_term(tmp2934) + tmp2935.coeffs[2:order + 1] .= zero(tmp2935.coeffs[1]) + tmp2936.coeffs[1] = cos(constant_term(θ_m)) + tmp2936.coeffs[2:order + 1] .= zero(tmp2936.coeffs[1]) + tmp3659.coeffs[1] = sin(constant_term(θ_m)) + tmp3659.coeffs[2:order + 1] .= zero(tmp3659.coeffs[1]) + tmp2937.coeffs[1] = cos(constant_term(ϕ_m)) + tmp2937.coeffs[2:order + 1] .= zero(tmp2937.coeffs[1]) + tmp3660.coeffs[1] = sin(constant_term(ϕ_m)) + tmp3660.coeffs[2:order + 1] .= zero(tmp3660.coeffs[1]) + tmp2938.coeffs[1] = constant_term(tmp2936) * constant_term(tmp2937) + tmp2938.coeffs[2:order + 1] .= zero(tmp2938.coeffs[1]) + tmp2939.coeffs[1] = sin(constant_term(ψ_m)) + tmp2939.coeffs[2:order + 1] .= zero(tmp2939.coeffs[1]) + tmp3661.coeffs[1] = cos(constant_term(ψ_m)) + tmp3661.coeffs[2:order + 1] .= zero(tmp3661.coeffs[1]) + tmp2940.coeffs[1] = constant_term(tmp2938) * constant_term(tmp2939) + tmp2940.coeffs[2:order + 1] .= zero(tmp2940.coeffs[1]) + (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp2935) + constant_term(tmp2940) + (RotM[1, 2, mo]).coeffs[2:order + 1] .= zero((RotM[1, 2, mo]).coeffs[1]) + tmp2942.coeffs[1] = cos(constant_term(θ_m)) + tmp2942.coeffs[2:order + 1] .= zero(tmp2942.coeffs[1]) + tmp3662.coeffs[1] = sin(constant_term(θ_m)) + tmp3662.coeffs[2:order + 1] .= zero(tmp3662.coeffs[1]) + tmp2943.coeffs[1] = cos(constant_term(ϕ_m)) + tmp2943.coeffs[2:order + 1] .= zero(tmp2943.coeffs[1]) + tmp3663.coeffs[1] = sin(constant_term(ϕ_m)) + tmp3663.coeffs[2:order + 1] .= zero(tmp3663.coeffs[1]) + tmp2944.coeffs[1] = constant_term(tmp2942) * constant_term(tmp2943) + tmp2944.coeffs[2:order + 1] .= zero(tmp2944.coeffs[1]) + tmp2945.coeffs[1] = cos(constant_term(ψ_m)) + tmp2945.coeffs[2:order + 1] .= zero(tmp2945.coeffs[1]) + tmp3664.coeffs[1] = sin(constant_term(ψ_m)) + tmp3664.coeffs[2:order + 1] .= zero(tmp3664.coeffs[1]) + tmp2946.coeffs[1] = constant_term(tmp2944) * constant_term(tmp2945) + tmp2946.coeffs[2:order + 1] .= zero(tmp2946.coeffs[1]) + tmp2947.coeffs[1] = sin(constant_term(ϕ_m)) + tmp2947.coeffs[2:order + 1] .= zero(tmp2947.coeffs[1]) + tmp3665.coeffs[1] = cos(constant_term(ϕ_m)) + tmp3665.coeffs[2:order + 1] .= zero(tmp3665.coeffs[1]) + tmp2948.coeffs[1] = sin(constant_term(ψ_m)) + tmp2948.coeffs[2:order + 1] .= zero(tmp2948.coeffs[1]) + tmp3666.coeffs[1] = cos(constant_term(ψ_m)) + tmp3666.coeffs[2:order + 1] .= zero(tmp3666.coeffs[1]) + tmp2949.coeffs[1] = constant_term(tmp2947) * constant_term(tmp2948) + tmp2949.coeffs[2:order + 1] .= zero(tmp2949.coeffs[1]) + (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp2946) - constant_term(tmp2949) + (RotM[2, 2, mo]).coeffs[2:order + 1] .= zero((RotM[2, 2, mo]).coeffs[1]) + tmp2951.coeffs[1] = cos(constant_term(ϕ_m)) + tmp2951.coeffs[2:order + 1] .= zero(tmp2951.coeffs[1]) + tmp3667.coeffs[1] = sin(constant_term(ϕ_m)) + tmp3667.coeffs[2:order + 1] .= zero(tmp3667.coeffs[1]) + tmp2952.coeffs[1] = -(constant_term(tmp2951)) + tmp2952.coeffs[2:order + 1] .= zero(tmp2952.coeffs[1]) + tmp2953.coeffs[1] = sin(constant_term(θ_m)) + tmp2953.coeffs[2:order + 1] .= zero(tmp2953.coeffs[1]) + tmp3668.coeffs[1] = cos(constant_term(θ_m)) + tmp3668.coeffs[2:order + 1] .= zero(tmp3668.coeffs[1]) + (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp2952) * constant_term(tmp2953) + (RotM[3, 2, mo]).coeffs[2:order + 1] .= zero((RotM[3, 2, mo]).coeffs[1]) + tmp2955.coeffs[1] = sin(constant_term(θ_m)) + tmp2955.coeffs[2:order + 1] .= zero(tmp2955.coeffs[1]) + tmp3669.coeffs[1] = cos(constant_term(θ_m)) + tmp3669.coeffs[2:order + 1] .= zero(tmp3669.coeffs[1]) + tmp2956.coeffs[1] = sin(constant_term(ψ_m)) + tmp2956.coeffs[2:order + 1] .= zero(tmp2956.coeffs[1]) + tmp3670.coeffs[1] = cos(constant_term(ψ_m)) + tmp3670.coeffs[2:order + 1] .= zero(tmp3670.coeffs[1]) + (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp2955) * constant_term(tmp2956) + (RotM[1, 3, mo]).coeffs[2:order + 1] .= zero((RotM[1, 3, mo]).coeffs[1]) + tmp2958.coeffs[1] = cos(constant_term(ψ_m)) + tmp2958.coeffs[2:order + 1] .= zero(tmp2958.coeffs[1]) + tmp3671.coeffs[1] = sin(constant_term(ψ_m)) + tmp3671.coeffs[2:order + 1] .= zero(tmp3671.coeffs[1]) + tmp2959.coeffs[1] = sin(constant_term(θ_m)) + tmp2959.coeffs[2:order + 1] .= zero(tmp2959.coeffs[1]) + tmp3672.coeffs[1] = cos(constant_term(θ_m)) + tmp3672.coeffs[2:order + 1] .= zero(tmp3672.coeffs[1]) + (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp2958) * constant_term(tmp2959) + (RotM[2, 3, mo]).coeffs[2:order + 1] .= zero((RotM[2, 3, mo]).coeffs[1]) + (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) + (RotM[3, 3, mo]).coeffs[2:order + 1] .= zero((RotM[3, 3, mo]).coeffs[1]) + tmp3673.coeffs[1] = sin(constant_term(θ_m)) + tmp3673.coeffs[2:order + 1] .= zero(tmp3673.coeffs[1]) + ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) + ϕ_c.coeffs[2:order + 1] .= zero(ϕ_c.coeffs[1]) + tmp2962.coeffs[1] = cos(constant_term(ϕ_c)) + tmp2962.coeffs[2:order + 1] .= zero(tmp2962.coeffs[1]) + tmp3674.coeffs[1] = sin(constant_term(ϕ_c)) + tmp3674.coeffs[2:order + 1] .= zero(tmp3674.coeffs[1]) + tmp2963.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp2962) + tmp2963.coeffs[2:order + 1] .= zero(tmp2963.coeffs[1]) + tmp2964.coeffs[1] = sin(constant_term(ϕ_c)) + tmp2964.coeffs[2:order + 1] .= zero(tmp2964.coeffs[1]) + tmp3675.coeffs[1] = cos(constant_term(ϕ_c)) + tmp3675.coeffs[2:order + 1] .= zero(tmp3675.coeffs[1]) + tmp2965.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp2964) + tmp2965.coeffs[2:order + 1] .= zero(tmp2965.coeffs[1]) + (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp2963) + constant_term(tmp2965) + (mantlef2coref[1, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 1]).coeffs[1]) + tmp2967.coeffs[1] = -(constant_term(RotM[1, 1, mo])) + tmp2967.coeffs[2:order + 1] .= zero(tmp2967.coeffs[1]) + tmp2968.coeffs[1] = sin(constant_term(ϕ_c)) + tmp2968.coeffs[2:order + 1] .= zero(tmp2968.coeffs[1]) + tmp3676.coeffs[1] = cos(constant_term(ϕ_c)) + tmp3676.coeffs[2:order + 1] .= zero(tmp3676.coeffs[1]) + tmp2969.coeffs[1] = constant_term(tmp2967) * constant_term(tmp2968) + tmp2969.coeffs[2:order + 1] .= zero(tmp2969.coeffs[1]) + tmp2970.coeffs[1] = cos(constant_term(ϕ_c)) + tmp2970.coeffs[2:order + 1] .= zero(tmp2970.coeffs[1]) + tmp3677.coeffs[1] = sin(constant_term(ϕ_c)) + tmp3677.coeffs[2:order + 1] .= zero(tmp3677.coeffs[1]) + tmp2971.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp2970) + tmp2971.coeffs[2:order + 1] .= zero(tmp2971.coeffs[1]) + (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp2969) + constant_term(tmp2971) + (mantlef2coref[2, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 1]).coeffs[1]) + (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) + (mantlef2coref[3, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 1]).coeffs[1]) + tmp2973.coeffs[1] = cos(constant_term(ϕ_c)) + tmp2973.coeffs[2:order + 1] .= zero(tmp2973.coeffs[1]) + tmp3678.coeffs[1] = sin(constant_term(ϕ_c)) + tmp3678.coeffs[2:order + 1] .= zero(tmp3678.coeffs[1]) + tmp2974.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp2973) + tmp2974.coeffs[2:order + 1] .= zero(tmp2974.coeffs[1]) + tmp2975.coeffs[1] = sin(constant_term(ϕ_c)) + tmp2975.coeffs[2:order + 1] .= zero(tmp2975.coeffs[1]) + tmp3679.coeffs[1] = cos(constant_term(ϕ_c)) + tmp3679.coeffs[2:order + 1] .= zero(tmp3679.coeffs[1]) + tmp2976.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp2975) + tmp2976.coeffs[2:order + 1] .= zero(tmp2976.coeffs[1]) + (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp2974) + constant_term(tmp2976) + (mantlef2coref[1, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 2]).coeffs[1]) + tmp2978.coeffs[1] = -(constant_term(RotM[2, 1, mo])) + tmp2978.coeffs[2:order + 1] .= zero(tmp2978.coeffs[1]) + tmp2979.coeffs[1] = sin(constant_term(ϕ_c)) + tmp2979.coeffs[2:order + 1] .= zero(tmp2979.coeffs[1]) + tmp3680.coeffs[1] = cos(constant_term(ϕ_c)) + tmp3680.coeffs[2:order + 1] .= zero(tmp3680.coeffs[1]) + tmp2980.coeffs[1] = constant_term(tmp2978) * constant_term(tmp2979) + tmp2980.coeffs[2:order + 1] .= zero(tmp2980.coeffs[1]) + tmp2981.coeffs[1] = cos(constant_term(ϕ_c)) + tmp2981.coeffs[2:order + 1] .= zero(tmp2981.coeffs[1]) + tmp3681.coeffs[1] = sin(constant_term(ϕ_c)) + tmp3681.coeffs[2:order + 1] .= zero(tmp3681.coeffs[1]) + tmp2982.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp2981) + tmp2982.coeffs[2:order + 1] .= zero(tmp2982.coeffs[1]) + (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp2980) + constant_term(tmp2982) + (mantlef2coref[2, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 2]).coeffs[1]) + (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) + (mantlef2coref[3, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 2]).coeffs[1]) + tmp2984.coeffs[1] = cos(constant_term(ϕ_c)) + tmp2984.coeffs[2:order + 1] .= zero(tmp2984.coeffs[1]) + tmp3682.coeffs[1] = sin(constant_term(ϕ_c)) + tmp3682.coeffs[2:order + 1] .= zero(tmp3682.coeffs[1]) + tmp2985.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp2984) + tmp2985.coeffs[2:order + 1] .= zero(tmp2985.coeffs[1]) + tmp2986.coeffs[1] = sin(constant_term(ϕ_c)) + tmp2986.coeffs[2:order + 1] .= zero(tmp2986.coeffs[1]) + tmp3683.coeffs[1] = cos(constant_term(ϕ_c)) + tmp3683.coeffs[2:order + 1] .= zero(tmp3683.coeffs[1]) + tmp2987.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp2986) + tmp2987.coeffs[2:order + 1] .= zero(tmp2987.coeffs[1]) + (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp2985) + constant_term(tmp2987) + (mantlef2coref[1, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 3]).coeffs[1]) + tmp2989.coeffs[1] = -(constant_term(RotM[3, 1, mo])) + tmp2989.coeffs[2:order + 1] .= zero(tmp2989.coeffs[1]) + tmp2990.coeffs[1] = sin(constant_term(ϕ_c)) + tmp2990.coeffs[2:order + 1] .= zero(tmp2990.coeffs[1]) + tmp3684.coeffs[1] = cos(constant_term(ϕ_c)) + tmp3684.coeffs[2:order + 1] .= zero(tmp3684.coeffs[1]) + tmp2991.coeffs[1] = constant_term(tmp2989) * constant_term(tmp2990) + tmp2991.coeffs[2:order + 1] .= zero(tmp2991.coeffs[1]) + tmp2992.coeffs[1] = cos(constant_term(ϕ_c)) + tmp2992.coeffs[2:order + 1] .= zero(tmp2992.coeffs[1]) + tmp3685.coeffs[1] = sin(constant_term(ϕ_c)) + tmp3685.coeffs[2:order + 1] .= zero(tmp3685.coeffs[1]) + tmp2993.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp2992) + tmp2993.coeffs[2:order + 1] .= zero(tmp2993.coeffs[1]) + (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp2991) + constant_term(tmp2993) + (mantlef2coref[2, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 3]).coeffs[1]) + (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) + (mantlef2coref[3, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 3]).coeffs[1]) + tmp2995.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) + tmp2995.coeffs[2:order + 1] .= zero(tmp2995.coeffs[1]) + tmp2996.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) + tmp2996.coeffs[2:order + 1] .= zero(tmp2996.coeffs[1]) + tmp2997.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) + tmp2997.coeffs[2:order + 1] .= zero(tmp2997.coeffs[1]) + tmp2998.coeffs[1] = constant_term(tmp2996) + constant_term(tmp2997) + tmp2998.coeffs[2:order + 1] .= zero(tmp2998.coeffs[1]) + ω_c_CE_1.coeffs[1] = constant_term(tmp2995) + constant_term(tmp2998) + ω_c_CE_1.coeffs[2:order + 1] .= zero(ω_c_CE_1.coeffs[1]) + tmp3000.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) + tmp3000.coeffs[2:order + 1] .= zero(tmp3000.coeffs[1]) + tmp3001.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) + tmp3001.coeffs[2:order + 1] .= zero(tmp3001.coeffs[1]) + tmp3002.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) + tmp3002.coeffs[2:order + 1] .= zero(tmp3002.coeffs[1]) + tmp3003.coeffs[1] = constant_term(tmp3001) + constant_term(tmp3002) + tmp3003.coeffs[2:order + 1] .= zero(tmp3003.coeffs[1]) + ω_c_CE_2.coeffs[1] = constant_term(tmp3000) + constant_term(tmp3003) + ω_c_CE_2.coeffs[2:order + 1] .= zero(ω_c_CE_2.coeffs[1]) + tmp3005.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) + tmp3005.coeffs[2:order + 1] .= zero(tmp3005.coeffs[1]) + tmp3006.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) + tmp3006.coeffs[2:order + 1] .= zero(tmp3006.coeffs[1]) + tmp3007.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) + tmp3007.coeffs[2:order + 1] .= zero(tmp3007.coeffs[1]) + tmp3008.coeffs[1] = constant_term(tmp3006) + constant_term(tmp3007) + tmp3008.coeffs[2:order + 1] .= zero(tmp3008.coeffs[1]) + ω_c_CE_3.coeffs[1] = constant_term(tmp3005) + constant_term(tmp3008) + ω_c_CE_3.coeffs[2:order + 1] .= zero(ω_c_CE_3.coeffs[1]) + local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 + local J2S_t = JSEM[su, 2] * one_t + (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) + (J2_t[su]).coeffs[2:order + 1] .= zero((J2_t[su]).coeffs[1]) + (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) + (J2_t[ea]).coeffs[2:order + 1] .= zero((J2_t[ea]).coeffs[1]) + local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:307 =# Threads.@threads for j = 1:N + (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) + (dq[3j - 2]).coeffs[2:order + 1] .= zero((dq[3j - 2]).coeffs[1]) + (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) + (dq[3j - 1]).coeffs[2:order + 1] .= zero((dq[3j - 1]).coeffs[1]) + (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) + (dq[3j]).coeffs[2:order + 1] .= zero((dq[3j]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:319 =# Threads.@threads for j = 1:N_ext + (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:325 =# Threads.@threads for j = 1:N + for i = 1:N + if i == j + continue + else + (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) + (X[i, j]).coeffs[2:order + 1] .= zero((X[i, j]).coeffs[1]) + (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) + (Y[i, j]).coeffs[2:order + 1] .= zero((Y[i, j]).coeffs[1]) + (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) + (Z[i, j]).coeffs[2:order + 1] .= zero((Z[i, j]).coeffs[1]) + (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) + (U[i, j]).coeffs[2:order + 1] .= zero((U[i, j]).coeffs[1]) + (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) + (V[i, j]).coeffs[2:order + 1] .= zero((V[i, j]).coeffs[1]) + (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) + (W[i, j]).coeffs[2:order + 1] .= zero((W[i, j]).coeffs[1]) + (tmp3017[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) + (tmp3017[3j - 2]).coeffs[2:order + 1] .= zero((tmp3017[3j - 2]).coeffs[1]) + (tmp3019[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) + (tmp3019[3i - 2]).coeffs[2:order + 1] .= zero((tmp3019[3i - 2]).coeffs[1]) + (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp3017[3j - 2]) - constant_term(tmp3019[3i - 2]) + (_4U_m_3X[i, j]).coeffs[2:order + 1] .= zero((_4U_m_3X[i, j]).coeffs[1]) + (tmp3022[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) + (tmp3022[3j - 1]).coeffs[2:order + 1] .= zero((tmp3022[3j - 1]).coeffs[1]) + (tmp3024[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) + (tmp3024[3i - 1]).coeffs[2:order + 1] .= zero((tmp3024[3i - 1]).coeffs[1]) + (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp3022[3j - 1]) - constant_term(tmp3024[3i - 1]) + (_4V_m_3Y[i, j]).coeffs[2:order + 1] .= zero((_4V_m_3Y[i, j]).coeffs[1]) + (tmp3027[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) + (tmp3027[3j]).coeffs[2:order + 1] .= zero((tmp3027[3j]).coeffs[1]) + (tmp3029[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) + (tmp3029[3i]).coeffs[2:order + 1] .= zero((tmp3029[3i]).coeffs[1]) + (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp3027[3j]) - constant_term(tmp3029[3i]) + (_4W_m_3Z[i, j]).coeffs[2:order + 1] .= zero((_4W_m_3Z[i, j]).coeffs[1]) + (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) + (pn2x[i, j]).coeffs[2:order + 1] .= zero((pn2x[i, j]).coeffs[1]) + (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) + (pn2y[i, j]).coeffs[2:order + 1] .= zero((pn2y[i, j]).coeffs[1]) + (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) + (pn2z[i, j]).coeffs[2:order + 1] .= zero((pn2z[i, j]).coeffs[1]) + (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) + (UU[i, j]).coeffs[2:order + 1] .= zero((UU[i, j]).coeffs[1]) + (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) + (VV[i, j]).coeffs[2:order + 1] .= zero((VV[i, j]).coeffs[1]) + (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) + (WW[i, j]).coeffs[2:order + 1] .= zero((WW[i, j]).coeffs[1]) + (tmp3037[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) + (tmp3037[i, j]).coeffs[2:order + 1] .= zero((tmp3037[i, j]).coeffs[1]) + (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp3037[i, j]) + constant_term(WW[i, j]) + (vi_dot_vj[i, j]).coeffs[2:order + 1] .= zero((vi_dot_vj[i, j]).coeffs[1]) + (tmp3040[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) + (tmp3040[i, j]).coeffs[2:order + 1] .= zero((tmp3040[i, j]).coeffs[1]) + (tmp3042[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) + (tmp3042[i, j]).coeffs[2:order + 1] .= zero((tmp3042[i, j]).coeffs[1]) + (tmp3043[i, j]).coeffs[1] = constant_term(tmp3040[i, j]) + constant_term(tmp3042[i, j]) + (tmp3043[i, j]).coeffs[2:order + 1] .= zero((tmp3043[i, j]).coeffs[1]) + (tmp3045[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) + (tmp3045[i, j]).coeffs[2:order + 1] .= zero((tmp3045[i, j]).coeffs[1]) + (r_p2[i, j]).coeffs[1] = constant_term(tmp3043[i, j]) + constant_term(tmp3045[i, j]) + (r_p2[i, j]).coeffs[2:order + 1] .= zero((r_p2[i, j]).coeffs[1]) + (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) + (r_p1d2[i, j]).coeffs[2:order + 1] .= zero((r_p1d2[i, j]).coeffs[1]) + (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) + (r_p3d2[i, j]).coeffs[2:order + 1] .= zero((r_p3d2[i, j]).coeffs[1]) + (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) + (r_p7d2[i, j]).coeffs[2:order + 1] .= zero((r_p7d2[i, j]).coeffs[1]) + (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) + (newtonianCoeff[i, j]).coeffs[2:order + 1] .= zero((newtonianCoeff[i, j]).coeffs[1]) + (tmp3053[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) + (tmp3053[i, j]).coeffs[2:order + 1] .= zero((tmp3053[i, j]).coeffs[1]) + (tmp3054[i, j]).coeffs[1] = constant_term(tmp3053[i, j]) + constant_term(pn2z[i, j]) + (tmp3054[i, j]).coeffs[2:order + 1] .= zero((tmp3054[i, j]).coeffs[1]) + (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp3054[i, j]) + (pn2[i, j]).coeffs[2:order + 1] .= zero((pn2[i, j]).coeffs[1]) + (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_X[i, j]).coeffs[2:order + 1] .= zero((newton_acc_X[i, j]).coeffs[1]) + (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_Y[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Y[i, j]).coeffs[1]) + (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_Z[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Z[i, j]).coeffs[1]) + (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) + (newtonian1b_Potential[i, j]).coeffs[2:order + 1] .= zero((newtonian1b_Potential[i, j]).coeffs[1]) + (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) + (pn3[i, j]).coeffs[2:order + 1] .= zero((pn3[i, j]).coeffs[1]) + (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) + (U_t_pn2[i, j]).coeffs[2:order + 1] .= zero((U_t_pn2[i, j]).coeffs[1]) + (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) + (V_t_pn2[i, j]).coeffs[2:order + 1] .= zero((V_t_pn2[i, j]).coeffs[1]) + (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) + (W_t_pn2[i, j]).coeffs[2:order + 1] .= zero((W_t_pn2[i, j]).coeffs[1]) + (tmp3065[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp3065[i, j]).coeffs[2:order + 1] .= zero((tmp3065[i, j]).coeffs[1]) + (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp3065[i, j]) + (temp_001[i, j]).coeffs[2:order + 1] .= zero((temp_001[i, j]).coeffs[1]) + (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) + (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + (tmp3067[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp3067[i, j]).coeffs[2:order + 1] .= zero((tmp3067[i, j]).coeffs[1]) + (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp3067[i, j]) + (temp_002[i, j]).coeffs[2:order + 1] .= zero((temp_002[i, j]).coeffs[1]) + (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) + (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + (tmp3069[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp3069[i, j]).coeffs[2:order + 1] .= zero((tmp3069[i, j]).coeffs[1]) + (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp3069[i, j]) + (temp_003[i, j]).coeffs[2:order + 1] .= zero((temp_003[i, j]).coeffs[1]) + (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) + (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) + (temp_004[i, j]).coeffs[2:order + 1] .= zero((temp_004[i, j]).coeffs[1]) + (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) + (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + end + end + (tmp3073[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) + (tmp3073[3j - 2]).coeffs[2:order + 1] .= zero((tmp3073[3j - 2]).coeffs[1]) + (tmp3075[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) + (tmp3075[3j - 1]).coeffs[2:order + 1] .= zero((tmp3075[3j - 1]).coeffs[1]) + (tmp3076[3j - 2]).coeffs[1] = constant_term(tmp3073[3j - 2]) + constant_term(tmp3075[3j - 1]) + (tmp3076[3j - 2]).coeffs[2:order + 1] .= zero((tmp3076[3j - 2]).coeffs[1]) + (tmp3078[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) + (tmp3078[3j]).coeffs[2:order + 1] .= zero((tmp3078[3j]).coeffs[1]) + (v2[j]).coeffs[1] = constant_term(tmp3076[3j - 2]) + constant_term(tmp3078[3j]) + (v2[j]).coeffs[2:order + 1] .= zero((v2[j]).coeffs[1]) + end + tmp3080.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) + tmp3080.coeffs[2:order + 1] .= zero(tmp3080.coeffs[1]) + tmp3082.coeffs[1] = constant_term(tmp3080) / constant_term(2) + tmp3082.coeffs[2:order + 1] .= zero(tmp3082.coeffs[1]) + tmp3083.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp3082) + tmp3083.coeffs[2:order + 1] .= zero(tmp3083.coeffs[1]) + J2M_t.coeffs[1] = constant_term(tmp3083) / constant_term(μ[mo]) + J2M_t.coeffs[2:order + 1] .= zero(J2M_t.coeffs[1]) + tmp3085.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) + tmp3085.coeffs[2:order + 1] .= zero(tmp3085.coeffs[1]) + tmp3086.coeffs[1] = constant_term(tmp3085) / constant_term(μ[mo]) + tmp3086.coeffs[2:order + 1] .= zero(tmp3086.coeffs[1]) + C22M_t.coeffs[1] = constant_term(tmp3086) / constant_term(4) + C22M_t.coeffs[2:order + 1] .= zero(C22M_t.coeffs[1]) + tmp3089.coeffs[1] = -(constant_term(I_M_t[1, 3])) + tmp3089.coeffs[2:order + 1] .= zero(tmp3089.coeffs[1]) + C21M_t.coeffs[1] = constant_term(tmp3089) / constant_term(μ[mo]) + C21M_t.coeffs[2:order + 1] .= zero(C21M_t.coeffs[1]) + tmp3091.coeffs[1] = -(constant_term(I_M_t[3, 2])) + tmp3091.coeffs[2:order + 1] .= zero(tmp3091.coeffs[1]) + S21M_t.coeffs[1] = constant_term(tmp3091) / constant_term(μ[mo]) + S21M_t.coeffs[2:order + 1] .= zero(S21M_t.coeffs[1]) + tmp3093.coeffs[1] = -(constant_term(I_M_t[2, 1])) + tmp3093.coeffs[2:order + 1] .= zero(tmp3093.coeffs[1]) + tmp3094.coeffs[1] = constant_term(tmp3093) / constant_term(μ[mo]) + tmp3094.coeffs[2:order + 1] .= zero(tmp3094.coeffs[1]) + S22M_t.coeffs[1] = constant_term(tmp3094) / constant_term(2) + S22M_t.coeffs[2:order + 1] .= zero(S22M_t.coeffs[1]) + (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) + (J2_t[mo]).coeffs[2:order + 1] .= zero((J2_t[mo]).coeffs[1]) + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:416 =# Threads.@threads for j = 1:N_ext + for i = 1:N_ext + if i == j + continue + else + if UJ_interaction[i, j] + (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) + (X_bf_1[i, j]).coeffs[2:order + 1] .= zero((X_bf_1[i, j]).coeffs[1]) + (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) + (X_bf_2[i, j]).coeffs[2:order + 1] .= zero((X_bf_2[i, j]).coeffs[1]) + (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) + (X_bf_3[i, j]).coeffs[2:order + 1] .= zero((X_bf_3[i, j]).coeffs[1]) + (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) + (Y_bf_1[i, j]).coeffs[2:order + 1] .= zero((Y_bf_1[i, j]).coeffs[1]) + (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) + (Y_bf_2[i, j]).coeffs[2:order + 1] .= zero((Y_bf_2[i, j]).coeffs[1]) + (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) + (Y_bf_3[i, j]).coeffs[2:order + 1] .= zero((Y_bf_3[i, j]).coeffs[1]) + (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) + (Z_bf_1[i, j]).coeffs[2:order + 1] .= zero((Z_bf_1[i, j]).coeffs[1]) + (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) + (Z_bf_2[i, j]).coeffs[2:order + 1] .= zero((Z_bf_2[i, j]).coeffs[1]) + (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) + (Z_bf_3[i, j]).coeffs[2:order + 1] .= zero((Z_bf_3[i, j]).coeffs[1]) + (tmp3106[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) + (tmp3106[i, j]).coeffs[2:order + 1] .= zero((tmp3106[i, j]).coeffs[1]) + (X_bf[i, j]).coeffs[1] = constant_term(tmp3106[i, j]) + constant_term(X_bf_3[i, j]) + (X_bf[i, j]).coeffs[2:order + 1] .= zero((X_bf[i, j]).coeffs[1]) + (tmp3108[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) + (tmp3108[i, j]).coeffs[2:order + 1] .= zero((tmp3108[i, j]).coeffs[1]) + (Y_bf[i, j]).coeffs[1] = constant_term(tmp3108[i, j]) + constant_term(Y_bf_3[i, j]) + (Y_bf[i, j]).coeffs[2:order + 1] .= zero((Y_bf[i, j]).coeffs[1]) + (tmp3110[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) + (tmp3110[i, j]).coeffs[2:order + 1] .= zero((tmp3110[i, j]).coeffs[1]) + (Z_bf[i, j]).coeffs[1] = constant_term(tmp3110[i, j]) + constant_term(Z_bf_3[i, j]) + (Z_bf[i, j]).coeffs[2:order + 1] .= zero((Z_bf[i, j]).coeffs[1]) + (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) + (sin_ϕ[i, j]).coeffs[2:order + 1] .= zero((sin_ϕ[i, j]).coeffs[1]) + (tmp3114[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) + (tmp3114[i, j]).coeffs[2:order + 1] .= zero((tmp3114[i, j]).coeffs[1]) + (tmp3116[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) + (tmp3116[i, j]).coeffs[2:order + 1] .= zero((tmp3116[i, j]).coeffs[1]) + (tmp3117[i, j]).coeffs[1] = constant_term(tmp3114[i, j]) + constant_term(tmp3116[i, j]) + (tmp3117[i, j]).coeffs[2:order + 1] .= zero((tmp3117[i, j]).coeffs[1]) + (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp3117[i, j])) + (r_xy[i, j]).coeffs[2:order + 1] .= zero((r_xy[i, j]).coeffs[1]) + (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) + (cos_ϕ[i, j]).coeffs[2:order + 1] .= zero((cos_ϕ[i, j]).coeffs[1]) + (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) + (sin_λ[i, j]).coeffs[2:order + 1] .= zero((sin_λ[i, j]).coeffs[1]) + (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) + (cos_λ[i, j]).coeffs[2:order + 1] .= zero((cos_λ[i, j]).coeffs[1]) + (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) + (P_n[i, j, 1]).coeffs[2:order + 1] .= zero((P_n[i, j, 1]).coeffs[1]) + (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) + (P_n[i, j, 2]).coeffs[2:order + 1] .= zero((P_n[i, j, 2]).coeffs[1]) + (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) + (dP_n[i, j, 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, 1]).coeffs[1]) + (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) + (dP_n[i, j, 2]).coeffs[2:order + 1] .= zero((dP_n[i, j, 2]).coeffs[1]) + for n = 2:n1SEM[j] + (tmp3122[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + (tmp3122[i, j, n]).coeffs[2:order + 1] .= zero((tmp3122[i, j, n]).coeffs[1]) + (tmp3123[i, j, n]).coeffs[1] = constant_term(tmp3122[i, j, n]) * constant_term(fact1_jsem[n]) + (tmp3123[i, j, n]).coeffs[2:order + 1] .= zero((tmp3123[i, j, n]).coeffs[1]) + (tmp3124[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) + (tmp3124[i, j, n - 1]).coeffs[2:order + 1] .= zero((tmp3124[i, j, n - 1]).coeffs[1]) + (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3123[i, j, n]) - constant_term(tmp3124[i, j, n - 1]) + (P_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((P_n[i, j, n + 1]).coeffs[1]) + (tmp3126[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + (tmp3126[i, j, n]).coeffs[2:order + 1] .= zero((tmp3126[i, j, n]).coeffs[1]) + (tmp3127[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) + (tmp3127[i, j, n]).coeffs[2:order + 1] .= zero((tmp3127[i, j, n]).coeffs[1]) + (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp3126[i, j, n]) + constant_term(tmp3127[i, j, n]) + (dP_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, n + 1]).coeffs[1]) + (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) + (temp_rn[i, j, n]).coeffs[2:order + 1] .= zero((temp_rn[i, j, n]).coeffs[1]) + end + (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) + (r_p4[i, j]).coeffs[2:order + 1] .= zero((r_p4[i, j]).coeffs[1]) + (tmp3132[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) + (tmp3132[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3132[i, j, 3]).coeffs[1]) + (tmp3133[i, j, 3]).coeffs[1] = constant_term(tmp3132[i, j, 3]) * constant_term(J2_t[j]) + (tmp3133[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3133[i, j, 3]).coeffs[1]) + (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp3133[i, j, 3]) / constant_term(r_p4[i, j]) + (F_J_ξ[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ[i, j]).coeffs[1]) + (tmp3135[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) + (tmp3135[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3135[i, j, 3]).coeffs[1]) + (tmp3136[i, j, 3]).coeffs[1] = constant_term(tmp3135[i, j, 3]) * constant_term(cos_ϕ[i, j]) + (tmp3136[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3136[i, j, 3]).coeffs[1]) + (tmp3137[i, j, 3]).coeffs[1] = constant_term(tmp3136[i, j, 3]) * constant_term(J2_t[j]) + (tmp3137[i, j, 3]).coeffs[2:order + 1] .= zero((tmp3137[i, j, 3]).coeffs[1]) + (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp3137[i, j, 3]) / constant_term(r_p4[i, j]) + (F_J_ζ[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ[i, j]).coeffs[1]) + (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) + for n = 3:n1SEM[j] + (tmp3139[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) + (tmp3139[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3139[i, j, n + 1]).coeffs[1]) + (tmp3140[i, j, n + 1]).coeffs[1] = constant_term(tmp3139[i, j, n + 1]) * constant_term(JSEM[j, n]) + (tmp3140[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3140[i, j, n + 1]).coeffs[1]) + (tmp3141[i, j, n + 1]).coeffs[1] = constant_term(tmp3140[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + (tmp3141[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3141[i, j, n + 1]).coeffs[1]) + (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp3141[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) + (temp_fjξ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjξ[i, j, n]).coeffs[1]) + (tmp3143[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) + (tmp3143[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3143[i, j, n + 1]).coeffs[1]) + (tmp3144[i, j, n + 1]).coeffs[1] = constant_term(tmp3143[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) + (tmp3144[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3144[i, j, n + 1]).coeffs[1]) + (tmp3145[i, j, n + 1]).coeffs[1] = constant_term(tmp3144[i, j, n + 1]) * constant_term(JSEM[j, n]) + (tmp3145[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3145[i, j, n + 1]).coeffs[1]) + (tmp3146[i, j, n + 1]).coeffs[1] = constant_term(tmp3145[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + (tmp3146[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp3146[i, j, n + 1]).coeffs[1]) + (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp3146[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) + (temp_fjζ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjζ[i, j, n]).coeffs[1]) + (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) + (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) + (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) + end + if j == mo + for m = 1:n1SEM[mo] + if m == 1 + (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) + (sin_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, 1]).coeffs[1]) + (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) + (cos_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, 1]).coeffs[1]) + (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) + (secϕ_P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, 1, 1]).coeffs[1]) + (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) + (P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((P_nm[i, j, 1, 1]).coeffs[1]) + (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) + (cosϕ_dP_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, 1, 1]).coeffs[1]) + else + (tmp3149[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + (tmp3149[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3149[i, j, m - 1]).coeffs[1]) + (tmp3150[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + (tmp3150[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3150[i, j, m - 1]).coeffs[1]) + (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp3149[i, j, m - 1]) + constant_term(tmp3150[i, j, m - 1]) + (sin_mλ[i, j, m]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, m]).coeffs[1]) + (tmp3152[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + (tmp3152[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3152[i, j, m - 1]).coeffs[1]) + (tmp3153[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + (tmp3153[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp3153[i, j, m - 1]).coeffs[1]) + (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp3152[i, j, m - 1]) - constant_term(tmp3153[i, j, m - 1]) + (cos_mλ[i, j, m]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, m]).coeffs[1]) + (tmp3155[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) + (tmp3155[i, j, m - 1, m - 1]).coeffs[2:order + 1] .= zero((tmp3155[i, j, m - 1, m - 1]).coeffs[1]) + (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3155[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) + (secϕ_P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, m, m]).coeffs[1]) + (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) + (P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, m, m]).coeffs[1]) + (tmp3158[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) + (tmp3158[i, j, m, m]).coeffs[2:order + 1] .= zero((tmp3158[i, j, m, m]).coeffs[1]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp3158[i, j, m, m]) * constant_term(lnm3[m]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, m, m]).coeffs[1]) + end + for n = m + 1:n1SEM[mo] + if n == m + 1 + (tmp3160[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + (tmp3160[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3160[i, j, n - 1, m]).coeffs[1]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3160[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + else + (tmp3162[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + (tmp3162[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3162[i, j, n - 1, m]).coeffs[1]) + (tmp3163[i, j, n - 1, m]).coeffs[1] = constant_term(tmp3162[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + (tmp3163[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3163[i, j, n - 1, m]).coeffs[1]) + (tmp3164[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) + (tmp3164[i, j, n - 2, m]).coeffs[2:order + 1] .= zero((tmp3164[i, j, n - 2, m]).coeffs[1]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3163[i, j, n - 1, m]) + constant_term(tmp3164[i, j, n - 2, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + end + (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) + (P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, n, m]).coeffs[1]) + (tmp3167[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) + (tmp3167[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3167[i, j, n, m]).coeffs[1]) + (tmp3168[i, j, n, m]).coeffs[1] = constant_term(tmp3167[i, j, n, m]) * constant_term(lnm3[n]) + (tmp3168[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3168[i, j, n, m]).coeffs[1]) + (tmp3169[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) + (tmp3169[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp3169[i, j, n - 1, m]).coeffs[1]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp3168[i, j, n, m]) + constant_term(tmp3169[i, j, n - 1, m]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, n, m]).coeffs[1]) + end + end + (tmp3171[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) + (tmp3171[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3171[i, j, 2, 1]).coeffs[1]) + (tmp3172[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp3172[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3172[i, j, 1]).coeffs[1]) + (tmp3173[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp3173[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3173[i, j, 1]).coeffs[1]) + (tmp3174[i, j, 1]).coeffs[1] = constant_term(tmp3172[i, j, 1]) + constant_term(tmp3173[i, j, 1]) + (tmp3174[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3174[i, j, 1]).coeffs[1]) + (tmp3175[i, j, 2, 1]).coeffs[1] = constant_term(tmp3171[i, j, 2, 1]) * constant_term(tmp3174[i, j, 1]) + (tmp3175[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3175[i, j, 2, 1]).coeffs[1]) + (tmp3176[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) + (tmp3176[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3176[i, j, 2, 2]).coeffs[1]) + (tmp3177[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp3177[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3177[i, j, 2]).coeffs[1]) + (tmp3178[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp3178[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3178[i, j, 2]).coeffs[1]) + (tmp3179[i, j, 2]).coeffs[1] = constant_term(tmp3177[i, j, 2]) + constant_term(tmp3178[i, j, 2]) + (tmp3179[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3179[i, j, 2]).coeffs[1]) + (tmp3180[i, j, 2, 2]).coeffs[1] = constant_term(tmp3176[i, j, 2, 2]) * constant_term(tmp3179[i, j, 2]) + (tmp3180[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3180[i, j, 2, 2]).coeffs[1]) + (tmp3181[i, j, 2, 1]).coeffs[1] = constant_term(tmp3175[i, j, 2, 1]) + constant_term(tmp3180[i, j, 2, 2]) + (tmp3181[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3181[i, j, 2, 1]).coeffs[1]) + (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp3181[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ[i, j]).coeffs[1]) + (tmp3183[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) + (tmp3183[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3183[i, j, 2, 1]).coeffs[1]) + (tmp3184[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp3184[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3184[i, j, 1]).coeffs[1]) + (tmp3185[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp3185[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3185[i, j, 1]).coeffs[1]) + (tmp3186[i, j, 1]).coeffs[1] = constant_term(tmp3184[i, j, 1]) - constant_term(tmp3185[i, j, 1]) + (tmp3186[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3186[i, j, 1]).coeffs[1]) + (tmp3187[i, j, 2, 1]).coeffs[1] = constant_term(tmp3183[i, j, 2, 1]) * constant_term(tmp3186[i, j, 1]) + (tmp3187[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3187[i, j, 2, 1]).coeffs[1]) + (tmp3188[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) + (tmp3188[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3188[i, j, 2, 2]).coeffs[1]) + (tmp3189[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp3189[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3189[i, j, 2]).coeffs[1]) + (tmp3190[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp3190[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3190[i, j, 2]).coeffs[1]) + (tmp3191[i, j, 2]).coeffs[1] = constant_term(tmp3189[i, j, 2]) - constant_term(tmp3190[i, j, 2]) + (tmp3191[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3191[i, j, 2]).coeffs[1]) + (tmp3192[i, j, 2, 2]).coeffs[1] = constant_term(tmp3188[i, j, 2, 2]) * constant_term(tmp3191[i, j, 2]) + (tmp3192[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3192[i, j, 2, 2]).coeffs[1]) + (tmp3193[i, j, 2, 1]).coeffs[1] = constant_term(tmp3187[i, j, 2, 1]) + constant_term(tmp3192[i, j, 2, 2]) + (tmp3193[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3193[i, j, 2, 1]).coeffs[1]) + (F_CS_η[i, j]).coeffs[1] = constant_term(tmp3193[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_η[i, j]).coeffs[2:order + 1] .= zero((F_CS_η[i, j]).coeffs[1]) + (tmp3195[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp3195[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3195[i, j, 1]).coeffs[1]) + (tmp3196[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp3196[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3196[i, j, 1]).coeffs[1]) + (tmp3197[i, j, 1]).coeffs[1] = constant_term(tmp3195[i, j, 1]) + constant_term(tmp3196[i, j, 1]) + (tmp3197[i, j, 1]).coeffs[2:order + 1] .= zero((tmp3197[i, j, 1]).coeffs[1]) + (tmp3198[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp3197[i, j, 1]) + (tmp3198[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3198[i, j, 2, 1]).coeffs[1]) + (tmp3199[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp3199[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3199[i, j, 2]).coeffs[1]) + (tmp3200[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp3200[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3200[i, j, 2]).coeffs[1]) + (tmp3201[i, j, 2]).coeffs[1] = constant_term(tmp3199[i, j, 2]) + constant_term(tmp3200[i, j, 2]) + (tmp3201[i, j, 2]).coeffs[2:order + 1] .= zero((tmp3201[i, j, 2]).coeffs[1]) + (tmp3202[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp3201[i, j, 2]) + (tmp3202[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3202[i, j, 2, 2]).coeffs[1]) + (tmp3203[i, j, 2, 1]).coeffs[1] = constant_term(tmp3198[i, j, 2, 1]) + constant_term(tmp3202[i, j, 2, 2]) + (tmp3203[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3203[i, j, 2, 1]).coeffs[1]) + (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp3203[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ[i, j]).coeffs[1]) + (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) + for n = 3:n2M + for m = 1:n + (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) + (Cnm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_cosmλ[i, j, n, m]).coeffs[1]) + (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) + (Cnm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_sinmλ[i, j, n, m]).coeffs[1]) + (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) + (Snm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_cosmλ[i, j, n, m]).coeffs[1]) + (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) + (Snm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_sinmλ[i, j, n, m]).coeffs[1]) + (tmp3209[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) + (tmp3209[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3209[i, j, n, m]).coeffs[1]) + (tmp3210[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + (tmp3210[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3210[i, j, n, m]).coeffs[1]) + (tmp3211[i, j, n, m]).coeffs[1] = constant_term(tmp3209[i, j, n, m]) * constant_term(tmp3210[i, j, n, m]) + (tmp3211[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3211[i, j, n, m]).coeffs[1]) + (tmp3212[i, j, n, m]).coeffs[1] = constant_term(tmp3211[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp3212[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3212[i, j, n, m]).coeffs[1]) + (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp3212[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) + (temp_CS_ξ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ξ[i, j, n, m]).coeffs[1]) + (tmp3214[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) + (tmp3214[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3214[i, j, n, m]).coeffs[1]) + (tmp3215[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) + (tmp3215[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3215[i, j, n, m]).coeffs[1]) + (tmp3216[i, j, n, m]).coeffs[1] = constant_term(tmp3214[i, j, n, m]) * constant_term(tmp3215[i, j, n, m]) + (tmp3216[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3216[i, j, n, m]).coeffs[1]) + (tmp3217[i, j, n, m]).coeffs[1] = constant_term(tmp3216[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp3217[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3217[i, j, n, m]).coeffs[1]) + (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp3217[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) + (temp_CS_η[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_η[i, j, n, m]).coeffs[1]) + (tmp3219[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + (tmp3219[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3219[i, j, n, m]).coeffs[1]) + (tmp3220[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp3219[i, j, n, m]) + (tmp3220[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3220[i, j, n, m]).coeffs[1]) + (tmp3221[i, j, n, m]).coeffs[1] = constant_term(tmp3220[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp3221[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp3221[i, j, n, m]).coeffs[1]) + (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp3221[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) + (temp_CS_ζ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ζ[i, j, n, m]).coeffs[1]) + (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) + (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) + (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) + (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) + end + end + (tmp3223[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + (tmp3223[i, j]).coeffs[2:order + 1] .= zero((tmp3223[i, j]).coeffs[1]) + (tmp3224[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) + (tmp3224[i, j]).coeffs[2:order + 1] .= zero((tmp3224[i, j]).coeffs[1]) + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp3223[i, j]) + constant_term(tmp3224[i, j]) + (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) + (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + (tmp3227[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + (tmp3227[i, j]).coeffs[2:order + 1] .= zero((tmp3227[i, j]).coeffs[1]) + (tmp3228[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) + (tmp3228[i, j]).coeffs[2:order + 1] .= zero((tmp3228[i, j]).coeffs[1]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp3227[i, j]) + constant_term(tmp3228[i, j]) + (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + else + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + end + (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) + (Rb2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 1]).coeffs[1]) + (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) + (Rb2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 1]).coeffs[1]) + (tmp3234[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + (tmp3234[i, j]).coeffs[2:order + 1] .= zero((tmp3234[i, j]).coeffs[1]) + (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3234[i, j]) * constant_term(cos_λ[i, j]) + (Rb2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 1]).coeffs[1]) + (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) + (Rb2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 2]).coeffs[1]) + (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) + (Rb2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 2]).coeffs[1]) + (tmp3237[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + (tmp3237[i, j]).coeffs[2:order + 1] .= zero((tmp3237[i, j]).coeffs[1]) + (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3237[i, j]) * constant_term(sin_λ[i, j]) + (Rb2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 2]).coeffs[1]) + (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) + (Rb2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 3]).coeffs[1]) + (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) + (Rb2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 3]).coeffs[1]) + (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) + (Rb2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 3]).coeffs[1]) + (tmp3239[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) + (tmp3239[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3239[i, j, 1, 1]).coeffs[1]) + (tmp3240[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) + (tmp3240[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3240[i, j, 1, 2]).coeffs[1]) + (tmp3241[i, j, 1, 1]).coeffs[1] = constant_term(tmp3239[i, j, 1, 1]) + constant_term(tmp3240[i, j, 1, 2]) + (tmp3241[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3241[i, j, 1, 1]).coeffs[1]) + (tmp3242[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) + (tmp3242[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3242[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp3241[i, j, 1, 1]) + constant_term(tmp3242[i, j, 1, 3]) + (Gc2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 1]).coeffs[1]) + (tmp3244[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) + (tmp3244[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3244[i, j, 2, 1]).coeffs[1]) + (tmp3245[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) + (tmp3245[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3245[i, j, 2, 2]).coeffs[1]) + (tmp3246[i, j, 2, 1]).coeffs[1] = constant_term(tmp3244[i, j, 2, 1]) + constant_term(tmp3245[i, j, 2, 2]) + (tmp3246[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3246[i, j, 2, 1]).coeffs[1]) + (tmp3247[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) + (tmp3247[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3247[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp3246[i, j, 2, 1]) + constant_term(tmp3247[i, j, 2, 3]) + (Gc2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 1]).coeffs[1]) + (tmp3249[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) + (tmp3249[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3249[i, j, 3, 1]).coeffs[1]) + (tmp3250[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) + (tmp3250[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3250[i, j, 3, 2]).coeffs[1]) + (tmp3251[i, j, 3, 1]).coeffs[1] = constant_term(tmp3249[i, j, 3, 1]) + constant_term(tmp3250[i, j, 3, 2]) + (tmp3251[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3251[i, j, 3, 1]).coeffs[1]) + (tmp3252[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) + (tmp3252[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3252[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp3251[i, j, 3, 1]) + constant_term(tmp3252[i, j, 3, 3]) + (Gc2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 1]).coeffs[1]) + (tmp3254[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) + (tmp3254[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3254[i, j, 1, 1]).coeffs[1]) + (tmp3255[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) + (tmp3255[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3255[i, j, 1, 2]).coeffs[1]) + (tmp3256[i, j, 1, 1]).coeffs[1] = constant_term(tmp3254[i, j, 1, 1]) + constant_term(tmp3255[i, j, 1, 2]) + (tmp3256[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3256[i, j, 1, 1]).coeffs[1]) + (tmp3257[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) + (tmp3257[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3257[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp3256[i, j, 1, 1]) + constant_term(tmp3257[i, j, 1, 3]) + (Gc2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 2]).coeffs[1]) + (tmp3259[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) + (tmp3259[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3259[i, j, 2, 1]).coeffs[1]) + (tmp3260[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) + (tmp3260[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3260[i, j, 2, 2]).coeffs[1]) + (tmp3261[i, j, 2, 1]).coeffs[1] = constant_term(tmp3259[i, j, 2, 1]) + constant_term(tmp3260[i, j, 2, 2]) + (tmp3261[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3261[i, j, 2, 1]).coeffs[1]) + (tmp3262[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) + (tmp3262[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3262[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp3261[i, j, 2, 1]) + constant_term(tmp3262[i, j, 2, 3]) + (Gc2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 2]).coeffs[1]) + (tmp3264[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) + (tmp3264[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3264[i, j, 3, 1]).coeffs[1]) + (tmp3265[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) + (tmp3265[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3265[i, j, 3, 2]).coeffs[1]) + (tmp3266[i, j, 3, 1]).coeffs[1] = constant_term(tmp3264[i, j, 3, 1]) + constant_term(tmp3265[i, j, 3, 2]) + (tmp3266[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3266[i, j, 3, 1]).coeffs[1]) + (tmp3267[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) + (tmp3267[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3267[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp3266[i, j, 3, 1]) + constant_term(tmp3267[i, j, 3, 3]) + (Gc2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 2]).coeffs[1]) + (tmp3269[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) + (tmp3269[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3269[i, j, 1, 1]).coeffs[1]) + (tmp3270[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) + (tmp3270[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3270[i, j, 1, 2]).coeffs[1]) + (tmp3271[i, j, 1, 1]).coeffs[1] = constant_term(tmp3269[i, j, 1, 1]) + constant_term(tmp3270[i, j, 1, 2]) + (tmp3271[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3271[i, j, 1, 1]).coeffs[1]) + (tmp3272[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) + (tmp3272[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3272[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp3271[i, j, 1, 1]) + constant_term(tmp3272[i, j, 1, 3]) + (Gc2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 3]).coeffs[1]) + (tmp3274[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) + (tmp3274[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3274[i, j, 2, 1]).coeffs[1]) + (tmp3275[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) + (tmp3275[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3275[i, j, 2, 2]).coeffs[1]) + (tmp3276[i, j, 2, 1]).coeffs[1] = constant_term(tmp3274[i, j, 2, 1]) + constant_term(tmp3275[i, j, 2, 2]) + (tmp3276[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3276[i, j, 2, 1]).coeffs[1]) + (tmp3277[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) + (tmp3277[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3277[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp3276[i, j, 2, 1]) + constant_term(tmp3277[i, j, 2, 3]) + (Gc2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 3]).coeffs[1]) + (tmp3279[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) + (tmp3279[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3279[i, j, 3, 1]).coeffs[1]) + (tmp3280[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) + (tmp3280[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3280[i, j, 3, 2]).coeffs[1]) + (tmp3281[i, j, 3, 1]).coeffs[1] = constant_term(tmp3279[i, j, 3, 1]) + constant_term(tmp3280[i, j, 3, 2]) + (tmp3281[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3281[i, j, 3, 1]).coeffs[1]) + (tmp3282[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) + (tmp3282[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3282[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp3281[i, j, 3, 1]) + constant_term(tmp3282[i, j, 3, 3]) + (Gc2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 3]).coeffs[1]) + (tmp3284[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) + (tmp3284[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3284[i, j, 1, 1]).coeffs[1]) + (tmp3285[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) + (tmp3285[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp3285[i, j, 2, 1]).coeffs[1]) + (tmp3286[i, j, 1, 1]).coeffs[1] = constant_term(tmp3284[i, j, 1, 1]) + constant_term(tmp3285[i, j, 2, 1]) + (tmp3286[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp3286[i, j, 1, 1]).coeffs[1]) + (tmp3287[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) + (tmp3287[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp3287[i, j, 3, 1]).coeffs[1]) + (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp3286[i, j, 1, 1]) + constant_term(tmp3287[i, j, 3, 1]) + (F_JCS_x[i, j]).coeffs[2:order + 1] .= zero((F_JCS_x[i, j]).coeffs[1]) + (tmp3289[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) + (tmp3289[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3289[i, j, 1, 2]).coeffs[1]) + (tmp3290[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) + (tmp3290[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp3290[i, j, 2, 2]).coeffs[1]) + (tmp3291[i, j, 1, 2]).coeffs[1] = constant_term(tmp3289[i, j, 1, 2]) + constant_term(tmp3290[i, j, 2, 2]) + (tmp3291[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp3291[i, j, 1, 2]).coeffs[1]) + (tmp3292[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) + (tmp3292[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp3292[i, j, 3, 2]).coeffs[1]) + (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp3291[i, j, 1, 2]) + constant_term(tmp3292[i, j, 3, 2]) + (F_JCS_y[i, j]).coeffs[2:order + 1] .= zero((F_JCS_y[i, j]).coeffs[1]) + (tmp3294[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) + (tmp3294[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3294[i, j, 1, 3]).coeffs[1]) + (tmp3295[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) + (tmp3295[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp3295[i, j, 2, 3]).coeffs[1]) + (tmp3296[i, j, 1, 3]).coeffs[1] = constant_term(tmp3294[i, j, 1, 3]) + constant_term(tmp3295[i, j, 2, 3]) + (tmp3296[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp3296[i, j, 1, 3]).coeffs[1]) + (tmp3297[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) + (tmp3297[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp3297[i, j, 3, 3]).coeffs[1]) + (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp3296[i, j, 1, 3]) + constant_term(tmp3297[i, j, 3, 3]) + (F_JCS_z[i, j]).coeffs[2:order + 1] .= zero((F_JCS_z[i, j]).coeffs[1]) + end + end + end + end + for j = 1:N_ext + for i = 1:N_ext + if i == j + continue + else + if UJ_interaction[i, j] + (tmp3299[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) + (tmp3299[i, j]).coeffs[2:order + 1] .= zero((tmp3299[i, j]).coeffs[1]) + (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp3299[i, j]) + (temp_accX_j[i, j]).coeffs[2:order + 1] .= zero((temp_accX_j[i, j]).coeffs[1]) + (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) + (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + (tmp3301[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) + (tmp3301[i, j]).coeffs[2:order + 1] .= zero((tmp3301[i, j]).coeffs[1]) + (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp3301[i, j]) + (temp_accY_j[i, j]).coeffs[2:order + 1] .= zero((temp_accY_j[i, j]).coeffs[1]) + (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) + (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + (tmp3303[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) + (tmp3303[i, j]).coeffs[2:order + 1] .= zero((tmp3303[i, j]).coeffs[1]) + (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp3303[i, j]) + (temp_accZ_j[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_j[i, j]).coeffs[1]) + (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) + (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) + (tmp3305[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) + (tmp3305[i, j]).coeffs[2:order + 1] .= zero((tmp3305[i, j]).coeffs[1]) + (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp3305[i, j]) + (temp_accX_i[i, j]).coeffs[2:order + 1] .= zero((temp_accX_i[i, j]).coeffs[1]) + (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) + (accX[i]).coeffs[2:order + 1] .= zero((accX[i]).coeffs[1]) + (tmp3307[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) + (tmp3307[i, j]).coeffs[2:order + 1] .= zero((tmp3307[i, j]).coeffs[1]) + (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp3307[i, j]) + (temp_accY_i[i, j]).coeffs[2:order + 1] .= zero((temp_accY_i[i, j]).coeffs[1]) + (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) + (accY[i]).coeffs[2:order + 1] .= zero((accY[i]).coeffs[1]) + (tmp3309[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) + (tmp3309[i, j]).coeffs[2:order + 1] .= zero((tmp3309[i, j]).coeffs[1]) + (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp3309[i, j]) + (temp_accZ_i[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_i[i, j]).coeffs[1]) + (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) + (accZ[i]).coeffs[2:order + 1] .= zero((accZ[i]).coeffs[1]) + if j == mo + (tmp3311[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) + (tmp3311[i, j]).coeffs[2:order + 1] .= zero((tmp3311[i, j]).coeffs[1]) + (tmp3312[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) + (tmp3312[i, j]).coeffs[2:order + 1] .= zero((tmp3312[i, j]).coeffs[1]) + (tmp3313[i, j]).coeffs[1] = constant_term(tmp3311[i, j]) - constant_term(tmp3312[i, j]) + (tmp3313[i, j]).coeffs[2:order + 1] .= zero((tmp3313[i, j]).coeffs[1]) + (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3313[i, j]) + (N_MfigM_pmA_x[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_x[i]).coeffs[1]) + (tmp3315[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) + (tmp3315[i, j]).coeffs[2:order + 1] .= zero((tmp3315[i, j]).coeffs[1]) + (tmp3316[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) + (tmp3316[i, j]).coeffs[2:order + 1] .= zero((tmp3316[i, j]).coeffs[1]) + (tmp3317[i, j]).coeffs[1] = constant_term(tmp3315[i, j]) - constant_term(tmp3316[i, j]) + (tmp3317[i, j]).coeffs[2:order + 1] .= zero((tmp3317[i, j]).coeffs[1]) + (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3317[i, j]) + (N_MfigM_pmA_y[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_y[i]).coeffs[1]) + (tmp3319[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) + (tmp3319[i, j]).coeffs[2:order + 1] .= zero((tmp3319[i, j]).coeffs[1]) + (tmp3320[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) + (tmp3320[i, j]).coeffs[2:order + 1] .= zero((tmp3320[i, j]).coeffs[1]) + (tmp3321[i, j]).coeffs[1] = constant_term(tmp3319[i, j]) - constant_term(tmp3320[i, j]) + (tmp3321[i, j]).coeffs[2:order + 1] .= zero((tmp3321[i, j]).coeffs[1]) + (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp3321[i, j]) + (N_MfigM_pmA_z[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_z[i]).coeffs[1]) + (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]) + (temp_N_M_x[i]).coeffs[2:order + 1] .= zero((temp_N_M_x[i]).coeffs[1]) + (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) + (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]) + (temp_N_M_y[i]).coeffs[2:order + 1] .= zero((temp_N_M_y[i]).coeffs[1]) + (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) + (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(N_MfigM_pmA_z[i]) + (temp_N_M_z[i]).coeffs[2:order + 1] .= zero((temp_N_M_z[i]).coeffs[1]) + (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) + (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) + end + end + end + end + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:656 =# Threads.@threads for j = 1:N + for i = 1:N + if i == j + continue + else + (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) + (_4ϕj[i, j]).coeffs[2:order + 1] .= zero((_4ϕj[i, j]).coeffs[1]) + (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) + (ϕi_plus_4ϕj[i, j]).coeffs[2:order + 1] .= zero((ϕi_plus_4ϕj[i, j]).coeffs[1]) + (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) + (_2v2[i, j]).coeffs[2:order + 1] .= zero((_2v2[i, j]).coeffs[1]) + (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) + (sj2_plus_2si2[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2[i, j]).coeffs[1]) + (tmp3333[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) + (tmp3333[i, j]).coeffs[2:order + 1] .= zero((tmp3333[i, j]).coeffs[1]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp3333[i, j]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1]) + (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) + (ϕs_and_vs[i, j]).coeffs[2:order + 1] .= zero((ϕs_and_vs[i, j]).coeffs[1]) + (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) + (Xij_t_Ui[i, j]).coeffs[2:order + 1] .= zero((Xij_t_Ui[i, j]).coeffs[1]) + (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) + (Yij_t_Vi[i, j]).coeffs[2:order + 1] .= zero((Yij_t_Vi[i, j]).coeffs[1]) + (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) + (Zij_t_Wi[i, j]).coeffs[2:order + 1] .= zero((Zij_t_Wi[i, j]).coeffs[1]) + (tmp3339[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) + (tmp3339[i, j]).coeffs[2:order + 1] .= zero((tmp3339[i, j]).coeffs[1]) + (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp3339[i, j]) + constant_term(Zij_t_Wi[i, j]) + (Rij_dot_Vi[i, j]).coeffs[2:order + 1] .= zero((Rij_dot_Vi[i, j]).coeffs[1]) + (tmp3342[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) + (tmp3342[i, j]).coeffs[2:order + 1] .= zero((tmp3342[i, j]).coeffs[1]) + (pn1t7[i, j]).coeffs[1] = constant_term(tmp3342[i, j]) / constant_term(r_p2[i, j]) + (pn1t7[i, j]).coeffs[2:order + 1] .= zero((pn1t7[i, j]).coeffs[1]) + (tmp3345[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) + (tmp3345[i, j]).coeffs[2:order + 1] .= zero((tmp3345[i, j]).coeffs[1]) + (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp3345[i, j]) + (pn1t2_7[i, j]).coeffs[2:order + 1] .= zero((pn1t2_7[i, j]).coeffs[1]) + (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) + (pn1t1_7[i, j]).coeffs[2:order + 1] .= zero((pn1t1_7[i, j]).coeffs[1]) + end + end + (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:695 =# Threads.@threads for j = 1:N + for i = 1:N + if i == j + continue + else + (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) + (pNX_t_X[i, j]).coeffs[2:order + 1] .= zero((pNX_t_X[i, j]).coeffs[1]) + (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) + (pNY_t_Y[i, j]).coeffs[2:order + 1] .= zero((pNY_t_Y[i, j]).coeffs[1]) + (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) + (pNZ_t_Z[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_Z[i, j]).coeffs[1]) + (tmp3352[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) + (tmp3352[i, j]).coeffs[2:order + 1] .= zero((tmp3352[i, j]).coeffs[1]) + (tmp3353[i, j]).coeffs[1] = constant_term(tmp3352[i, j]) + constant_term(pNZ_t_Z[i, j]) + (tmp3353[i, j]).coeffs[2:order + 1] .= zero((tmp3353[i, j]).coeffs[1]) + (tmp3354[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp3353[i, j]) + (tmp3354[i, j]).coeffs[2:order + 1] .= zero((tmp3354[i, j]).coeffs[1]) + (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp3354[i, j]) + (pn1[i, j]).coeffs[2:order + 1] .= zero((pn1[i, j]).coeffs[1]) + (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) + (X_t_pn1[i, j]).coeffs[2:order + 1] .= zero((X_t_pn1[i, j]).coeffs[1]) + (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) + (Y_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Y_t_pn1[i, j]).coeffs[1]) + (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) + (Z_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Z_t_pn1[i, j]).coeffs[1]) + (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) + (pNX_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNX_t_pn3[i, j]).coeffs[1]) + (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) + (pNY_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNY_t_pn3[i, j]).coeffs[1]) + (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) + (pNZ_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_pn3[i, j]).coeffs[1]) + (tmp3362[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) + (tmp3362[i, j]).coeffs[2:order + 1] .= zero((tmp3362[i, j]).coeffs[1]) + (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp3362[i, j]) + (termpnx[i, j]).coeffs[2:order + 1] .= zero((termpnx[i, j]).coeffs[1]) + (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) + (sumpnx[i, j]).coeffs[2:order + 1] .= zero((sumpnx[i, j]).coeffs[1]) + (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) + (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + (tmp3365[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) + (tmp3365[i, j]).coeffs[2:order + 1] .= zero((tmp3365[i, j]).coeffs[1]) + (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp3365[i, j]) + (termpny[i, j]).coeffs[2:order + 1] .= zero((termpny[i, j]).coeffs[1]) + (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) + (sumpny[i, j]).coeffs[2:order + 1] .= zero((sumpny[i, j]).coeffs[1]) + (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) + (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + (tmp3368[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) + (tmp3368[i, j]).coeffs[2:order + 1] .= zero((tmp3368[i, j]).coeffs[1]) + (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp3368[i, j]) + (termpnz[i, j]).coeffs[2:order + 1] .= zero((termpnz[i, j]).coeffs[1]) + (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) + (sumpnz[i, j]).coeffs[2:order + 1] .= zero((sumpnz[i, j]).coeffs[1]) + (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) + (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) + end + end + (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) + (postNewtonX[j]).coeffs[2:order + 1] .= zero((postNewtonX[j]).coeffs[1]) + (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) + (postNewtonY[j]).coeffs[2:order + 1] .= zero((postNewtonY[j]).coeffs[1]) + (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) + (postNewtonZ[j]).coeffs[2:order + 1] .= zero((postNewtonZ[j]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:741 =# Threads.@threads for i = 1:N_ext + (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) + (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) + (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) + (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) end - #= REPL[11]:746 =# Threads.@threads for i = N_ext + 1:N - dq[3 * (N + i) - 2] = Taylor1(identity(constant_term(postNewtonX[i])), order) - dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) - dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:746 =# Threads.@threads for i = N_ext + 1:N + (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) + (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) + (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) + (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) end - tmp3322 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp3323 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp3324 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp3325 = Taylor1(constant_term(tmp3323) + constant_term(tmp3324), order) - Iω_x = Taylor1(constant_term(tmp3322) + constant_term(tmp3325), order) - tmp3327 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp3328 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp3329 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp3330 = Taylor1(constant_term(tmp3328) + constant_term(tmp3329), order) - Iω_y = Taylor1(constant_term(tmp3327) + constant_term(tmp3330), order) - tmp3332 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp3333 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp3334 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp3335 = Taylor1(constant_term(tmp3333) + constant_term(tmp3334), order) - Iω_z = Taylor1(constant_term(tmp3332) + constant_term(tmp3335), order) - tmp3337 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp3338 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp3337) - constant_term(tmp3338), order) - tmp3340 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp3341 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp3340) - constant_term(tmp3341), order) - tmp3343 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp3344 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp3343) - constant_term(tmp3344), order) - tmp3346 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp3347 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp3348 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp3349 = Taylor1(constant_term(tmp3347) + constant_term(tmp3348), order) - dIω_x = Taylor1(constant_term(tmp3346) + constant_term(tmp3349), order) - tmp3351 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp3352 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp3353 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp3354 = Taylor1(constant_term(tmp3352) + constant_term(tmp3353), order) - dIω_y = Taylor1(constant_term(tmp3351) + constant_term(tmp3354), order) - tmp3356 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp3357 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp3358 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp3359 = Taylor1(constant_term(tmp3357) + constant_term(tmp3358), order) - dIω_z = Taylor1(constant_term(tmp3356) + constant_term(tmp3359), order) - er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) - er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) - er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) - p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) - p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) - p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp3364 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3365 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3366 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3367 = Taylor1(constant_term(tmp3365) + constant_term(tmp3366), order) - er_EM_1 = Taylor1(constant_term(tmp3364) + constant_term(tmp3367), order) - tmp3369 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3370 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3371 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3372 = Taylor1(constant_term(tmp3370) + constant_term(tmp3371), order) - er_EM_2 = Taylor1(constant_term(tmp3369) + constant_term(tmp3372), order) - tmp3374 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp3375 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp3376 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp3377 = Taylor1(constant_term(tmp3375) + constant_term(tmp3376), order) - er_EM_3 = Taylor1(constant_term(tmp3374) + constant_term(tmp3377), order) - tmp3379 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp3380 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp3381 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) - tmp3382 = Taylor1(constant_term(tmp3380) + constant_term(tmp3381), order) - p_E_1 = Taylor1(constant_term(tmp3379) + constant_term(tmp3382), order) - tmp3384 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp3385 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp3386 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) - tmp3387 = Taylor1(constant_term(tmp3385) + constant_term(tmp3386), order) - p_E_2 = Taylor1(constant_term(tmp3384) + constant_term(tmp3387), order) - tmp3389 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp3390 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp3391 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) - tmp3392 = Taylor1(constant_term(tmp3390) + constant_term(tmp3391), order) - p_E_3 = Taylor1(constant_term(tmp3389) + constant_term(tmp3392), order) - tmp3394 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp3395 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp3396 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) - tmp3397 = Taylor1(constant_term(tmp3395) + constant_term(tmp3396), order) - I_er_EM_1 = Taylor1(constant_term(tmp3394) + constant_term(tmp3397), order) - tmp3399 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp3400 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp3401 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) - tmp3402 = Taylor1(constant_term(tmp3400) + constant_term(tmp3401), order) - I_er_EM_2 = Taylor1(constant_term(tmp3399) + constant_term(tmp3402), order) - tmp3404 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp3405 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp3406 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) - tmp3407 = Taylor1(constant_term(tmp3405) + constant_term(tmp3406), order) - I_er_EM_3 = Taylor1(constant_term(tmp3404) + constant_term(tmp3407), order) - tmp3409 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp3410 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp3411 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) - tmp3412 = Taylor1(constant_term(tmp3410) + constant_term(tmp3411), order) - I_p_E_1 = Taylor1(constant_term(tmp3409) + constant_term(tmp3412), order) - tmp3414 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp3415 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp3416 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) - tmp3417 = Taylor1(constant_term(tmp3415) + constant_term(tmp3416), order) - I_p_E_2 = Taylor1(constant_term(tmp3414) + constant_term(tmp3417), order) - tmp3419 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp3420 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp3421 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) - tmp3422 = Taylor1(constant_term(tmp3420) + constant_term(tmp3421), order) - I_p_E_3 = Taylor1(constant_term(tmp3419) + constant_term(tmp3422), order) - tmp3424 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp3425 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp3424) - constant_term(tmp3425), order) - tmp3427 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp3428 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp3427) - constant_term(tmp3428), order) - tmp3430 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp3431 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp3430) - constant_term(tmp3431), order) - tmp3433 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp3434 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp3433) - constant_term(tmp3434), order) - tmp3436 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp3437 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp3436) - constant_term(tmp3437), order) - tmp3439 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp3440 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp3439) - constant_term(tmp3440), order) - tmp3442 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp3443 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp3442) - constant_term(tmp3443), order) - tmp3445 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp3446 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp3445) - constant_term(tmp3446), order) - tmp3448 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp3449 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp3448) - constant_term(tmp3449), order) - tmp3451 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp3452 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp3451) - constant_term(tmp3452), order) - tmp3454 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp3455 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp3454) - constant_term(tmp3455), order) - tmp3457 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp3458 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp3457) - constant_term(tmp3458), order) - tmp3462 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp3463 = Taylor1(constant_term(7) * constant_term(tmp3462), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp3463), order) - two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp3468 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp3468), order) - tmp3470 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp3471 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp3472 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3471), order) - tmp3473 = Taylor1(constant_term(tmp3470) + constant_term(tmp3472), order) - tmp3475 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp3476 = Taylor1(constant_term(tmp3473) - constant_term(tmp3475), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3476), order) - tmp3478 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp3479 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp3480 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3479), order) - tmp3481 = Taylor1(constant_term(tmp3478) + constant_term(tmp3480), order) - tmp3483 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp3484 = Taylor1(constant_term(tmp3481) - constant_term(tmp3483), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3484), order) - tmp3486 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp3487 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp3488 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp3487), order) - tmp3489 = Taylor1(constant_term(tmp3486) + constant_term(tmp3488), order) - tmp3491 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp3492 = Taylor1(constant_term(tmp3489) - constant_term(tmp3491), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3492), order) - tmp3494 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3495 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3496 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3497 = Taylor1(constant_term(tmp3495) + constant_term(tmp3496), order) - N_1_LMF = Taylor1(constant_term(tmp3494) + constant_term(tmp3497), order) - tmp3499 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3500 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3501 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3502 = Taylor1(constant_term(tmp3500) + constant_term(tmp3501), order) - N_2_LMF = Taylor1(constant_term(tmp3499) + constant_term(tmp3502), order) - tmp3504 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp3505 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp3506 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp3507 = Taylor1(constant_term(tmp3505) + constant_term(tmp3506), order) - N_3_LMF = Taylor1(constant_term(tmp3504) + constant_term(tmp3507), order) - tmp3509 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp3510 = Taylor1(constant_term(k_ν) * constant_term(tmp3509), order) - tmp3511 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp3512 = Taylor1(constant_term(tmp3511) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp3510) - constant_term(tmp3512), order) - tmp3514 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp3515 = Taylor1(constant_term(k_ν) * constant_term(tmp3514), order) - tmp3516 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp3517 = Taylor1(constant_term(tmp3516) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp3515) + constant_term(tmp3517), order) - tmp3519 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp3519), order) - tmp3521 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) - tmp3522 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp3521), order) - tmp3523 = Taylor1(constant_term(tmp3522) + constant_term(N_cmb_1), order) - tmp3524 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp3523) - constant_term(tmp3524), order) - tmp3526 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) - tmp3527 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp3526), order) - tmp3528 = Taylor1(constant_term(tmp3527) + constant_term(N_cmb_2), order) - tmp3529 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp3528) - constant_term(tmp3529), order) - tmp3531 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) - tmp3532 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp3531), order) - tmp3533 = Taylor1(constant_term(tmp3532) + constant_term(N_cmb_3), order) - tmp3534 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp3533) - constant_term(tmp3534), order) - Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) - Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) - Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp3539 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp3540 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp3539) - constant_term(tmp3540), order) - tmp3542 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp3543 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp3542) - constant_term(tmp3543), order) - tmp3545 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp3546 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp3545) - constant_term(tmp3546), order) - Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) - Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) - Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp3551 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3631 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3552 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3551), order) - tmp3553 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3632 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3554 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3553), order) - tmp3555 = Taylor1(constant_term(tmp3552) + constant_term(tmp3554), order) - tmp3556 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp3633 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp3555) / constant_term(tmp3556), order) - tmp3558 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3634 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3559 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp3558), order) - tmp3560 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp3635 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp3561 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp3560), order) - dq[6N + 2] = Taylor1(constant_term(tmp3559) - constant_term(tmp3561), order) - tmp3563 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp3636 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp3564 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp3563), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp3564), order) - tmp3566 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp3567 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp3568 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp3569 = Taylor1(constant_term(tmp3567) + constant_term(tmp3568), order) - dq[6N + 4] = Taylor1(constant_term(tmp3566) + constant_term(tmp3569), order) - tmp3571 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp3572 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp3573 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp3574 = Taylor1(constant_term(tmp3572) + constant_term(tmp3573), order) - dq[6N + 5] = Taylor1(constant_term(tmp3571) + constant_term(tmp3574), order) - tmp3576 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp3577 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp3578 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp3579 = Taylor1(constant_term(tmp3577) + constant_term(tmp3578), order) - dq[6N + 6] = Taylor1(constant_term(tmp3576) + constant_term(tmp3579), order) - tmp3581 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp3637 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp3582 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp3581), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp3582)), order) - tmp3584 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp3638 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp3585 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp3584), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp3585), order) - dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) - dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) - dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) - dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) - dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) + tmp3377.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) + tmp3377.coeffs[2:order + 1] .= zero(tmp3377.coeffs[1]) + tmp3378.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) + tmp3378.coeffs[2:order + 1] .= zero(tmp3378.coeffs[1]) + tmp3379.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) + tmp3379.coeffs[2:order + 1] .= zero(tmp3379.coeffs[1]) + tmp3380.coeffs[1] = constant_term(tmp3378) + constant_term(tmp3379) + tmp3380.coeffs[2:order + 1] .= zero(tmp3380.coeffs[1]) + Iω_x.coeffs[1] = constant_term(tmp3377) + constant_term(tmp3380) + Iω_x.coeffs[2:order + 1] .= zero(Iω_x.coeffs[1]) + tmp3382.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) + tmp3382.coeffs[2:order + 1] .= zero(tmp3382.coeffs[1]) + tmp3383.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) + tmp3383.coeffs[2:order + 1] .= zero(tmp3383.coeffs[1]) + tmp3384.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) + tmp3384.coeffs[2:order + 1] .= zero(tmp3384.coeffs[1]) + tmp3385.coeffs[1] = constant_term(tmp3383) + constant_term(tmp3384) + tmp3385.coeffs[2:order + 1] .= zero(tmp3385.coeffs[1]) + Iω_y.coeffs[1] = constant_term(tmp3382) + constant_term(tmp3385) + Iω_y.coeffs[2:order + 1] .= zero(Iω_y.coeffs[1]) + tmp3387.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) + tmp3387.coeffs[2:order + 1] .= zero(tmp3387.coeffs[1]) + tmp3388.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) + tmp3388.coeffs[2:order + 1] .= zero(tmp3388.coeffs[1]) + tmp3389.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) + tmp3389.coeffs[2:order + 1] .= zero(tmp3389.coeffs[1]) + tmp3390.coeffs[1] = constant_term(tmp3388) + constant_term(tmp3389) + tmp3390.coeffs[2:order + 1] .= zero(tmp3390.coeffs[1]) + Iω_z.coeffs[1] = constant_term(tmp3387) + constant_term(tmp3390) + Iω_z.coeffs[2:order + 1] .= zero(Iω_z.coeffs[1]) + tmp3392.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) + tmp3392.coeffs[2:order + 1] .= zero(tmp3392.coeffs[1]) + tmp3393.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) + tmp3393.coeffs[2:order + 1] .= zero(tmp3393.coeffs[1]) + ωxIω_x.coeffs[1] = constant_term(tmp3392) - constant_term(tmp3393) + ωxIω_x.coeffs[2:order + 1] .= zero(ωxIω_x.coeffs[1]) + tmp3395.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) + tmp3395.coeffs[2:order + 1] .= zero(tmp3395.coeffs[1]) + tmp3396.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) + tmp3396.coeffs[2:order + 1] .= zero(tmp3396.coeffs[1]) + ωxIω_y.coeffs[1] = constant_term(tmp3395) - constant_term(tmp3396) + ωxIω_y.coeffs[2:order + 1] .= zero(ωxIω_y.coeffs[1]) + tmp3398.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) + tmp3398.coeffs[2:order + 1] .= zero(tmp3398.coeffs[1]) + tmp3399.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) + tmp3399.coeffs[2:order + 1] .= zero(tmp3399.coeffs[1]) + ωxIω_z.coeffs[1] = constant_term(tmp3398) - constant_term(tmp3399) + ωxIω_z.coeffs[2:order + 1] .= zero(ωxIω_z.coeffs[1]) + tmp3401.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) + tmp3401.coeffs[2:order + 1] .= zero(tmp3401.coeffs[1]) + tmp3402.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) + tmp3402.coeffs[2:order + 1] .= zero(tmp3402.coeffs[1]) + tmp3403.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) + tmp3403.coeffs[2:order + 1] .= zero(tmp3403.coeffs[1]) + tmp3404.coeffs[1] = constant_term(tmp3402) + constant_term(tmp3403) + tmp3404.coeffs[2:order + 1] .= zero(tmp3404.coeffs[1]) + dIω_x.coeffs[1] = constant_term(tmp3401) + constant_term(tmp3404) + dIω_x.coeffs[2:order + 1] .= zero(dIω_x.coeffs[1]) + tmp3406.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) + tmp3406.coeffs[2:order + 1] .= zero(tmp3406.coeffs[1]) + tmp3407.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) + tmp3407.coeffs[2:order + 1] .= zero(tmp3407.coeffs[1]) + tmp3408.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) + tmp3408.coeffs[2:order + 1] .= zero(tmp3408.coeffs[1]) + tmp3409.coeffs[1] = constant_term(tmp3407) + constant_term(tmp3408) + tmp3409.coeffs[2:order + 1] .= zero(tmp3409.coeffs[1]) + dIω_y.coeffs[1] = constant_term(tmp3406) + constant_term(tmp3409) + dIω_y.coeffs[2:order + 1] .= zero(dIω_y.coeffs[1]) + tmp3411.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) + tmp3411.coeffs[2:order + 1] .= zero(tmp3411.coeffs[1]) + tmp3412.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) + tmp3412.coeffs[2:order + 1] .= zero(tmp3412.coeffs[1]) + tmp3413.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) + tmp3413.coeffs[2:order + 1] .= zero(tmp3413.coeffs[1]) + tmp3414.coeffs[1] = constant_term(tmp3412) + constant_term(tmp3413) + tmp3414.coeffs[2:order + 1] .= zero(tmp3414.coeffs[1]) + dIω_z.coeffs[1] = constant_term(tmp3411) + constant_term(tmp3414) + dIω_z.coeffs[2:order + 1] .= zero(dIω_z.coeffs[1]) + er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_1.coeffs[2:order + 1] .= zero(er_EM_I_1.coeffs[1]) + er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_2.coeffs[2:order + 1] .= zero(er_EM_I_2.coeffs[1]) + er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_3.coeffs[2:order + 1] .= zero(er_EM_I_3.coeffs[1]) + p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) + p_E_I_1.coeffs[2:order + 1] .= zero(p_E_I_1.coeffs[1]) + p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) + p_E_I_2.coeffs[2:order + 1] .= zero(p_E_I_2.coeffs[1]) + p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) + p_E_I_3.coeffs[2:order + 1] .= zero(p_E_I_3.coeffs[1]) + tmp3419.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) + tmp3419.coeffs[2:order + 1] .= zero(tmp3419.coeffs[1]) + tmp3420.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) + tmp3420.coeffs[2:order + 1] .= zero(tmp3420.coeffs[1]) + tmp3421.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) + tmp3421.coeffs[2:order + 1] .= zero(tmp3421.coeffs[1]) + tmp3422.coeffs[1] = constant_term(tmp3420) + constant_term(tmp3421) + tmp3422.coeffs[2:order + 1] .= zero(tmp3422.coeffs[1]) + er_EM_1.coeffs[1] = constant_term(tmp3419) + constant_term(tmp3422) + er_EM_1.coeffs[2:order + 1] .= zero(er_EM_1.coeffs[1]) + tmp3424.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) + tmp3424.coeffs[2:order + 1] .= zero(tmp3424.coeffs[1]) + tmp3425.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) + tmp3425.coeffs[2:order + 1] .= zero(tmp3425.coeffs[1]) + tmp3426.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) + tmp3426.coeffs[2:order + 1] .= zero(tmp3426.coeffs[1]) + tmp3427.coeffs[1] = constant_term(tmp3425) + constant_term(tmp3426) + tmp3427.coeffs[2:order + 1] .= zero(tmp3427.coeffs[1]) + er_EM_2.coeffs[1] = constant_term(tmp3424) + constant_term(tmp3427) + er_EM_2.coeffs[2:order + 1] .= zero(er_EM_2.coeffs[1]) + tmp3429.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) + tmp3429.coeffs[2:order + 1] .= zero(tmp3429.coeffs[1]) + tmp3430.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) + tmp3430.coeffs[2:order + 1] .= zero(tmp3430.coeffs[1]) + tmp3431.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) + tmp3431.coeffs[2:order + 1] .= zero(tmp3431.coeffs[1]) + tmp3432.coeffs[1] = constant_term(tmp3430) + constant_term(tmp3431) + tmp3432.coeffs[2:order + 1] .= zero(tmp3432.coeffs[1]) + er_EM_3.coeffs[1] = constant_term(tmp3429) + constant_term(tmp3432) + er_EM_3.coeffs[2:order + 1] .= zero(er_EM_3.coeffs[1]) + tmp3434.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) + tmp3434.coeffs[2:order + 1] .= zero(tmp3434.coeffs[1]) + tmp3435.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) + tmp3435.coeffs[2:order + 1] .= zero(tmp3435.coeffs[1]) + tmp3436.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) + tmp3436.coeffs[2:order + 1] .= zero(tmp3436.coeffs[1]) + tmp3437.coeffs[1] = constant_term(tmp3435) + constant_term(tmp3436) + tmp3437.coeffs[2:order + 1] .= zero(tmp3437.coeffs[1]) + p_E_1.coeffs[1] = constant_term(tmp3434) + constant_term(tmp3437) + p_E_1.coeffs[2:order + 1] .= zero(p_E_1.coeffs[1]) + tmp3439.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) + tmp3439.coeffs[2:order + 1] .= zero(tmp3439.coeffs[1]) + tmp3440.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) + tmp3440.coeffs[2:order + 1] .= zero(tmp3440.coeffs[1]) + tmp3441.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) + tmp3441.coeffs[2:order + 1] .= zero(tmp3441.coeffs[1]) + tmp3442.coeffs[1] = constant_term(tmp3440) + constant_term(tmp3441) + tmp3442.coeffs[2:order + 1] .= zero(tmp3442.coeffs[1]) + p_E_2.coeffs[1] = constant_term(tmp3439) + constant_term(tmp3442) + p_E_2.coeffs[2:order + 1] .= zero(p_E_2.coeffs[1]) + tmp3444.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) + tmp3444.coeffs[2:order + 1] .= zero(tmp3444.coeffs[1]) + tmp3445.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) + tmp3445.coeffs[2:order + 1] .= zero(tmp3445.coeffs[1]) + tmp3446.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) + tmp3446.coeffs[2:order + 1] .= zero(tmp3446.coeffs[1]) + tmp3447.coeffs[1] = constant_term(tmp3445) + constant_term(tmp3446) + tmp3447.coeffs[2:order + 1] .= zero(tmp3447.coeffs[1]) + p_E_3.coeffs[1] = constant_term(tmp3444) + constant_term(tmp3447) + p_E_3.coeffs[2:order + 1] .= zero(p_E_3.coeffs[1]) + tmp3449.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) + tmp3449.coeffs[2:order + 1] .= zero(tmp3449.coeffs[1]) + tmp3450.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) + tmp3450.coeffs[2:order + 1] .= zero(tmp3450.coeffs[1]) + tmp3451.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) + tmp3451.coeffs[2:order + 1] .= zero(tmp3451.coeffs[1]) + tmp3452.coeffs[1] = constant_term(tmp3450) + constant_term(tmp3451) + tmp3452.coeffs[2:order + 1] .= zero(tmp3452.coeffs[1]) + I_er_EM_1.coeffs[1] = constant_term(tmp3449) + constant_term(tmp3452) + I_er_EM_1.coeffs[2:order + 1] .= zero(I_er_EM_1.coeffs[1]) + tmp3454.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) + tmp3454.coeffs[2:order + 1] .= zero(tmp3454.coeffs[1]) + tmp3455.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) + tmp3455.coeffs[2:order + 1] .= zero(tmp3455.coeffs[1]) + tmp3456.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) + tmp3456.coeffs[2:order + 1] .= zero(tmp3456.coeffs[1]) + tmp3457.coeffs[1] = constant_term(tmp3455) + constant_term(tmp3456) + tmp3457.coeffs[2:order + 1] .= zero(tmp3457.coeffs[1]) + I_er_EM_2.coeffs[1] = constant_term(tmp3454) + constant_term(tmp3457) + I_er_EM_2.coeffs[2:order + 1] .= zero(I_er_EM_2.coeffs[1]) + tmp3459.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) + tmp3459.coeffs[2:order + 1] .= zero(tmp3459.coeffs[1]) + tmp3460.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) + tmp3460.coeffs[2:order + 1] .= zero(tmp3460.coeffs[1]) + tmp3461.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) + tmp3461.coeffs[2:order + 1] .= zero(tmp3461.coeffs[1]) + tmp3462.coeffs[1] = constant_term(tmp3460) + constant_term(tmp3461) + tmp3462.coeffs[2:order + 1] .= zero(tmp3462.coeffs[1]) + I_er_EM_3.coeffs[1] = constant_term(tmp3459) + constant_term(tmp3462) + I_er_EM_3.coeffs[2:order + 1] .= zero(I_er_EM_3.coeffs[1]) + tmp3464.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) + tmp3464.coeffs[2:order + 1] .= zero(tmp3464.coeffs[1]) + tmp3465.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) + tmp3465.coeffs[2:order + 1] .= zero(tmp3465.coeffs[1]) + tmp3466.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) + tmp3466.coeffs[2:order + 1] .= zero(tmp3466.coeffs[1]) + tmp3467.coeffs[1] = constant_term(tmp3465) + constant_term(tmp3466) + tmp3467.coeffs[2:order + 1] .= zero(tmp3467.coeffs[1]) + I_p_E_1.coeffs[1] = constant_term(tmp3464) + constant_term(tmp3467) + I_p_E_1.coeffs[2:order + 1] .= zero(I_p_E_1.coeffs[1]) + tmp3469.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) + tmp3469.coeffs[2:order + 1] .= zero(tmp3469.coeffs[1]) + tmp3470.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) + tmp3470.coeffs[2:order + 1] .= zero(tmp3470.coeffs[1]) + tmp3471.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) + tmp3471.coeffs[2:order + 1] .= zero(tmp3471.coeffs[1]) + tmp3472.coeffs[1] = constant_term(tmp3470) + constant_term(tmp3471) + tmp3472.coeffs[2:order + 1] .= zero(tmp3472.coeffs[1]) + I_p_E_2.coeffs[1] = constant_term(tmp3469) + constant_term(tmp3472) + I_p_E_2.coeffs[2:order + 1] .= zero(I_p_E_2.coeffs[1]) + tmp3474.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) + tmp3474.coeffs[2:order + 1] .= zero(tmp3474.coeffs[1]) + tmp3475.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) + tmp3475.coeffs[2:order + 1] .= zero(tmp3475.coeffs[1]) + tmp3476.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) + tmp3476.coeffs[2:order + 1] .= zero(tmp3476.coeffs[1]) + tmp3477.coeffs[1] = constant_term(tmp3475) + constant_term(tmp3476) + tmp3477.coeffs[2:order + 1] .= zero(tmp3477.coeffs[1]) + I_p_E_3.coeffs[1] = constant_term(tmp3474) + constant_term(tmp3477) + I_p_E_3.coeffs[2:order + 1] .= zero(I_p_E_3.coeffs[1]) + tmp3479.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) + tmp3479.coeffs[2:order + 1] .= zero(tmp3479.coeffs[1]) + tmp3480.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) + tmp3480.coeffs[2:order + 1] .= zero(tmp3480.coeffs[1]) + er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3479) - constant_term(tmp3480) + er_EM_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_1.coeffs[1]) + tmp3482.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) + tmp3482.coeffs[2:order + 1] .= zero(tmp3482.coeffs[1]) + tmp3483.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) + tmp3483.coeffs[2:order + 1] .= zero(tmp3483.coeffs[1]) + er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3482) - constant_term(tmp3483) + er_EM_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_2.coeffs[1]) + tmp3485.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) + tmp3485.coeffs[2:order + 1] .= zero(tmp3485.coeffs[1]) + tmp3486.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) + tmp3486.coeffs[2:order + 1] .= zero(tmp3486.coeffs[1]) + er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3485) - constant_term(tmp3486) + er_EM_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_3.coeffs[1]) + tmp3488.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) + tmp3488.coeffs[2:order + 1] .= zero(tmp3488.coeffs[1]) + tmp3489.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) + tmp3489.coeffs[2:order + 1] .= zero(tmp3489.coeffs[1]) + er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp3488) - constant_term(tmp3489) + er_EM_cross_I_p_E_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_1.coeffs[1]) + tmp3491.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) + tmp3491.coeffs[2:order + 1] .= zero(tmp3491.coeffs[1]) + tmp3492.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) + tmp3492.coeffs[2:order + 1] .= zero(tmp3492.coeffs[1]) + er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp3491) - constant_term(tmp3492) + er_EM_cross_I_p_E_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_2.coeffs[1]) + tmp3494.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) + tmp3494.coeffs[2:order + 1] .= zero(tmp3494.coeffs[1]) + tmp3495.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) + tmp3495.coeffs[2:order + 1] .= zero(tmp3495.coeffs[1]) + er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp3494) - constant_term(tmp3495) + er_EM_cross_I_p_E_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_3.coeffs[1]) + tmp3497.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) + tmp3497.coeffs[2:order + 1] .= zero(tmp3497.coeffs[1]) + tmp3498.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) + tmp3498.coeffs[2:order + 1] .= zero(tmp3498.coeffs[1]) + p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp3497) - constant_term(tmp3498) + p_E_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_1.coeffs[1]) + tmp3500.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) + tmp3500.coeffs[2:order + 1] .= zero(tmp3500.coeffs[1]) + tmp3501.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) + tmp3501.coeffs[2:order + 1] .= zero(tmp3501.coeffs[1]) + p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp3500) - constant_term(tmp3501) + p_E_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_2.coeffs[1]) + tmp3503.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) + tmp3503.coeffs[2:order + 1] .= zero(tmp3503.coeffs[1]) + tmp3504.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) + tmp3504.coeffs[2:order + 1] .= zero(tmp3504.coeffs[1]) + p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp3503) - constant_term(tmp3504) + p_E_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_3.coeffs[1]) + tmp3506.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) + tmp3506.coeffs[2:order + 1] .= zero(tmp3506.coeffs[1]) + tmp3507.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) + tmp3507.coeffs[2:order + 1] .= zero(tmp3507.coeffs[1]) + p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp3506) - constant_term(tmp3507) + p_E_cross_I_p_E_1.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_1.coeffs[1]) + tmp3509.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) + tmp3509.coeffs[2:order + 1] .= zero(tmp3509.coeffs[1]) + tmp3510.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) + tmp3510.coeffs[2:order + 1] .= zero(tmp3510.coeffs[1]) + p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp3509) - constant_term(tmp3510) + p_E_cross_I_p_E_2.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_2.coeffs[1]) + tmp3512.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) + tmp3512.coeffs[2:order + 1] .= zero(tmp3512.coeffs[1]) + tmp3513.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) + tmp3513.coeffs[2:order + 1] .= zero(tmp3513.coeffs[1]) + p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp3512) - constant_term(tmp3513) + p_E_cross_I_p_E_3.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_3.coeffs[1]) + tmp3517.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) + tmp3517.coeffs[2:order + 1] .= zero(tmp3517.coeffs[1]) + tmp3518.coeffs[1] = constant_term(7) * constant_term(tmp3517) + tmp3518.coeffs[2:order + 1] .= zero(tmp3518.coeffs[1]) + one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp3518) + one_minus_7sin2ϕEM.coeffs[2:order + 1] .= zero(one_minus_7sin2ϕEM.coeffs[1]) + two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) + two_sinϕEM.coeffs[2:order + 1] .= zero(two_sinϕEM.coeffs[1]) + tmp3523.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) + tmp3523.coeffs[2:order + 1] .= zero(tmp3523.coeffs[1]) + N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp3523) + N_MfigM_figE_factor_div_rEMp5.coeffs[2:order + 1] .= zero(N_MfigM_figE_factor_div_rEMp5.coeffs[1]) + tmp3525.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) + tmp3525.coeffs[2:order + 1] .= zero(tmp3525.coeffs[1]) + tmp3526.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) + tmp3526.coeffs[2:order + 1] .= zero(tmp3526.coeffs[1]) + tmp3527.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3526) + tmp3527.coeffs[2:order + 1] .= zero(tmp3527.coeffs[1]) + tmp3528.coeffs[1] = constant_term(tmp3525) + constant_term(tmp3527) + tmp3528.coeffs[2:order + 1] .= zero(tmp3528.coeffs[1]) + tmp3530.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) + tmp3530.coeffs[2:order + 1] .= zero(tmp3530.coeffs[1]) + tmp3531.coeffs[1] = constant_term(tmp3528) - constant_term(tmp3530) + tmp3531.coeffs[2:order + 1] .= zero(tmp3531.coeffs[1]) + N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3531) + N_MfigM_figE_1.coeffs[2:order + 1] .= zero(N_MfigM_figE_1.coeffs[1]) + tmp3533.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) + tmp3533.coeffs[2:order + 1] .= zero(tmp3533.coeffs[1]) + tmp3534.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) + tmp3534.coeffs[2:order + 1] .= zero(tmp3534.coeffs[1]) + tmp3535.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3534) + tmp3535.coeffs[2:order + 1] .= zero(tmp3535.coeffs[1]) + tmp3536.coeffs[1] = constant_term(tmp3533) + constant_term(tmp3535) + tmp3536.coeffs[2:order + 1] .= zero(tmp3536.coeffs[1]) + tmp3538.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) + tmp3538.coeffs[2:order + 1] .= zero(tmp3538.coeffs[1]) + tmp3539.coeffs[1] = constant_term(tmp3536) - constant_term(tmp3538) + tmp3539.coeffs[2:order + 1] .= zero(tmp3539.coeffs[1]) + N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3539) + N_MfigM_figE_2.coeffs[2:order + 1] .= zero(N_MfigM_figE_2.coeffs[1]) + tmp3541.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) + tmp3541.coeffs[2:order + 1] .= zero(tmp3541.coeffs[1]) + tmp3542.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) + tmp3542.coeffs[2:order + 1] .= zero(tmp3542.coeffs[1]) + tmp3543.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp3542) + tmp3543.coeffs[2:order + 1] .= zero(tmp3543.coeffs[1]) + tmp3544.coeffs[1] = constant_term(tmp3541) + constant_term(tmp3543) + tmp3544.coeffs[2:order + 1] .= zero(tmp3544.coeffs[1]) + tmp3546.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) + tmp3546.coeffs[2:order + 1] .= zero(tmp3546.coeffs[1]) + tmp3547.coeffs[1] = constant_term(tmp3544) - constant_term(tmp3546) + tmp3547.coeffs[2:order + 1] .= zero(tmp3547.coeffs[1]) + N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp3547) + N_MfigM_figE_3.coeffs[2:order + 1] .= zero(N_MfigM_figE_3.coeffs[1]) + tmp3549.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) + tmp3549.coeffs[2:order + 1] .= zero(tmp3549.coeffs[1]) + tmp3550.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) + tmp3550.coeffs[2:order + 1] .= zero(tmp3550.coeffs[1]) + tmp3551.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) + tmp3551.coeffs[2:order + 1] .= zero(tmp3551.coeffs[1]) + tmp3552.coeffs[1] = constant_term(tmp3550) + constant_term(tmp3551) + tmp3552.coeffs[2:order + 1] .= zero(tmp3552.coeffs[1]) + N_1_LMF.coeffs[1] = constant_term(tmp3549) + constant_term(tmp3552) + N_1_LMF.coeffs[2:order + 1] .= zero(N_1_LMF.coeffs[1]) + tmp3554.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) + tmp3554.coeffs[2:order + 1] .= zero(tmp3554.coeffs[1]) + tmp3555.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) + tmp3555.coeffs[2:order + 1] .= zero(tmp3555.coeffs[1]) + tmp3556.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) + tmp3556.coeffs[2:order + 1] .= zero(tmp3556.coeffs[1]) + tmp3557.coeffs[1] = constant_term(tmp3555) + constant_term(tmp3556) + tmp3557.coeffs[2:order + 1] .= zero(tmp3557.coeffs[1]) + N_2_LMF.coeffs[1] = constant_term(tmp3554) + constant_term(tmp3557) + N_2_LMF.coeffs[2:order + 1] .= zero(N_2_LMF.coeffs[1]) + tmp3559.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) + tmp3559.coeffs[2:order + 1] .= zero(tmp3559.coeffs[1]) + tmp3560.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) + tmp3560.coeffs[2:order + 1] .= zero(tmp3560.coeffs[1]) + tmp3561.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) + tmp3561.coeffs[2:order + 1] .= zero(tmp3561.coeffs[1]) + tmp3562.coeffs[1] = constant_term(tmp3560) + constant_term(tmp3561) + tmp3562.coeffs[2:order + 1] .= zero(tmp3562.coeffs[1]) + N_3_LMF.coeffs[1] = constant_term(tmp3559) + constant_term(tmp3562) + N_3_LMF.coeffs[2:order + 1] .= zero(N_3_LMF.coeffs[1]) + tmp3564.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) + tmp3564.coeffs[2:order + 1] .= zero(tmp3564.coeffs[1]) + tmp3565.coeffs[1] = constant_term(k_ν) * constant_term(tmp3564) + tmp3565.coeffs[2:order + 1] .= zero(tmp3565.coeffs[1]) + tmp3566.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + tmp3566.coeffs[2:order + 1] .= zero(tmp3566.coeffs[1]) + tmp3567.coeffs[1] = constant_term(tmp3566) * constant_term(q[6N + 11]) + tmp3567.coeffs[2:order + 1] .= zero(tmp3567.coeffs[1]) + N_cmb_1.coeffs[1] = constant_term(tmp3565) - constant_term(tmp3567) + N_cmb_1.coeffs[2:order + 1] .= zero(N_cmb_1.coeffs[1]) + tmp3569.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) + tmp3569.coeffs[2:order + 1] .= zero(tmp3569.coeffs[1]) + tmp3570.coeffs[1] = constant_term(k_ν) * constant_term(tmp3569) + tmp3570.coeffs[2:order + 1] .= zero(tmp3570.coeffs[1]) + tmp3571.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + tmp3571.coeffs[2:order + 1] .= zero(tmp3571.coeffs[1]) + tmp3572.coeffs[1] = constant_term(tmp3571) * constant_term(q[6N + 10]) + tmp3572.coeffs[2:order + 1] .= zero(tmp3572.coeffs[1]) + N_cmb_2.coeffs[1] = constant_term(tmp3570) + constant_term(tmp3572) + N_cmb_2.coeffs[2:order + 1] .= zero(N_cmb_2.coeffs[1]) + tmp3574.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) + tmp3574.coeffs[2:order + 1] .= zero(tmp3574.coeffs[1]) + N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp3574) + N_cmb_3.coeffs[2:order + 1] .= zero(N_cmb_3.coeffs[1]) + tmp3576.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) + tmp3576.coeffs[2:order + 1] .= zero(tmp3576.coeffs[1]) + tmp3577.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp3576) + tmp3577.coeffs[2:order + 1] .= zero(tmp3577.coeffs[1]) + tmp3578.coeffs[1] = constant_term(tmp3577) + constant_term(N_cmb_1) + tmp3578.coeffs[2:order + 1] .= zero(tmp3578.coeffs[1]) + tmp3579.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) + tmp3579.coeffs[2:order + 1] .= zero(tmp3579.coeffs[1]) + I_dω_1.coeffs[1] = constant_term(tmp3578) - constant_term(tmp3579) + I_dω_1.coeffs[2:order + 1] .= zero(I_dω_1.coeffs[1]) + tmp3581.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) + tmp3581.coeffs[2:order + 1] .= zero(tmp3581.coeffs[1]) + tmp3582.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp3581) + tmp3582.coeffs[2:order + 1] .= zero(tmp3582.coeffs[1]) + tmp3583.coeffs[1] = constant_term(tmp3582) + constant_term(N_cmb_2) + tmp3583.coeffs[2:order + 1] .= zero(tmp3583.coeffs[1]) + tmp3584.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) + tmp3584.coeffs[2:order + 1] .= zero(tmp3584.coeffs[1]) + I_dω_2.coeffs[1] = constant_term(tmp3583) - constant_term(tmp3584) + I_dω_2.coeffs[2:order + 1] .= zero(I_dω_2.coeffs[1]) + tmp3586.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) + tmp3586.coeffs[2:order + 1] .= zero(tmp3586.coeffs[1]) + tmp3587.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp3586) + tmp3587.coeffs[2:order + 1] .= zero(tmp3587.coeffs[1]) + tmp3588.coeffs[1] = constant_term(tmp3587) + constant_term(N_cmb_3) + tmp3588.coeffs[2:order + 1] .= zero(tmp3588.coeffs[1]) + tmp3589.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) + tmp3589.coeffs[2:order + 1] .= zero(tmp3589.coeffs[1]) + I_dω_3.coeffs[1] = constant_term(tmp3588) - constant_term(tmp3589) + I_dω_3.coeffs[2:order + 1] .= zero(I_dω_3.coeffs[1]) + Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) + Ic_ωc_1.coeffs[2:order + 1] .= zero(Ic_ωc_1.coeffs[1]) + Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) + Ic_ωc_2.coeffs[2:order + 1] .= zero(Ic_ωc_2.coeffs[1]) + Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) + Ic_ωc_3.coeffs[2:order + 1] .= zero(Ic_ωc_3.coeffs[1]) + tmp3594.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) + tmp3594.coeffs[2:order + 1] .= zero(tmp3594.coeffs[1]) + tmp3595.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) + tmp3595.coeffs[2:order + 1] .= zero(tmp3595.coeffs[1]) + m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp3594) - constant_term(tmp3595) + m_ωm_x_Icωc_1.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_1.coeffs[1]) + tmp3597.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) + tmp3597.coeffs[2:order + 1] .= zero(tmp3597.coeffs[1]) + tmp3598.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) + tmp3598.coeffs[2:order + 1] .= zero(tmp3598.coeffs[1]) + m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp3597) - constant_term(tmp3598) + m_ωm_x_Icωc_2.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_2.coeffs[1]) + tmp3600.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) + tmp3600.coeffs[2:order + 1] .= zero(tmp3600.coeffs[1]) + tmp3601.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) + tmp3601.coeffs[2:order + 1] .= zero(tmp3601.coeffs[1]) + m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp3600) - constant_term(tmp3601) + m_ωm_x_Icωc_3.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_3.coeffs[1]) + Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) + Ic_dωc_1.coeffs[2:order + 1] .= zero(Ic_dωc_1.coeffs[1]) + Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) + Ic_dωc_2.coeffs[2:order + 1] .= zero(Ic_dωc_2.coeffs[1]) + Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) + Ic_dωc_3.coeffs[2:order + 1] .= zero(Ic_dωc_3.coeffs[1]) + tmp3606.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp3606.coeffs[2:order + 1] .= zero(tmp3606.coeffs[1]) + tmp3686.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp3686.coeffs[2:order + 1] .= zero(tmp3686.coeffs[1]) + tmp3607.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3606) + tmp3607.coeffs[2:order + 1] .= zero(tmp3607.coeffs[1]) + tmp3608.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp3608.coeffs[2:order + 1] .= zero(tmp3608.coeffs[1]) + tmp3687.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp3687.coeffs[2:order + 1] .= zero(tmp3687.coeffs[1]) + tmp3609.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3608) + tmp3609.coeffs[2:order + 1] .= zero(tmp3609.coeffs[1]) + tmp3610.coeffs[1] = constant_term(tmp3607) + constant_term(tmp3609) + tmp3610.coeffs[2:order + 1] .= zero(tmp3610.coeffs[1]) + tmp3611.coeffs[1] = sin(constant_term(q[6N + 2])) + tmp3611.coeffs[2:order + 1] .= zero(tmp3611.coeffs[1]) + tmp3688.coeffs[1] = cos(constant_term(q[6N + 2])) + tmp3688.coeffs[2:order + 1] .= zero(tmp3688.coeffs[1]) + (dq[6N + 1]).coeffs[1] = constant_term(tmp3610) / constant_term(tmp3611) + (dq[6N + 1]).coeffs[2:order + 1] .= zero((dq[6N + 1]).coeffs[1]) + tmp3613.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp3613.coeffs[2:order + 1] .= zero(tmp3613.coeffs[1]) + tmp3689.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp3689.coeffs[2:order + 1] .= zero(tmp3689.coeffs[1]) + tmp3614.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp3613) + tmp3614.coeffs[2:order + 1] .= zero(tmp3614.coeffs[1]) + tmp3615.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp3615.coeffs[2:order + 1] .= zero(tmp3615.coeffs[1]) + tmp3690.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp3690.coeffs[2:order + 1] .= zero(tmp3690.coeffs[1]) + tmp3616.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp3615) + tmp3616.coeffs[2:order + 1] .= zero(tmp3616.coeffs[1]) + (dq[6N + 2]).coeffs[1] = constant_term(tmp3614) - constant_term(tmp3616) + (dq[6N + 2]).coeffs[2:order + 1] .= zero((dq[6N + 2]).coeffs[1]) + tmp3618.coeffs[1] = cos(constant_term(q[6N + 2])) + tmp3618.coeffs[2:order + 1] .= zero(tmp3618.coeffs[1]) + tmp3691.coeffs[1] = sin(constant_term(q[6N + 2])) + tmp3691.coeffs[2:order + 1] .= zero(tmp3691.coeffs[1]) + tmp3619.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp3618) + tmp3619.coeffs[2:order + 1] .= zero(tmp3619.coeffs[1]) + (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp3619) + (dq[6N + 3]).coeffs[2:order + 1] .= zero((dq[6N + 3]).coeffs[1]) + tmp3621.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) + tmp3621.coeffs[2:order + 1] .= zero(tmp3621.coeffs[1]) + tmp3622.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) + tmp3622.coeffs[2:order + 1] .= zero(tmp3622.coeffs[1]) + tmp3623.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) + tmp3623.coeffs[2:order + 1] .= zero(tmp3623.coeffs[1]) + tmp3624.coeffs[1] = constant_term(tmp3622) + constant_term(tmp3623) + tmp3624.coeffs[2:order + 1] .= zero(tmp3624.coeffs[1]) + (dq[6N + 4]).coeffs[1] = constant_term(tmp3621) + constant_term(tmp3624) + (dq[6N + 4]).coeffs[2:order + 1] .= zero((dq[6N + 4]).coeffs[1]) + tmp3626.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) + tmp3626.coeffs[2:order + 1] .= zero(tmp3626.coeffs[1]) + tmp3627.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) + tmp3627.coeffs[2:order + 1] .= zero(tmp3627.coeffs[1]) + tmp3628.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) + tmp3628.coeffs[2:order + 1] .= zero(tmp3628.coeffs[1]) + tmp3629.coeffs[1] = constant_term(tmp3627) + constant_term(tmp3628) + tmp3629.coeffs[2:order + 1] .= zero(tmp3629.coeffs[1]) + (dq[6N + 5]).coeffs[1] = constant_term(tmp3626) + constant_term(tmp3629) + (dq[6N + 5]).coeffs[2:order + 1] .= zero((dq[6N + 5]).coeffs[1]) + tmp3631.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) + tmp3631.coeffs[2:order + 1] .= zero(tmp3631.coeffs[1]) + tmp3632.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) + tmp3632.coeffs[2:order + 1] .= zero(tmp3632.coeffs[1]) + tmp3633.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) + tmp3633.coeffs[2:order + 1] .= zero(tmp3633.coeffs[1]) + tmp3634.coeffs[1] = constant_term(tmp3632) + constant_term(tmp3633) + tmp3634.coeffs[2:order + 1] .= zero(tmp3634.coeffs[1]) + (dq[6N + 6]).coeffs[1] = constant_term(tmp3631) + constant_term(tmp3634) + (dq[6N + 6]).coeffs[2:order + 1] .= zero((dq[6N + 6]).coeffs[1]) + tmp3636.coeffs[1] = sin(constant_term(q[6N + 8])) + tmp3636.coeffs[2:order + 1] .= zero(tmp3636.coeffs[1]) + tmp3692.coeffs[1] = cos(constant_term(q[6N + 8])) + tmp3692.coeffs[2:order + 1] .= zero(tmp3692.coeffs[1]) + tmp3637.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp3636) + tmp3637.coeffs[2:order + 1] .= zero(tmp3637.coeffs[1]) + (dq[6N + 9]).coeffs[1] = -(constant_term(tmp3637)) + (dq[6N + 9]).coeffs[2:order + 1] .= zero((dq[6N + 9]).coeffs[1]) + tmp3639.coeffs[1] = cos(constant_term(q[6N + 8])) + tmp3639.coeffs[2:order + 1] .= zero(tmp3639.coeffs[1]) + tmp3693.coeffs[1] = sin(constant_term(q[6N + 8])) + tmp3693.coeffs[2:order + 1] .= zero(tmp3693.coeffs[1]) + tmp3640.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp3639) + tmp3640.coeffs[2:order + 1] .= zero(tmp3640.coeffs[1]) + (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp3640) + (dq[6N + 7]).coeffs[2:order + 1] .= zero((dq[6N + 7]).coeffs[1]) + (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) + (dq[6N + 8]).coeffs[2:order + 1] .= zero((dq[6N + 8]).coeffs[1]) + (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) + (dq[6N + 10]).coeffs[2:order + 1] .= zero((dq[6N + 10]).coeffs[1]) + (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) + (dq[6N + 11]).coeffs[2:order + 1] .= zero((dq[6N + 11]).coeffs[1]) + (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) + (dq[6N + 12]).coeffs[2:order + 1] .= zero((dq[6N + 12]).coeffs[1]) + (dq[6N + 13]).coeffs[1] = identity(constant_term(zero_q_1)) + (dq[6N + 13]).coeffs[2:order + 1] .= zero((dq[6N + 13]).coeffs[1]) for __idx = eachindex(q) (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] end @@ -3765,112 +8701,112 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) TaylorSeries.identity!(θ_m, q[6N + 2], ord) TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp3590, tmp2856, ϕ_m, ord) - TaylorSeries.sincos!(tmp3591, tmp2857, ψ_m, ord) - TaylorSeries.mul!(tmp2858, tmp2856, tmp2857, ord) - TaylorSeries.sincos!(tmp3592, tmp2859, θ_m, ord) - TaylorSeries.sincos!(tmp2860, tmp3593, ϕ_m, ord) - TaylorSeries.mul!(tmp2861, tmp2859, tmp2860, ord) - TaylorSeries.sincos!(tmp2862, tmp3594, ψ_m, ord) - TaylorSeries.mul!(tmp2863, tmp2861, tmp2862, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp2858, tmp2863, ord) - TaylorSeries.sincos!(tmp3595, tmp2865, θ_m, ord) - TaylorSeries.subst!(tmp2866, tmp2865, ord) - TaylorSeries.sincos!(tmp3596, tmp2867, ψ_m, ord) - TaylorSeries.mul!(tmp2868, tmp2866, tmp2867, ord) - TaylorSeries.sincos!(tmp2869, tmp3597, ϕ_m, ord) - TaylorSeries.mul!(tmp2870, tmp2868, tmp2869, ord) - TaylorSeries.sincos!(tmp3598, tmp2871, ϕ_m, ord) - TaylorSeries.sincos!(tmp2872, tmp3599, ψ_m, ord) - TaylorSeries.mul!(tmp2873, tmp2871, tmp2872, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp2870, tmp2873, ord) - TaylorSeries.sincos!(tmp2875, tmp3600, θ_m, ord) - TaylorSeries.sincos!(tmp2876, tmp3601, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp2875, tmp2876, ord) - TaylorSeries.sincos!(tmp3602, tmp2878, ψ_m, ord) - TaylorSeries.sincos!(tmp2879, tmp3603, ϕ_m, ord) - TaylorSeries.mul!(tmp2880, tmp2878, tmp2879, ord) - TaylorSeries.sincos!(tmp3604, tmp2881, θ_m, ord) - TaylorSeries.sincos!(tmp3605, tmp2882, ϕ_m, ord) - TaylorSeries.mul!(tmp2883, tmp2881, tmp2882, ord) - TaylorSeries.sincos!(tmp2884, tmp3606, ψ_m, ord) - TaylorSeries.mul!(tmp2885, tmp2883, tmp2884, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp2880, tmp2885, ord) - TaylorSeries.sincos!(tmp3607, tmp2887, θ_m, ord) - TaylorSeries.sincos!(tmp3608, tmp2888, ϕ_m, ord) - TaylorSeries.mul!(tmp2889, tmp2887, tmp2888, ord) - TaylorSeries.sincos!(tmp3609, tmp2890, ψ_m, ord) - TaylorSeries.mul!(tmp2891, tmp2889, tmp2890, ord) - TaylorSeries.sincos!(tmp2892, tmp3610, ϕ_m, ord) - TaylorSeries.sincos!(tmp2893, tmp3611, ψ_m, ord) - TaylorSeries.mul!(tmp2894, tmp2892, tmp2893, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp2891, tmp2894, ord) - TaylorSeries.sincos!(tmp3612, tmp2896, ϕ_m, ord) - TaylorSeries.subst!(tmp2897, tmp2896, ord) - TaylorSeries.sincos!(tmp2898, tmp3613, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp2897, tmp2898, ord) - TaylorSeries.sincos!(tmp2900, tmp3614, θ_m, ord) - TaylorSeries.sincos!(tmp2901, tmp3615, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp2900, tmp2901, ord) - TaylorSeries.sincos!(tmp3616, tmp2903, ψ_m, ord) - TaylorSeries.sincos!(tmp2904, tmp3617, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp2903, tmp2904, ord) - TaylorSeries.sincos!(tmp3618, RotM[3, 3, mo], θ_m, ord) + TaylorSeries.sincos!(tmp3645, tmp2911, ϕ_m, ord) + TaylorSeries.sincos!(tmp3646, tmp2912, ψ_m, ord) + TaylorSeries.mul!(tmp2913, tmp2911, tmp2912, ord) + TaylorSeries.sincos!(tmp3647, tmp2914, θ_m, ord) + TaylorSeries.sincos!(tmp2915, tmp3648, ϕ_m, ord) + TaylorSeries.mul!(tmp2916, tmp2914, tmp2915, ord) + TaylorSeries.sincos!(tmp2917, tmp3649, ψ_m, ord) + TaylorSeries.mul!(tmp2918, tmp2916, tmp2917, ord) + TaylorSeries.subst!(RotM[1, 1, mo], tmp2913, tmp2918, ord) + TaylorSeries.sincos!(tmp3650, tmp2920, θ_m, ord) + TaylorSeries.subst!(tmp2921, tmp2920, ord) + TaylorSeries.sincos!(tmp3651, tmp2922, ψ_m, ord) + TaylorSeries.mul!(tmp2923, tmp2921, tmp2922, ord) + TaylorSeries.sincos!(tmp2924, tmp3652, ϕ_m, ord) + TaylorSeries.mul!(tmp2925, tmp2923, tmp2924, ord) + TaylorSeries.sincos!(tmp3653, tmp2926, ϕ_m, ord) + TaylorSeries.sincos!(tmp2927, tmp3654, ψ_m, ord) + TaylorSeries.mul!(tmp2928, tmp2926, tmp2927, ord) + TaylorSeries.subst!(RotM[2, 1, mo], tmp2925, tmp2928, ord) + TaylorSeries.sincos!(tmp2930, tmp3655, θ_m, ord) + TaylorSeries.sincos!(tmp2931, tmp3656, ϕ_m, ord) + TaylorSeries.mul!(RotM[3, 1, mo], tmp2930, tmp2931, ord) + TaylorSeries.sincos!(tmp3657, tmp2933, ψ_m, ord) + TaylorSeries.sincos!(tmp2934, tmp3658, ϕ_m, ord) + TaylorSeries.mul!(tmp2935, tmp2933, tmp2934, ord) + TaylorSeries.sincos!(tmp3659, tmp2936, θ_m, ord) + TaylorSeries.sincos!(tmp3660, tmp2937, ϕ_m, ord) + TaylorSeries.mul!(tmp2938, tmp2936, tmp2937, ord) + TaylorSeries.sincos!(tmp2939, tmp3661, ψ_m, ord) + TaylorSeries.mul!(tmp2940, tmp2938, tmp2939, ord) + TaylorSeries.add!(RotM[1, 2, mo], tmp2935, tmp2940, ord) + TaylorSeries.sincos!(tmp3662, tmp2942, θ_m, ord) + TaylorSeries.sincos!(tmp3663, tmp2943, ϕ_m, ord) + TaylorSeries.mul!(tmp2944, tmp2942, tmp2943, ord) + TaylorSeries.sincos!(tmp3664, tmp2945, ψ_m, ord) + TaylorSeries.mul!(tmp2946, tmp2944, tmp2945, ord) + TaylorSeries.sincos!(tmp2947, tmp3665, ϕ_m, ord) + TaylorSeries.sincos!(tmp2948, tmp3666, ψ_m, ord) + TaylorSeries.mul!(tmp2949, tmp2947, tmp2948, ord) + TaylorSeries.subst!(RotM[2, 2, mo], tmp2946, tmp2949, ord) + TaylorSeries.sincos!(tmp3667, tmp2951, ϕ_m, ord) + TaylorSeries.subst!(tmp2952, tmp2951, ord) + TaylorSeries.sincos!(tmp2953, tmp3668, θ_m, ord) + TaylorSeries.mul!(RotM[3, 2, mo], tmp2952, tmp2953, ord) + TaylorSeries.sincos!(tmp2955, tmp3669, θ_m, ord) + TaylorSeries.sincos!(tmp2956, tmp3670, ψ_m, ord) + TaylorSeries.mul!(RotM[1, 3, mo], tmp2955, tmp2956, ord) + TaylorSeries.sincos!(tmp3671, tmp2958, ψ_m, ord) + TaylorSeries.sincos!(tmp2959, tmp3672, θ_m, ord) + TaylorSeries.mul!(RotM[2, 3, mo], tmp2958, tmp2959, ord) + TaylorSeries.sincos!(tmp3673, RotM[3, 3, mo], θ_m, ord) TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp3619, tmp2907, ϕ_c, ord) - TaylorSeries.mul!(tmp2908, RotM[1, 1, mo], tmp2907, ord) - TaylorSeries.sincos!(tmp2909, tmp3620, ϕ_c, ord) - TaylorSeries.mul!(tmp2910, RotM[1, 2, mo], tmp2909, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp2908, tmp2910, ord) - TaylorSeries.subst!(tmp2912, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp2913, tmp3621, ϕ_c, ord) - TaylorSeries.mul!(tmp2914, tmp2912, tmp2913, ord) - TaylorSeries.sincos!(tmp3622, tmp2915, ϕ_c, ord) - TaylorSeries.mul!(tmp2916, RotM[1, 2, mo], tmp2915, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp2914, tmp2916, ord) + TaylorSeries.sincos!(tmp3674, tmp2962, ϕ_c, ord) + TaylorSeries.mul!(tmp2963, RotM[1, 1, mo], tmp2962, ord) + TaylorSeries.sincos!(tmp2964, tmp3675, ϕ_c, ord) + TaylorSeries.mul!(tmp2965, RotM[1, 2, mo], tmp2964, ord) + TaylorSeries.add!(mantlef2coref[1, 1], tmp2963, tmp2965, ord) + TaylorSeries.subst!(tmp2967, RotM[1, 1, mo], ord) + TaylorSeries.sincos!(tmp2968, tmp3676, ϕ_c, ord) + TaylorSeries.mul!(tmp2969, tmp2967, tmp2968, ord) + TaylorSeries.sincos!(tmp3677, tmp2970, ϕ_c, ord) + TaylorSeries.mul!(tmp2971, RotM[1, 2, mo], tmp2970, ord) + TaylorSeries.add!(mantlef2coref[2, 1], tmp2969, tmp2971, ord) TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp3623, tmp2918, ϕ_c, ord) - TaylorSeries.mul!(tmp2919, RotM[2, 1, mo], tmp2918, ord) - TaylorSeries.sincos!(tmp2920, tmp3624, ϕ_c, ord) - TaylorSeries.mul!(tmp2921, RotM[2, 2, mo], tmp2920, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp2919, tmp2921, ord) - TaylorSeries.subst!(tmp2923, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp2924, tmp3625, ϕ_c, ord) - TaylorSeries.mul!(tmp2925, tmp2923, tmp2924, ord) - TaylorSeries.sincos!(tmp3626, tmp2926, ϕ_c, ord) - TaylorSeries.mul!(tmp2927, RotM[2, 2, mo], tmp2926, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp2925, tmp2927, ord) + TaylorSeries.sincos!(tmp3678, tmp2973, ϕ_c, ord) + TaylorSeries.mul!(tmp2974, RotM[2, 1, mo], tmp2973, ord) + TaylorSeries.sincos!(tmp2975, tmp3679, ϕ_c, ord) + TaylorSeries.mul!(tmp2976, RotM[2, 2, mo], tmp2975, ord) + TaylorSeries.add!(mantlef2coref[1, 2], tmp2974, tmp2976, ord) + TaylorSeries.subst!(tmp2978, RotM[2, 1, mo], ord) + TaylorSeries.sincos!(tmp2979, tmp3680, ϕ_c, ord) + TaylorSeries.mul!(tmp2980, tmp2978, tmp2979, ord) + TaylorSeries.sincos!(tmp3681, tmp2981, ϕ_c, ord) + TaylorSeries.mul!(tmp2982, RotM[2, 2, mo], tmp2981, ord) + TaylorSeries.add!(mantlef2coref[2, 2], tmp2980, tmp2982, ord) TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp3627, tmp2929, ϕ_c, ord) - TaylorSeries.mul!(tmp2930, RotM[3, 1, mo], tmp2929, ord) - TaylorSeries.sincos!(tmp2931, tmp3628, ϕ_c, ord) - TaylorSeries.mul!(tmp2932, RotM[3, 2, mo], tmp2931, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp2930, tmp2932, ord) - TaylorSeries.subst!(tmp2934, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp2935, tmp3629, ϕ_c, ord) - TaylorSeries.mul!(tmp2936, tmp2934, tmp2935, ord) - TaylorSeries.sincos!(tmp3630, tmp2937, ϕ_c, ord) - TaylorSeries.mul!(tmp2938, RotM[3, 2, mo], tmp2937, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp2936, tmp2938, ord) + TaylorSeries.sincos!(tmp3682, tmp2984, ϕ_c, ord) + TaylorSeries.mul!(tmp2985, RotM[3, 1, mo], tmp2984, ord) + TaylorSeries.sincos!(tmp2986, tmp3683, ϕ_c, ord) + TaylorSeries.mul!(tmp2987, RotM[3, 2, mo], tmp2986, ord) + TaylorSeries.add!(mantlef2coref[1, 3], tmp2985, tmp2987, ord) + TaylorSeries.subst!(tmp2989, RotM[3, 1, mo], ord) + TaylorSeries.sincos!(tmp2990, tmp3684, ϕ_c, ord) + TaylorSeries.mul!(tmp2991, tmp2989, tmp2990, ord) + TaylorSeries.sincos!(tmp3685, tmp2992, ϕ_c, ord) + TaylorSeries.mul!(tmp2993, RotM[3, 2, mo], tmp2992, ord) + TaylorSeries.add!(mantlef2coref[2, 3], tmp2991, tmp2993, ord) TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp2940, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp2941, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp2942, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp2943, tmp2941, tmp2942, ord) - TaylorSeries.add!(ω_c_CE_1, tmp2940, tmp2943, ord) - TaylorSeries.mul!(tmp2945, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp2946, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp2947, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp2948, tmp2946, tmp2947, ord) - TaylorSeries.add!(ω_c_CE_2, tmp2945, tmp2948, ord) - TaylorSeries.mul!(tmp2950, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp2951, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp2952, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp2953, tmp2951, tmp2952, ord) - TaylorSeries.add!(ω_c_CE_3, tmp2950, tmp2953, ord) + TaylorSeries.mul!(tmp2995, mantlef2coref[1, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp2996, mantlef2coref[1, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp2997, mantlef2coref[1, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp2998, tmp2996, tmp2997, ord) + TaylorSeries.add!(ω_c_CE_1, tmp2995, tmp2998, ord) + TaylorSeries.mul!(tmp3000, mantlef2coref[2, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3001, mantlef2coref[2, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3002, mantlef2coref[2, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3003, tmp3001, tmp3002, ord) + TaylorSeries.add!(ω_c_CE_2, tmp3000, tmp3003, ord) + TaylorSeries.mul!(tmp3005, mantlef2coref[3, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp3006, mantlef2coref[3, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp3007, mantlef2coref[3, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp3008, tmp3006, tmp3007, ord) + TaylorSeries.add!(ω_c_CE_3, tmp3005, tmp3008, ord) TaylorSeries.identity!(J2_t[su], J2S_t, ord) TaylorSeries.identity!(J2_t[ea], J2E_t, ord) - #= REPL[11]:307 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:307 =# Threads.@threads for j = 1:N TaylorSeries.identity!(newtonX[j], zero_q_1, ord) TaylorSeries.identity!(newtonY[j], zero_q_1, ord) TaylorSeries.identity!(newtonZ[j], zero_q_1, ord) @@ -3879,12 +8815,12 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(dq[3j - 1], q[3 * (N + j) - 1], ord) TaylorSeries.identity!(dq[3j], q[3 * (N + j)], ord) end - #= REPL[11]:319 =# Threads.@threads for j = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:319 =# Threads.@threads for j = 1:N_ext TaylorSeries.identity!(accX[j], zero_q_1, ord) TaylorSeries.identity!(accY[j], zero_q_1, ord) TaylorSeries.identity!(accZ[j], zero_q_1, ord) end - #= REPL[11]:325 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:325 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -3895,35 +8831,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp2962[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp2964[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp2962[3j - 2], tmp2964[3i - 2], ord) - TaylorSeries.mul!(tmp2967[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp2969[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp2967[3j - 1], tmp2969[3i - 1], ord) - TaylorSeries.mul!(tmp2972[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp2974[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp2972[3j], tmp2974[3i], ord) + TaylorSeries.mul!(tmp3017[3j - 2], 4, dq[3j - 2], ord) + TaylorSeries.mul!(tmp3019[3i - 2], 3, dq[3i - 2], ord) + TaylorSeries.subst!(_4U_m_3X[i, j], tmp3017[3j - 2], tmp3019[3i - 2], ord) + TaylorSeries.mul!(tmp3022[3j - 1], 4, dq[3j - 1], ord) + TaylorSeries.mul!(tmp3024[3i - 1], 3, dq[3i - 1], ord) + TaylorSeries.subst!(_4V_m_3Y[i, j], tmp3022[3j - 1], tmp3024[3i - 1], ord) + TaylorSeries.mul!(tmp3027[3j], 4, dq[3j], ord) + TaylorSeries.mul!(tmp3029[3i], 3, dq[3i], ord) + TaylorSeries.subst!(_4W_m_3Z[i, j], tmp3027[3j], tmp3029[3i], ord) TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp2982[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp2982[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp2985[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp2987[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp2988[i, j], tmp2985[i, j], tmp2987[i, j], ord) - TaylorSeries.pow!(tmp2990[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp2988[i, j], tmp2990[i, j], ord) + TaylorSeries.add!(tmp3037[i, j], UU[i, j], VV[i, j], ord) + TaylorSeries.add!(vi_dot_vj[i, j], tmp3037[i, j], WW[i, j], ord) + TaylorSeries.pow!(tmp3040[i, j], X[i, j], 2, ord) + TaylorSeries.pow!(tmp3042[i, j], Y[i, j], 2, ord) + TaylorSeries.add!(tmp3043[i, j], tmp3040[i, j], tmp3042[i, j], ord) + TaylorSeries.pow!(tmp3045[i, j], Z[i, j], 2, ord) + TaylorSeries.add!(r_p2[i, j], tmp3043[i, j], tmp3045[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp2998[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp2999[i, j], tmp2998[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp2999[i, j], ord) + TaylorSeries.add!(tmp3053[i, j], pn2x[i, j], pn2y[i, j], ord) + TaylorSeries.add!(tmp3054[i, j], tmp3053[i, j], pn2z[i, j], ord) + TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp3054[i, j], ord) TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) @@ -3932,41 +8868,41 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp3010[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3010[i, j], ord) + TaylorSeries.mul!(tmp3065[i, j], X[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp3065[i, j], ord) TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp3012[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3012[i, j], ord) + TaylorSeries.mul!(tmp3067[i, j], Y[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp3067[i, j], ord) TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp3014[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3014[i, j], ord) + TaylorSeries.mul!(tmp3069[i, j], Z[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp3069[i, j], ord) TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp3018[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp3020[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp3021[3j - 2], tmp3018[3j - 2], tmp3020[3j - 1], ord) - TaylorSeries.pow!(tmp3023[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp3021[3j - 2], tmp3023[3j], ord) + TaylorSeries.pow!(tmp3073[3j - 2], dq[3j - 2], 2, ord) + TaylorSeries.pow!(tmp3075[3j - 1], dq[3j - 1], 2, ord) + TaylorSeries.add!(tmp3076[3j - 2], tmp3073[3j - 2], tmp3075[3j - 1], ord) + TaylorSeries.pow!(tmp3078[3j], dq[3j], 2, ord) + TaylorSeries.add!(v2[j], tmp3076[3j - 2], tmp3078[3j], ord) end - TaylorSeries.add!(tmp3025, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp3027, tmp3025, 2, ord) - TaylorSeries.subst!(tmp3028, I_M_t[3, 3], tmp3027, ord) - TaylorSeries.div!(J2M_t, tmp3028, μ[mo], ord) - TaylorSeries.subst!(tmp3030, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp3031, tmp3030, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp3031, 4, ord) - TaylorSeries.subst!(tmp3034, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp3034, μ[mo], ord) - TaylorSeries.subst!(tmp3036, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp3036, μ[mo], ord) - TaylorSeries.subst!(tmp3038, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp3039, tmp3038, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp3039, 2, ord) + TaylorSeries.add!(tmp3080, I_M_t[1, 1], I_M_t[2, 2], ord) + TaylorSeries.div!(tmp3082, tmp3080, 2, ord) + TaylorSeries.subst!(tmp3083, I_M_t[3, 3], tmp3082, ord) + TaylorSeries.div!(J2M_t, tmp3083, μ[mo], ord) + TaylorSeries.subst!(tmp3085, I_M_t[2, 2], I_M_t[1, 1], ord) + TaylorSeries.div!(tmp3086, tmp3085, μ[mo], ord) + TaylorSeries.div!(C22M_t, tmp3086, 4, ord) + TaylorSeries.subst!(tmp3089, I_M_t[1, 3], ord) + TaylorSeries.div!(C21M_t, tmp3089, μ[mo], ord) + TaylorSeries.subst!(tmp3091, I_M_t[3, 2], ord) + TaylorSeries.div!(S21M_t, tmp3091, μ[mo], ord) + TaylorSeries.subst!(tmp3093, I_M_t[2, 1], ord) + TaylorSeries.div!(tmp3094, tmp3093, μ[mo], ord) + TaylorSeries.div!(S22M_t, tmp3094, 2, ord) TaylorSeries.identity!(J2_t[mo], J2M_t, ord) - #= REPL[11]:416 =# Threads.@threads for j = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:416 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -3981,17 +8917,17 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp3051[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp3051[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp3053[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp3053[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp3055[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp3055[i, j], Z_bf_3[i, j], ord) + TaylorSeries.add!(tmp3106[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) + TaylorSeries.add!(X_bf[i, j], tmp3106[i, j], X_bf_3[i, j], ord) + TaylorSeries.add!(tmp3108[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) + TaylorSeries.add!(Y_bf[i, j], tmp3108[i, j], Y_bf_3[i, j], ord) + TaylorSeries.add!(tmp3110[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) + TaylorSeries.add!(Z_bf[i, j], tmp3110[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp3059[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp3061[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp3062[i, j], tmp3059[i, j], tmp3061[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp3062[i, j], ord) + TaylorSeries.pow!(tmp3114[i, j], X_bf[i, j], 2, ord) + TaylorSeries.pow!(tmp3116[i, j], Y_bf[i, j], 2, ord) + TaylorSeries.add!(tmp3117[i, j], tmp3114[i, j], tmp3116[i, j], ord) + TaylorSeries.sqrt!(r_xy[i, j], tmp3117[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) @@ -4000,35 +8936,35 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp3067[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3068[i, j, n], tmp3067[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp3069[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp3068[i, j, n], tmp3069[i, j, n - 1], ord) - TaylorSeries.mul!(tmp3071[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3072[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp3071[i, j, n], tmp3072[i, j, n], ord) + TaylorSeries.mul!(tmp3122[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3123[i, j, n], tmp3122[i, j, n], fact1_jsem[n], ord) + TaylorSeries.mul!(tmp3124[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) + TaylorSeries.subst!(P_n[i, j, n + 1], tmp3123[i, j, n], tmp3124[i, j, n - 1], ord) + TaylorSeries.mul!(tmp3126[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3127[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) + TaylorSeries.add!(dP_n[i, j, n + 1], tmp3126[i, j, n], tmp3127[i, j, n], ord) TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) end TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp3077[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp3078[i, j, 3], tmp3077[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp3078[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp3080[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp3081[i, j, 3], tmp3080[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3082[i, j, 3], tmp3081[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp3082[i, j, 3], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3132[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) + TaylorSeries.mul!(tmp3133[i, j, 3], tmp3132[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ξ[i, j], tmp3133[i, j, 3], r_p4[i, j], ord) + TaylorSeries.subst!(tmp3135[i, j, 3], dP_n[i, j, 3], ord) + TaylorSeries.mul!(tmp3136[i, j, 3], tmp3135[i, j, 3], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3137[i, j, 3], tmp3136[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ζ[i, j], tmp3137[i, j, 3], r_p4[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp3084[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp3085[i, j, n + 1], tmp3084[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3086[i, j, n + 1], tmp3085[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp3086[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp3088[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp3089[i, j, n + 1], tmp3088[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3090[i, j, n + 1], tmp3089[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp3091[i, j, n + 1], tmp3090[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp3091[i, j, n + 1], F_J_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp3139[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) + TaylorSeries.mul!(tmp3140[i, j, n + 1], tmp3139[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp3141[i, j, n + 1], tmp3140[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjξ[i, j, n], tmp3141[i, j, n + 1], F_J_ξ_36[i, j], ord) + TaylorSeries.subst!(tmp3143[i, j, n + 1], dP_n[i, j, n + 1], ord) + TaylorSeries.mul!(tmp3144[i, j, n + 1], tmp3143[i, j, n + 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3145[i, j, n + 1], tmp3144[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp3146[i, j, n + 1], tmp3145[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjζ[i, j, n], tmp3146[i, j, n + 1], F_J_ζ_36[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) end @@ -4041,69 +8977,69 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) else - TaylorSeries.mul!(tmp3094[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3095[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp3094[i, j, m - 1], tmp3095[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3097[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3098[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp3097[i, j, m - 1], tmp3098[i, j, m - 1], ord) - TaylorSeries.mul!(tmp3100[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3100[i, j, m - 1, m - 1], lnm5[m], ord) + TaylorSeries.mul!(tmp3149[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3150[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.add!(sin_mλ[i, j, m], tmp3149[i, j, m - 1], tmp3150[i, j, m - 1], ord) + TaylorSeries.mul!(tmp3152[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3153[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(cos_mλ[i, j, m], tmp3152[i, j, m - 1], tmp3153[i, j, m - 1], ord) + TaylorSeries.mul!(tmp3155[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp3155[i, j, m - 1, m - 1], lnm5[m], ord) TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3103[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3103[i, j, m, m], lnm3[m], ord) + TaylorSeries.mul!(tmp3158[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp3158[i, j, m, m], lnm3[m], ord) end for n = m + 1:n1SEM[mo] if n == m + 1 - TaylorSeries.mul!(tmp3105[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3105[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp3160[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp3160[i, j, n - 1, m], lnm1[n, m], ord) else - TaylorSeries.mul!(tmp3107[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3108[i, j, n - 1, m], tmp3107[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp3109[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3108[i, j, n - 1, m], tmp3109[i, j, n - 2, m], ord) + TaylorSeries.mul!(tmp3162[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3163[i, j, n - 1, m], tmp3162[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp3164[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) + TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp3163[i, j, n - 1, m], tmp3164[i, j, n - 2, m], ord) end TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3112[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3113[i, j, n, m], tmp3112[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp3114[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3113[i, j, n, m], tmp3114[i, j, n - 1, m], ord) + TaylorSeries.mul!(tmp3167[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp3168[i, j, n, m], tmp3167[i, j, n, m], lnm3[n], ord) + TaylorSeries.mul!(tmp3169[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) + TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp3168[i, j, n, m], tmp3169[i, j, n - 1, m], ord) end end - TaylorSeries.mul!(tmp3116[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp3117[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3118[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3119[i, j, 1], tmp3117[i, j, 1], tmp3118[i, j, 1], ord) - TaylorSeries.mul!(tmp3120[i, j, 2, 1], tmp3116[i, j, 2, 1], tmp3119[i, j, 1], ord) - TaylorSeries.mul!(tmp3121[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp3122[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3123[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3124[i, j, 2], tmp3122[i, j, 2], tmp3123[i, j, 2], ord) - TaylorSeries.mul!(tmp3125[i, j, 2, 2], tmp3121[i, j, 2, 2], tmp3124[i, j, 2], ord) - TaylorSeries.add!(tmp3126[i, j, 2, 1], tmp3120[i, j, 2, 1], tmp3125[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp3126[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3128[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp3129[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3130[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp3131[i, j, 1], tmp3129[i, j, 1], tmp3130[i, j, 1], ord) - TaylorSeries.mul!(tmp3132[i, j, 2, 1], tmp3128[i, j, 2, 1], tmp3131[i, j, 1], ord) - TaylorSeries.mul!(tmp3133[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp3134[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3135[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp3136[i, j, 2], tmp3134[i, j, 2], tmp3135[i, j, 2], ord) - TaylorSeries.mul!(tmp3137[i, j, 2, 2], tmp3133[i, j, 2, 2], tmp3136[i, j, 2], ord) - TaylorSeries.add!(tmp3138[i, j, 2, 1], tmp3132[i, j, 2, 1], tmp3137[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp3138[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp3140[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp3141[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp3142[i, j, 1], tmp3140[i, j, 1], tmp3141[i, j, 1], ord) - TaylorSeries.mul!(tmp3143[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3142[i, j, 1], ord) - TaylorSeries.mul!(tmp3144[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp3145[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp3146[i, j, 2], tmp3144[i, j, 2], tmp3145[i, j, 2], ord) - TaylorSeries.mul!(tmp3147[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3146[i, j, 2], ord) - TaylorSeries.add!(tmp3148[i, j, 2, 1], tmp3143[i, j, 2, 1], tmp3147[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp3148[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3171[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) + TaylorSeries.mul!(tmp3172[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3173[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp3174[i, j, 1], tmp3172[i, j, 1], tmp3173[i, j, 1], ord) + TaylorSeries.mul!(tmp3175[i, j, 2, 1], tmp3171[i, j, 2, 1], tmp3174[i, j, 1], ord) + TaylorSeries.mul!(tmp3176[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) + TaylorSeries.mul!(tmp3177[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3178[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp3179[i, j, 2], tmp3177[i, j, 2], tmp3178[i, j, 2], ord) + TaylorSeries.mul!(tmp3180[i, j, 2, 2], tmp3176[i, j, 2, 2], tmp3179[i, j, 2], ord) + TaylorSeries.add!(tmp3181[i, j, 2, 1], tmp3175[i, j, 2, 1], tmp3180[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ξ[i, j], tmp3181[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3183[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) + TaylorSeries.mul!(tmp3184[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3185[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(tmp3186[i, j, 1], tmp3184[i, j, 1], tmp3185[i, j, 1], ord) + TaylorSeries.mul!(tmp3187[i, j, 2, 1], tmp3183[i, j, 2, 1], tmp3186[i, j, 1], ord) + TaylorSeries.mul!(tmp3188[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) + TaylorSeries.mul!(tmp3189[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3190[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.subst!(tmp3191[i, j, 2], tmp3189[i, j, 2], tmp3190[i, j, 2], ord) + TaylorSeries.mul!(tmp3192[i, j, 2, 2], tmp3188[i, j, 2, 2], tmp3191[i, j, 2], ord) + TaylorSeries.add!(tmp3193[i, j, 2, 1], tmp3187[i, j, 2, 1], tmp3192[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_η[i, j], tmp3193[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp3195[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp3196[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp3197[i, j, 1], tmp3195[i, j, 1], tmp3196[i, j, 1], ord) + TaylorSeries.mul!(tmp3198[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp3197[i, j, 1], ord) + TaylorSeries.mul!(tmp3199[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp3200[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp3201[i, j, 2], tmp3199[i, j, 2], tmp3200[i, j, 2], ord) + TaylorSeries.mul!(tmp3202[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp3201[i, j, 2], ord) + TaylorSeries.add!(tmp3203[i, j, 2, 1], tmp3198[i, j, 2, 1], tmp3202[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ζ[i, j], tmp3203[i, j, 2, 1], r_p4[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) @@ -4113,32 +9049,32 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp3154[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp3155[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3156[i, j, n, m], tmp3154[i, j, n, m], tmp3155[i, j, n, m], ord) - TaylorSeries.div!(tmp3157[i, j, n, m], tmp3156[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3157[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp3159[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp3160[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3161[i, j, n, m], tmp3159[i, j, n, m], tmp3160[i, j, n, m], ord) - TaylorSeries.div!(tmp3162[i, j, n, m], tmp3161[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3162[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3164[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp3165[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3164[i, j, n, m], ord) - TaylorSeries.div!(tmp3166[i, j, n, m], tmp3165[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3166[i, j, n, m], F_CS_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp3209[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) + TaylorSeries.add!(tmp3210[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3211[i, j, n, m], tmp3209[i, j, n, m], tmp3210[i, j, n, m], ord) + TaylorSeries.div!(tmp3212[i, j, n, m], tmp3211[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp3212[i, j, n, m], F_CS_ξ_36[i, j], ord) + TaylorSeries.mul!(tmp3214[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) + TaylorSeries.subst!(tmp3215[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3216[i, j, n, m], tmp3214[i, j, n, m], tmp3215[i, j, n, m], ord) + TaylorSeries.div!(tmp3217[i, j, n, m], tmp3216[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp3217[i, j, n, m], F_CS_η_36[i, j], ord) + TaylorSeries.add!(tmp3219[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp3220[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp3219[i, j, n, m], ord) + TaylorSeries.div!(tmp3221[i, j, n, m], tmp3220[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp3221[i, j, n, m], F_CS_ζ_36[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) end end - TaylorSeries.add!(tmp3168[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp3169[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp3168[i, j], tmp3169[i, j], ord) + TaylorSeries.add!(tmp3223[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) + TaylorSeries.add!(tmp3224[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ξ[i, j], tmp3223[i, j], tmp3224[i, j], ord) TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp3172[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp3173[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp3172[i, j], tmp3173[i, j], ord) + TaylorSeries.add!(tmp3227[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) + TaylorSeries.add!(tmp3228[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ζ[i, j], tmp3227[i, j], tmp3228[i, j], ord) else TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) @@ -4146,75 +9082,75 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: end TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp3179[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3179[i, j], cos_λ[i, j], ord) + TaylorSeries.subst!(tmp3234[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp3234[i, j], cos_λ[i, j], ord) TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp3182[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3182[i, j], sin_λ[i, j], ord) + TaylorSeries.subst!(tmp3237[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp3237[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp3184[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3185[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3186[i, j, 1, 1], tmp3184[i, j, 1, 1], tmp3185[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3187[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3186[i, j, 1, 1], tmp3187[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3189[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3190[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3191[i, j, 2, 1], tmp3189[i, j, 2, 1], tmp3190[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3192[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3191[i, j, 2, 1], tmp3192[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3194[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp3195[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp3196[i, j, 3, 1], tmp3194[i, j, 3, 1], tmp3195[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3197[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3196[i, j, 3, 1], tmp3197[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3199[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3200[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3201[i, j, 1, 1], tmp3199[i, j, 1, 1], tmp3200[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3202[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3201[i, j, 1, 1], tmp3202[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3204[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3205[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3206[i, j, 2, 1], tmp3204[i, j, 2, 1], tmp3205[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3207[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3206[i, j, 2, 1], tmp3207[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3209[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp3210[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp3211[i, j, 3, 1], tmp3209[i, j, 3, 1], tmp3210[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3212[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3211[i, j, 3, 1], tmp3212[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3214[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3215[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3216[i, j, 1, 1], tmp3214[i, j, 1, 1], tmp3215[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3217[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3216[i, j, 1, 1], tmp3217[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3219[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3220[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3221[i, j, 2, 1], tmp3219[i, j, 2, 1], tmp3220[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3222[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3221[i, j, 2, 1], tmp3222[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3224[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp3225[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp3226[i, j, 3, 1], tmp3224[i, j, 3, 1], tmp3225[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3227[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3226[i, j, 3, 1], tmp3227[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp3229[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp3230[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp3231[i, j, 1, 1], tmp3229[i, j, 1, 1], tmp3230[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp3232[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp3231[i, j, 1, 1], tmp3232[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp3234[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp3235[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp3236[i, j, 1, 2], tmp3234[i, j, 1, 2], tmp3235[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp3237[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp3236[i, j, 1, 2], tmp3237[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp3239[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp3240[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp3241[i, j, 1, 3], tmp3239[i, j, 1, 3], tmp3240[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp3242[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp3241[i, j, 1, 3], tmp3242[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3239[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3240[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp3241[i, j, 1, 1], tmp3239[i, j, 1, 1], tmp3240[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3242[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp3241[i, j, 1, 1], tmp3242[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3244[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3245[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp3246[i, j, 2, 1], tmp3244[i, j, 2, 1], tmp3245[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3247[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp3246[i, j, 2, 1], tmp3247[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3249[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp3250[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp3251[i, j, 3, 1], tmp3249[i, j, 3, 1], tmp3250[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3252[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp3251[i, j, 3, 1], tmp3252[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3254[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3255[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp3256[i, j, 1, 1], tmp3254[i, j, 1, 1], tmp3255[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3257[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp3256[i, j, 1, 1], tmp3257[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3259[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3260[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp3261[i, j, 2, 1], tmp3259[i, j, 2, 1], tmp3260[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3262[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp3261[i, j, 2, 1], tmp3262[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3264[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp3265[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp3266[i, j, 3, 1], tmp3264[i, j, 3, 1], tmp3265[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3267[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp3266[i, j, 3, 1], tmp3267[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3269[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3270[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3271[i, j, 1, 1], tmp3269[i, j, 1, 1], tmp3270[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3272[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp3271[i, j, 1, 1], tmp3272[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3274[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3275[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3276[i, j, 2, 1], tmp3274[i, j, 2, 1], tmp3275[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3277[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp3276[i, j, 2, 1], tmp3277[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3279[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp3280[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp3281[i, j, 3, 1], tmp3279[i, j, 3, 1], tmp3280[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3282[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp3281[i, j, 3, 1], tmp3282[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp3284[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) + TaylorSeries.mul!(tmp3285[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) + TaylorSeries.add!(tmp3286[i, j, 1, 1], tmp3284[i, j, 1, 1], tmp3285[i, j, 2, 1], ord) + TaylorSeries.mul!(tmp3287[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) + TaylorSeries.add!(F_JCS_x[i, j], tmp3286[i, j, 1, 1], tmp3287[i, j, 3, 1], ord) + TaylorSeries.mul!(tmp3289[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp3290[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) + TaylorSeries.add!(tmp3291[i, j, 1, 2], tmp3289[i, j, 1, 2], tmp3290[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp3292[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) + TaylorSeries.add!(F_JCS_y[i, j], tmp3291[i, j, 1, 2], tmp3292[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp3294[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp3295[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) + TaylorSeries.add!(tmp3296[i, j, 1, 3], tmp3294[i, j, 1, 3], tmp3295[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp3297[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) + TaylorSeries.add!(F_JCS_z[i, j], tmp3296[i, j, 1, 3], tmp3297[i, j, 3, 3], ord) end end end @@ -4225,37 +9161,37 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: continue else if UJ_interaction[i, j] - TaylorSeries.mul!(tmp3244[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3244[i, j], ord) + TaylorSeries.mul!(tmp3299[i, j], μ[i], F_JCS_x[i, j], ord) + TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp3299[i, j], ord) TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp3246[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3246[i, j], ord) + TaylorSeries.mul!(tmp3301[i, j], μ[i], F_JCS_y[i, j], ord) + TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp3301[i, j], ord) TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp3248[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3248[i, j], ord) + TaylorSeries.mul!(tmp3303[i, j], μ[i], F_JCS_z[i, j], ord) + TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp3303[i, j], ord) TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp3250[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3250[i, j], ord) + TaylorSeries.mul!(tmp3305[i, j], μ[j], F_JCS_x[i, j], ord) + TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp3305[i, j], ord) TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp3252[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3252[i, j], ord) + TaylorSeries.mul!(tmp3307[i, j], μ[j], F_JCS_y[i, j], ord) + TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp3307[i, j], ord) TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp3254[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3254[i, j], ord) + TaylorSeries.mul!(tmp3309[i, j], μ[j], F_JCS_z[i, j], ord) + TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp3309[i, j], ord) TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) if j == mo - TaylorSeries.mul!(tmp3256[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp3257[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp3258[i, j], tmp3256[i, j], tmp3257[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3258[i, j], ord) - TaylorSeries.mul!(tmp3260[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp3261[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp3262[i, j], tmp3260[i, j], tmp3261[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3262[i, j], ord) - TaylorSeries.mul!(tmp3264[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp3265[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp3266[i, j], tmp3264[i, j], tmp3265[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3266[i, j], ord) + TaylorSeries.mul!(tmp3311[i, j], Y[i, j], F_JCS_z[i, j], ord) + TaylorSeries.mul!(tmp3312[i, j], Z[i, j], F_JCS_y[i, j], ord) + TaylorSeries.subst!(tmp3313[i, j], tmp3311[i, j], tmp3312[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp3313[i, j], ord) + TaylorSeries.mul!(tmp3315[i, j], Z[i, j], F_JCS_x[i, j], ord) + TaylorSeries.mul!(tmp3316[i, j], X[i, j], F_JCS_z[i, j], ord) + TaylorSeries.subst!(tmp3317[i, j], tmp3315[i, j], tmp3316[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp3317[i, j], ord) + TaylorSeries.mul!(tmp3319[i, j], X[i, j], F_JCS_y[i, j], ord) + TaylorSeries.mul!(tmp3320[i, j], Y[i, j], F_JCS_x[i, j], ord) + TaylorSeries.subst!(tmp3321[i, j], tmp3319[i, j], tmp3320[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp3321[i, j], ord) TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], N_MfigM_pmA_x[i], ord) TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], N_MfigM_pmA_y[i], ord) @@ -4267,7 +9203,7 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: end end end - #= REPL[11]:656 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:656 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -4276,18 +9212,18 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp3278[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3278[i, j], ord) + TaylorSeries.mul!(tmp3333[i, j], 4, vi_dot_vj[i, j], ord) + TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp3333[i, j], ord) TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp3284[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3284[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp3287[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(pn1t7[i, j], tmp3287[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp3290[i, j], 1.5, pn1t7[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3290[i, j], ord) + TaylorSeries.add!(tmp3339[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) + TaylorSeries.add!(Rij_dot_Vi[i, j], tmp3339[i, j], Zij_t_Wi[i, j], ord) + TaylorSeries.pow!(tmp3342[i, j], Rij_dot_Vi[i, j], 2, ord) + TaylorSeries.div!(pn1t7[i, j], tmp3342[i, j], r_p2[i, j], ord) + TaylorSeries.mul!(tmp3345[i, j], 1.5, pn1t7[i, j], ord) + TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp3345[i, j], ord) TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) end end @@ -4295,7 +9231,7 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.identity!(pntempY[j], zero_q_1, ord) TaylorSeries.identity!(pntempZ[j], zero_q_1, ord) end - #= REPL[11]:695 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:695 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -4303,26 +9239,26 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp3297[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp3298[i, j], tmp3297[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp3299[i, j], 0.5, tmp3298[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3299[i, j], ord) + TaylorSeries.add!(tmp3352[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) + TaylorSeries.add!(tmp3353[i, j], tmp3352[i, j], pNZ_t_Z[i, j], ord) + TaylorSeries.mul!(tmp3354[i, j], 0.5, tmp3353[i, j], ord) + TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp3354[i, j], ord) TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp3307[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3307[i, j], ord) + TaylorSeries.add!(tmp3362[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) + TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp3362[i, j], ord) TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp3310[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3310[i, j], ord) + TaylorSeries.add!(tmp3365[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) + TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp3365[i, j], ord) TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp3313[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3313[i, j], ord) + TaylorSeries.add!(tmp3368[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) + TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp3368[i, j], ord) TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) end @@ -4331,277 +9267,277 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: TaylorSeries.mul!(postNewtonY[j], pntempY[j], c_m2, ord) TaylorSeries.mul!(postNewtonZ[j], pntempZ[j], c_m2, ord) end - #= REPL[11]:741 =# Threads.@threads for i = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:741 =# Threads.@threads for i = 1:N_ext TaylorSeries.add!(dq[3 * (N + i) - 2], postNewtonX[i], accX[i], ord) TaylorSeries.add!(dq[3 * (N + i) - 1], postNewtonY[i], accY[i], ord) TaylorSeries.add!(dq[3 * (N + i)], postNewtonZ[i], accZ[i], ord) end - #= REPL[11]:746 =# Threads.@threads for i = N_ext + 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:746 =# Threads.@threads for i = N_ext + 1:N TaylorSeries.identity!(dq[3 * (N + i) - 2], postNewtonX[i], ord) TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) end - TaylorSeries.mul!(tmp3322, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3323, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3324, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3325, tmp3323, tmp3324, ord) - TaylorSeries.add!(Iω_x, tmp3322, tmp3325, ord) - TaylorSeries.mul!(tmp3327, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3328, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3329, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3330, tmp3328, tmp3329, ord) - TaylorSeries.add!(Iω_y, tmp3327, tmp3330, ord) - TaylorSeries.mul!(tmp3332, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3333, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3334, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3335, tmp3333, tmp3334, ord) - TaylorSeries.add!(Iω_z, tmp3332, tmp3335, ord) - TaylorSeries.mul!(tmp3337, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp3338, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp3337, tmp3338, ord) - TaylorSeries.mul!(tmp3340, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp3341, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp3340, tmp3341, ord) - TaylorSeries.mul!(tmp3343, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp3344, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp3343, tmp3344, ord) - TaylorSeries.mul!(tmp3346, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3347, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3348, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3349, tmp3347, tmp3348, ord) - TaylorSeries.add!(dIω_x, tmp3346, tmp3349, ord) - TaylorSeries.mul!(tmp3351, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3352, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3353, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3354, tmp3352, tmp3353, ord) - TaylorSeries.add!(dIω_y, tmp3351, tmp3354, ord) - TaylorSeries.mul!(tmp3356, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp3357, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp3358, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp3359, tmp3357, tmp3358, ord) - TaylorSeries.add!(dIω_z, tmp3356, tmp3359, ord) + TaylorSeries.mul!(tmp3377, I_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3378, I_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3379, I_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3380, tmp3378, tmp3379, ord) + TaylorSeries.add!(Iω_x, tmp3377, tmp3380, ord) + TaylorSeries.mul!(tmp3382, I_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3383, I_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3384, I_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3385, tmp3383, tmp3384, ord) + TaylorSeries.add!(Iω_y, tmp3382, tmp3385, ord) + TaylorSeries.mul!(tmp3387, I_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3388, I_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3389, I_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3390, tmp3388, tmp3389, ord) + TaylorSeries.add!(Iω_z, tmp3387, tmp3390, ord) + TaylorSeries.mul!(tmp3392, q[6N + 5], Iω_z, ord) + TaylorSeries.mul!(tmp3393, q[6N + 6], Iω_y, ord) + TaylorSeries.subst!(ωxIω_x, tmp3392, tmp3393, ord) + TaylorSeries.mul!(tmp3395, q[6N + 6], Iω_x, ord) + TaylorSeries.mul!(tmp3396, q[6N + 4], Iω_z, ord) + TaylorSeries.subst!(ωxIω_y, tmp3395, tmp3396, ord) + TaylorSeries.mul!(tmp3398, q[6N + 4], Iω_y, ord) + TaylorSeries.mul!(tmp3399, q[6N + 5], Iω_x, ord) + TaylorSeries.subst!(ωxIω_z, tmp3398, tmp3399, ord) + TaylorSeries.mul!(tmp3401, dI_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3402, dI_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3403, dI_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3404, tmp3402, tmp3403, ord) + TaylorSeries.add!(dIω_x, tmp3401, tmp3404, ord) + TaylorSeries.mul!(tmp3406, dI_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3407, dI_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3408, dI_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3409, tmp3407, tmp3408, ord) + TaylorSeries.add!(dIω_y, tmp3406, tmp3409, ord) + TaylorSeries.mul!(tmp3411, dI_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp3412, dI_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp3413, dI_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp3414, tmp3412, tmp3413, ord) + TaylorSeries.add!(dIω_z, tmp3411, tmp3414, ord) TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp3364, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3365, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3366, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3367, tmp3365, tmp3366, ord) - TaylorSeries.add!(er_EM_1, tmp3364, tmp3367, ord) - TaylorSeries.mul!(tmp3369, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3370, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3371, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3372, tmp3370, tmp3371, ord) - TaylorSeries.add!(er_EM_2, tmp3369, tmp3372, ord) - TaylorSeries.mul!(tmp3374, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp3375, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp3376, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp3377, tmp3375, tmp3376, ord) - TaylorSeries.add!(er_EM_3, tmp3374, tmp3377, ord) - TaylorSeries.mul!(tmp3379, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3380, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3381, RotM[1, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp3382, tmp3380, tmp3381, ord) - TaylorSeries.add!(p_E_1, tmp3379, tmp3382, ord) - TaylorSeries.mul!(tmp3384, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3385, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3386, RotM[2, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp3387, tmp3385, tmp3386, ord) - TaylorSeries.add!(p_E_2, tmp3384, tmp3387, ord) - TaylorSeries.mul!(tmp3389, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp3390, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp3391, RotM[3, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp3392, tmp3390, tmp3391, ord) - TaylorSeries.add!(p_E_3, tmp3389, tmp3392, ord) - TaylorSeries.mul!(tmp3394, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3395, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3396, I_m_t[1, 3], er_EM_3, ord) - TaylorSeries.add!(tmp3397, tmp3395, tmp3396, ord) - TaylorSeries.add!(I_er_EM_1, tmp3394, tmp3397, ord) - TaylorSeries.mul!(tmp3399, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3400, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3401, I_m_t[2, 3], er_EM_3, ord) - TaylorSeries.add!(tmp3402, tmp3400, tmp3401, ord) - TaylorSeries.add!(I_er_EM_2, tmp3399, tmp3402, ord) - TaylorSeries.mul!(tmp3404, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp3405, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp3406, I_m_t[3, 3], er_EM_3, ord) - TaylorSeries.add!(tmp3407, tmp3405, tmp3406, ord) - TaylorSeries.add!(I_er_EM_3, tmp3404, tmp3407, ord) - TaylorSeries.mul!(tmp3409, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3410, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3411, I_m_t[1, 3], p_E_3, ord) - TaylorSeries.add!(tmp3412, tmp3410, tmp3411, ord) - TaylorSeries.add!(I_p_E_1, tmp3409, tmp3412, ord) - TaylorSeries.mul!(tmp3414, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3415, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3416, I_m_t[2, 3], p_E_3, ord) - TaylorSeries.add!(tmp3417, tmp3415, tmp3416, ord) - TaylorSeries.add!(I_p_E_2, tmp3414, tmp3417, ord) - TaylorSeries.mul!(tmp3419, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp3420, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp3421, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.mul!(tmp3419, RotM[1, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3420, RotM[1, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3421, RotM[1, 3, mo], er_EM_I_3, ord) TaylorSeries.add!(tmp3422, tmp3420, tmp3421, ord) - TaylorSeries.add!(I_p_E_3, tmp3419, tmp3422, ord) - TaylorSeries.mul!(tmp3424, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp3425, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp3424, tmp3425, ord) - TaylorSeries.mul!(tmp3427, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp3428, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp3427, tmp3428, ord) - TaylorSeries.mul!(tmp3430, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp3431, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp3430, tmp3431, ord) - TaylorSeries.mul!(tmp3433, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp3434, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp3433, tmp3434, ord) - TaylorSeries.mul!(tmp3436, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp3437, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp3436, tmp3437, ord) - TaylorSeries.mul!(tmp3439, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp3440, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp3439, tmp3440, ord) - TaylorSeries.mul!(tmp3442, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp3443, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp3442, tmp3443, ord) - TaylorSeries.mul!(tmp3445, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp3446, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp3445, tmp3446, ord) - TaylorSeries.mul!(tmp3448, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp3449, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp3448, tmp3449, ord) - TaylorSeries.mul!(tmp3451, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp3452, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp3451, tmp3452, ord) - TaylorSeries.mul!(tmp3454, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp3455, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp3454, tmp3455, ord) - TaylorSeries.mul!(tmp3457, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp3458, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp3457, tmp3458, ord) - TaylorSeries.pow!(tmp3462, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp3463, 7, tmp3462, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp3463, ord) + TaylorSeries.add!(er_EM_1, tmp3419, tmp3422, ord) + TaylorSeries.mul!(tmp3424, RotM[2, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3425, RotM[2, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3426, RotM[2, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp3427, tmp3425, tmp3426, ord) + TaylorSeries.add!(er_EM_2, tmp3424, tmp3427, ord) + TaylorSeries.mul!(tmp3429, RotM[3, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp3430, RotM[3, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp3431, RotM[3, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp3432, tmp3430, tmp3431, ord) + TaylorSeries.add!(er_EM_3, tmp3429, tmp3432, ord) + TaylorSeries.mul!(tmp3434, RotM[1, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3435, RotM[1, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3436, RotM[1, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp3437, tmp3435, tmp3436, ord) + TaylorSeries.add!(p_E_1, tmp3434, tmp3437, ord) + TaylorSeries.mul!(tmp3439, RotM[2, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3440, RotM[2, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3441, RotM[2, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp3442, tmp3440, tmp3441, ord) + TaylorSeries.add!(p_E_2, tmp3439, tmp3442, ord) + TaylorSeries.mul!(tmp3444, RotM[3, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp3445, RotM[3, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp3446, RotM[3, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp3447, tmp3445, tmp3446, ord) + TaylorSeries.add!(p_E_3, tmp3444, tmp3447, ord) + TaylorSeries.mul!(tmp3449, I_m_t[1, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3450, I_m_t[1, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3451, I_m_t[1, 3], er_EM_3, ord) + TaylorSeries.add!(tmp3452, tmp3450, tmp3451, ord) + TaylorSeries.add!(I_er_EM_1, tmp3449, tmp3452, ord) + TaylorSeries.mul!(tmp3454, I_m_t[2, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3455, I_m_t[2, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3456, I_m_t[2, 3], er_EM_3, ord) + TaylorSeries.add!(tmp3457, tmp3455, tmp3456, ord) + TaylorSeries.add!(I_er_EM_2, tmp3454, tmp3457, ord) + TaylorSeries.mul!(tmp3459, I_m_t[3, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp3460, I_m_t[3, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp3461, I_m_t[3, 3], er_EM_3, ord) + TaylorSeries.add!(tmp3462, tmp3460, tmp3461, ord) + TaylorSeries.add!(I_er_EM_3, tmp3459, tmp3462, ord) + TaylorSeries.mul!(tmp3464, I_m_t[1, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3465, I_m_t[1, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3466, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(tmp3467, tmp3465, tmp3466, ord) + TaylorSeries.add!(I_p_E_1, tmp3464, tmp3467, ord) + TaylorSeries.mul!(tmp3469, I_m_t[2, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3470, I_m_t[2, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3471, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(tmp3472, tmp3470, tmp3471, ord) + TaylorSeries.add!(I_p_E_2, tmp3469, tmp3472, ord) + TaylorSeries.mul!(tmp3474, I_m_t[3, 1], p_E_1, ord) + TaylorSeries.mul!(tmp3475, I_m_t[3, 2], p_E_2, ord) + TaylorSeries.mul!(tmp3476, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(tmp3477, tmp3475, tmp3476, ord) + TaylorSeries.add!(I_p_E_3, tmp3474, tmp3477, ord) + TaylorSeries.mul!(tmp3479, er_EM_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp3480, er_EM_3, I_er_EM_2, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp3479, tmp3480, ord) + TaylorSeries.mul!(tmp3482, er_EM_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp3483, er_EM_1, I_er_EM_3, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp3482, tmp3483, ord) + TaylorSeries.mul!(tmp3485, er_EM_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp3486, er_EM_2, I_er_EM_1, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp3485, tmp3486, ord) + TaylorSeries.mul!(tmp3488, er_EM_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp3489, er_EM_3, I_p_E_2, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp3488, tmp3489, ord) + TaylorSeries.mul!(tmp3491, er_EM_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp3492, er_EM_1, I_p_E_3, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp3491, tmp3492, ord) + TaylorSeries.mul!(tmp3494, er_EM_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp3495, er_EM_2, I_p_E_1, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp3494, tmp3495, ord) + TaylorSeries.mul!(tmp3497, p_E_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp3498, p_E_3, I_er_EM_2, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp3497, tmp3498, ord) + TaylorSeries.mul!(tmp3500, p_E_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp3501, p_E_1, I_er_EM_3, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp3500, tmp3501, ord) + TaylorSeries.mul!(tmp3503, p_E_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp3504, p_E_2, I_er_EM_1, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp3503, tmp3504, ord) + TaylorSeries.mul!(tmp3506, p_E_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp3507, p_E_3, I_p_E_2, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp3506, tmp3507, ord) + TaylorSeries.mul!(tmp3509, p_E_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp3510, p_E_1, I_p_E_3, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp3509, tmp3510, ord) + TaylorSeries.mul!(tmp3512, p_E_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp3513, p_E_2, I_p_E_1, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp3512, tmp3513, ord) + TaylorSeries.pow!(tmp3517, sin_ϕ[ea, mo], 2, ord) + TaylorSeries.mul!(tmp3518, 7, tmp3517, ord) + TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp3518, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp3468, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp3468, ord) - TaylorSeries.mul!(tmp3470, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp3471, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp3472, two_sinϕEM, tmp3471, ord) - TaylorSeries.add!(tmp3473, tmp3470, tmp3472, ord) - TaylorSeries.mul!(tmp3475, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp3476, tmp3473, tmp3475, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp3476, ord) - TaylorSeries.mul!(tmp3478, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp3479, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp3480, two_sinϕEM, tmp3479, ord) - TaylorSeries.add!(tmp3481, tmp3478, tmp3480, ord) - TaylorSeries.mul!(tmp3483, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp3484, tmp3481, tmp3483, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp3484, ord) - TaylorSeries.mul!(tmp3486, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp3487, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp3488, two_sinϕEM, tmp3487, ord) - TaylorSeries.add!(tmp3489, tmp3486, tmp3488, ord) - TaylorSeries.mul!(tmp3491, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp3492, tmp3489, tmp3491, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp3492, ord) - TaylorSeries.mul!(tmp3494, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3495, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3496, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3497, tmp3495, tmp3496, ord) - TaylorSeries.add!(N_1_LMF, tmp3494, tmp3497, ord) - TaylorSeries.mul!(tmp3499, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3500, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3501, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3502, tmp3500, tmp3501, ord) - TaylorSeries.add!(N_2_LMF, tmp3499, tmp3502, ord) - TaylorSeries.mul!(tmp3504, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp3505, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp3506, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp3507, tmp3505, tmp3506, ord) - TaylorSeries.add!(N_3_LMF, tmp3504, tmp3507, ord) - TaylorSeries.subst!(tmp3509, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp3510, k_ν, tmp3509, ord) - TaylorSeries.mul!(tmp3511, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp3512, tmp3511, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp3510, tmp3512, ord) - TaylorSeries.subst!(tmp3514, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp3515, k_ν, tmp3514, ord) - TaylorSeries.mul!(tmp3516, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp3517, tmp3516, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp3515, tmp3517, ord) - TaylorSeries.subst!(tmp3519, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp3519, ord) - TaylorSeries.mul!(tmp3521, μ[mo], N_1_LMF, ord) - TaylorSeries.add!(tmp3522, N_MfigM_figE_1, tmp3521, ord) - TaylorSeries.add!(tmp3523, tmp3522, N_cmb_1, ord) - TaylorSeries.add!(tmp3524, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp3523, tmp3524, ord) - TaylorSeries.mul!(tmp3526, μ[mo], N_2_LMF, ord) - TaylorSeries.add!(tmp3527, N_MfigM_figE_2, tmp3526, ord) - TaylorSeries.add!(tmp3528, tmp3527, N_cmb_2, ord) - TaylorSeries.add!(tmp3529, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp3528, tmp3529, ord) - TaylorSeries.mul!(tmp3531, μ[mo], N_3_LMF, ord) - TaylorSeries.add!(tmp3532, N_MfigM_figE_3, tmp3531, ord) - TaylorSeries.add!(tmp3533, tmp3532, N_cmb_3, ord) - TaylorSeries.add!(tmp3534, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp3533, tmp3534, ord) + TaylorSeries.pow!(tmp3523, r_p1d2[mo, ea], 5, ord) + TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp3523, ord) + TaylorSeries.mul!(tmp3525, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) + TaylorSeries.add!(tmp3526, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) + TaylorSeries.mul!(tmp3527, two_sinϕEM, tmp3526, ord) + TaylorSeries.add!(tmp3528, tmp3525, tmp3527, ord) + TaylorSeries.mul!(tmp3530, 0.4, p_E_cross_I_p_E_1, ord) + TaylorSeries.subst!(tmp3531, tmp3528, tmp3530, ord) + TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp3531, ord) + TaylorSeries.mul!(tmp3533, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) + TaylorSeries.add!(tmp3534, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) + TaylorSeries.mul!(tmp3535, two_sinϕEM, tmp3534, ord) + TaylorSeries.add!(tmp3536, tmp3533, tmp3535, ord) + TaylorSeries.mul!(tmp3538, 0.4, p_E_cross_I_p_E_2, ord) + TaylorSeries.subst!(tmp3539, tmp3536, tmp3538, ord) + TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp3539, ord) + TaylorSeries.mul!(tmp3541, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) + TaylorSeries.add!(tmp3542, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) + TaylorSeries.mul!(tmp3543, two_sinϕEM, tmp3542, ord) + TaylorSeries.add!(tmp3544, tmp3541, tmp3543, ord) + TaylorSeries.mul!(tmp3546, 0.4, p_E_cross_I_p_E_3, ord) + TaylorSeries.subst!(tmp3547, tmp3544, tmp3546, ord) + TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp3547, ord) + TaylorSeries.mul!(tmp3549, RotM[1, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3550, RotM[1, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3551, RotM[1, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3552, tmp3550, tmp3551, ord) + TaylorSeries.add!(N_1_LMF, tmp3549, tmp3552, ord) + TaylorSeries.mul!(tmp3554, RotM[2, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3555, RotM[2, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3556, RotM[2, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3557, tmp3555, tmp3556, ord) + TaylorSeries.add!(N_2_LMF, tmp3554, tmp3557, ord) + TaylorSeries.mul!(tmp3559, RotM[3, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp3560, RotM[3, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp3561, RotM[3, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp3562, tmp3560, tmp3561, ord) + TaylorSeries.add!(N_3_LMF, tmp3559, tmp3562, ord) + TaylorSeries.subst!(tmp3564, q[6N + 10], q[6N + 4], ord) + TaylorSeries.mul!(tmp3565, k_ν, tmp3564, ord) + TaylorSeries.mul!(tmp3566, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp3567, tmp3566, q[6N + 11], ord) + TaylorSeries.subst!(N_cmb_1, tmp3565, tmp3567, ord) + TaylorSeries.subst!(tmp3569, q[6N + 11], q[6N + 5], ord) + TaylorSeries.mul!(tmp3570, k_ν, tmp3569, ord) + TaylorSeries.mul!(tmp3571, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp3572, tmp3571, q[6N + 10], ord) + TaylorSeries.add!(N_cmb_2, tmp3570, tmp3572, ord) + TaylorSeries.subst!(tmp3574, q[6N + 12], q[6N + 6], ord) + TaylorSeries.mul!(N_cmb_3, k_ν, tmp3574, ord) + TaylorSeries.mul!(tmp3576, μ[mo], N_1_LMF, ord) + TaylorSeries.add!(tmp3577, N_MfigM_figE_1, tmp3576, ord) + TaylorSeries.add!(tmp3578, tmp3577, N_cmb_1, ord) + TaylorSeries.add!(tmp3579, dIω_x, ωxIω_x, ord) + TaylorSeries.subst!(I_dω_1, tmp3578, tmp3579, ord) + TaylorSeries.mul!(tmp3581, μ[mo], N_2_LMF, ord) + TaylorSeries.add!(tmp3582, N_MfigM_figE_2, tmp3581, ord) + TaylorSeries.add!(tmp3583, tmp3582, N_cmb_2, ord) + TaylorSeries.add!(tmp3584, dIω_y, ωxIω_y, ord) + TaylorSeries.subst!(I_dω_2, tmp3583, tmp3584, ord) + TaylorSeries.mul!(tmp3586, μ[mo], N_3_LMF, ord) + TaylorSeries.add!(tmp3587, N_MfigM_figE_3, tmp3586, ord) + TaylorSeries.add!(tmp3588, tmp3587, N_cmb_3, ord) + TaylorSeries.add!(tmp3589, dIω_z, ωxIω_z, ord) + TaylorSeries.subst!(I_dω_3, tmp3588, tmp3589, ord) TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp3539, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp3540, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp3539, tmp3540, ord) - TaylorSeries.mul!(tmp3542, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp3543, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp3542, tmp3543, ord) - TaylorSeries.mul!(tmp3545, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp3546, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp3545, tmp3546, ord) + TaylorSeries.mul!(tmp3594, q[6N + 6], Ic_ωc_2, ord) + TaylorSeries.mul!(tmp3595, q[6N + 5], Ic_ωc_3, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp3594, tmp3595, ord) + TaylorSeries.mul!(tmp3597, q[6N + 4], Ic_ωc_3, ord) + TaylorSeries.mul!(tmp3598, q[6N + 6], Ic_ωc_1, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp3597, tmp3598, ord) + TaylorSeries.mul!(tmp3600, q[6N + 5], Ic_ωc_1, ord) + TaylorSeries.mul!(tmp3601, q[6N + 4], Ic_ωc_2, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp3600, tmp3601, ord) TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp3551, tmp3631, q[6N + 3], ord) - TaylorSeries.mul!(tmp3552, q[6N + 4], tmp3551, ord) - TaylorSeries.sincos!(tmp3632, tmp3553, q[6N + 3], ord) - TaylorSeries.mul!(tmp3554, q[6N + 5], tmp3553, ord) - TaylorSeries.add!(tmp3555, tmp3552, tmp3554, ord) - TaylorSeries.sincos!(tmp3556, tmp3633, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp3555, tmp3556, ord) - TaylorSeries.sincos!(tmp3634, tmp3558, q[6N + 3], ord) - TaylorSeries.mul!(tmp3559, q[6N + 4], tmp3558, ord) - TaylorSeries.sincos!(tmp3560, tmp3635, q[6N + 3], ord) - TaylorSeries.mul!(tmp3561, q[6N + 5], tmp3560, ord) - TaylorSeries.subst!(dq[6N + 2], tmp3559, tmp3561, ord) - TaylorSeries.sincos!(tmp3636, tmp3563, q[6N + 2], ord) - TaylorSeries.mul!(tmp3564, dq[6N + 1], tmp3563, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp3564, ord) - TaylorSeries.mul!(tmp3566, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3567, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3568, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3569, tmp3567, tmp3568, ord) - TaylorSeries.add!(dq[6N + 4], tmp3566, tmp3569, ord) - TaylorSeries.mul!(tmp3571, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3572, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3573, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3574, tmp3572, tmp3573, ord) - TaylorSeries.add!(dq[6N + 5], tmp3571, tmp3574, ord) - TaylorSeries.mul!(tmp3576, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp3577, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp3578, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp3579, tmp3577, tmp3578, ord) - TaylorSeries.add!(dq[6N + 6], tmp3576, tmp3579, ord) - TaylorSeries.sincos!(tmp3581, tmp3637, q[6N + 8], ord) - TaylorSeries.div!(tmp3582, ω_c_CE_2, tmp3581, ord) - TaylorSeries.subst!(dq[6N + 9], tmp3582, ord) - TaylorSeries.sincos!(tmp3638, tmp3584, q[6N + 8], ord) - TaylorSeries.mul!(tmp3585, dq[6N + 9], tmp3584, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp3585, ord) + TaylorSeries.sincos!(tmp3606, tmp3686, q[6N + 3], ord) + TaylorSeries.mul!(tmp3607, q[6N + 4], tmp3606, ord) + TaylorSeries.sincos!(tmp3687, tmp3608, q[6N + 3], ord) + TaylorSeries.mul!(tmp3609, q[6N + 5], tmp3608, ord) + TaylorSeries.add!(tmp3610, tmp3607, tmp3609, ord) + TaylorSeries.sincos!(tmp3611, tmp3688, q[6N + 2], ord) + TaylorSeries.div!(dq[6N + 1], tmp3610, tmp3611, ord) + TaylorSeries.sincos!(tmp3689, tmp3613, q[6N + 3], ord) + TaylorSeries.mul!(tmp3614, q[6N + 4], tmp3613, ord) + TaylorSeries.sincos!(tmp3615, tmp3690, q[6N + 3], ord) + TaylorSeries.mul!(tmp3616, q[6N + 5], tmp3615, ord) + TaylorSeries.subst!(dq[6N + 2], tmp3614, tmp3616, ord) + TaylorSeries.sincos!(tmp3691, tmp3618, q[6N + 2], ord) + TaylorSeries.mul!(tmp3619, dq[6N + 1], tmp3618, ord) + TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp3619, ord) + TaylorSeries.mul!(tmp3621, inv_I_m_t[1, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3622, inv_I_m_t[1, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3623, inv_I_m_t[1, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3624, tmp3622, tmp3623, ord) + TaylorSeries.add!(dq[6N + 4], tmp3621, tmp3624, ord) + TaylorSeries.mul!(tmp3626, inv_I_m_t[2, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3627, inv_I_m_t[2, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3628, inv_I_m_t[2, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3629, tmp3627, tmp3628, ord) + TaylorSeries.add!(dq[6N + 5], tmp3626, tmp3629, ord) + TaylorSeries.mul!(tmp3631, inv_I_m_t[3, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp3632, inv_I_m_t[3, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp3633, inv_I_m_t[3, 3], I_dω_3, ord) + TaylorSeries.add!(tmp3634, tmp3632, tmp3633, ord) + TaylorSeries.add!(dq[6N + 6], tmp3631, tmp3634, ord) + TaylorSeries.sincos!(tmp3636, tmp3692, q[6N + 8], ord) + TaylorSeries.div!(tmp3637, ω_c_CE_2, tmp3636, ord) + TaylorSeries.subst!(dq[6N + 9], tmp3637, ord) + TaylorSeries.sincos!(tmp3693, tmp3639, q[6N + 8], ord) + TaylorSeries.mul!(tmp3640, dq[6N + 9], tmp3639, ord) + TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp3640, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) @@ -4614,29 +9550,27 @@ function TaylorIntegration.jetcoeffs!(::Val{NBP_pN_A_J23E_J23M_J2S_threads!}, t: return nothing end -# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: DE430! -function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} +# TaylorIntegration._allocate_jetcoeffs! method for src/dynamical_model.jl: DE430! +function TaylorIntegration._allocate_jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params) where {_T <: Real, _S <: Number, _N} order = t.order local (N, jd0) = params local S = eltype(q) - local N_ext = 11 - local N_bwd = 11 local params_bwd = (N_bwd, jd0) - local qq_bwd = Taylor1.(constant_term.(q[union(nbodyind(N, 1:N_bwd), 6N + 1:6N + 13)]), t.order) + local qq_bwd = Taylor1.(constant_term.(q[union(nbodyind(N, 1:N_bwd), 6N + 1:6N + 13)]), t.order)::Vector{S} local dqq_bwd = similar(qq_bwd) local xaux_bwd = similar(qq_bwd) local jc = TaylorIntegration.jetcoeffs!(NBP_pN_A_J23E_J23M_J2S_threads!, t, qq_bwd, dqq_bwd, xaux_bwd, params_bwd) local __t = Taylor1(t.order) - local q_del_τ_M = qq_bwd(__t - τ_M) - local q_del_τ_0 = qq_bwd(__t - τ_0p) - local q_del_τ_1 = qq_bwd(__t - τ_1p) - local q_del_τ_2 = qq_bwd(__t - τ_2p) - local eulang_del_τ_M = q_del_τ_M[6N_bwd + 1:6N_bwd + 3] - local ω_m_del_τ_M = q_del_τ_M[6N_bwd + 4:6N_bwd + 6] + local q_del_τ_M = special_eval(qq_bwd, __t - τ_M) + local q_del_τ_0 = special_eval(qq_bwd, __t - τ_0p) + local q_del_τ_1 = special_eval(qq_bwd, __t - τ_1p) + local q_del_τ_2 = special_eval(qq_bwd, __t - τ_2p) + local eulang_del_τ_M = q_del_τ_M[6N_bwd + 1:6N_bwd + 3]::Vector{S} + local ω_m_del_τ_M = q_del_τ_M[6N_bwd + 4:6N_bwd + 6]::Vector{S} local zero_q_1 = zero(q[1]) local one_t = one(t) local dsj2k = t + (jd0 - J2000) - local I_m_t = ITM(q_del_τ_M, eulang_del_τ_M, ω_m_del_τ_M) + local I_m_t = ITM(q_del_τ_M, eulang_del_τ_M, ω_m_del_τ_M)::Matrix{S} local dI_m_t = ordpres_differentiate.(I_m_t) local inv_I_m_t = inv(I_m_t) local I_c_t = I_c .* one_t @@ -4778,159 +9712,157 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract ϕ_m = Taylor1(identity(constant_term(q[6N + 1])), order) θ_m = Taylor1(identity(constant_term(q[6N + 2])), order) ψ_m = Taylor1(identity(constant_term(q[6N + 3])), order) - tmp4665 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp5684 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4666 = Taylor1(cos(constant_term(ψ_m)), order) - tmp5685 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4667 = Taylor1(constant_term(tmp4665) * constant_term(tmp4666), order) - tmp4668 = Taylor1(cos(constant_term(θ_m)), order) - tmp5686 = Taylor1(sin(constant_term(θ_m)), order) - tmp4669 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp5687 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4670 = Taylor1(constant_term(tmp4668) * constant_term(tmp4669), order) - tmp4671 = Taylor1(sin(constant_term(ψ_m)), order) - tmp5688 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4672 = Taylor1(constant_term(tmp4670) * constant_term(tmp4671), order) - RotM[1, 1, mo] = Taylor1(constant_term(tmp4667) - constant_term(tmp4672), order) - tmp4674 = Taylor1(cos(constant_term(θ_m)), order) - tmp5689 = Taylor1(sin(constant_term(θ_m)), order) - tmp4675 = Taylor1(-(constant_term(tmp4674)), order) - tmp4676 = Taylor1(cos(constant_term(ψ_m)), order) - tmp5690 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4677 = Taylor1(constant_term(tmp4675) * constant_term(tmp4676), order) - tmp4678 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp5691 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4679 = Taylor1(constant_term(tmp4677) * constant_term(tmp4678), order) - tmp4680 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp5692 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4681 = Taylor1(sin(constant_term(ψ_m)), order) - tmp5693 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4682 = Taylor1(constant_term(tmp4680) * constant_term(tmp4681), order) - RotM[2, 1, mo] = Taylor1(constant_term(tmp4679) - constant_term(tmp4682), order) - tmp4684 = Taylor1(sin(constant_term(θ_m)), order) - tmp5694 = Taylor1(cos(constant_term(θ_m)), order) - tmp4685 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp5695 = Taylor1(cos(constant_term(ϕ_m)), order) - RotM[3, 1, mo] = Taylor1(constant_term(tmp4684) * constant_term(tmp4685), order) - tmp4687 = Taylor1(cos(constant_term(ψ_m)), order) - tmp5696 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4688 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp5697 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4689 = Taylor1(constant_term(tmp4687) * constant_term(tmp4688), order) - tmp4690 = Taylor1(cos(constant_term(θ_m)), order) - tmp5698 = Taylor1(sin(constant_term(θ_m)), order) - tmp4691 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp5699 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4692 = Taylor1(constant_term(tmp4690) * constant_term(tmp4691), order) - tmp4693 = Taylor1(sin(constant_term(ψ_m)), order) - tmp5700 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4694 = Taylor1(constant_term(tmp4692) * constant_term(tmp4693), order) - RotM[1, 2, mo] = Taylor1(constant_term(tmp4689) + constant_term(tmp4694), order) - tmp4696 = Taylor1(cos(constant_term(θ_m)), order) - tmp5701 = Taylor1(sin(constant_term(θ_m)), order) - tmp4697 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp5702 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4698 = Taylor1(constant_term(tmp4696) * constant_term(tmp4697), order) - tmp4699 = Taylor1(cos(constant_term(ψ_m)), order) - tmp5703 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4700 = Taylor1(constant_term(tmp4698) * constant_term(tmp4699), order) - tmp4701 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp5704 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp4702 = Taylor1(sin(constant_term(ψ_m)), order) - tmp5705 = Taylor1(cos(constant_term(ψ_m)), order) - tmp4703 = Taylor1(constant_term(tmp4701) * constant_term(tmp4702), order) - RotM[2, 2, mo] = Taylor1(constant_term(tmp4700) - constant_term(tmp4703), order) - tmp4705 = Taylor1(cos(constant_term(ϕ_m)), order) - tmp5706 = Taylor1(sin(constant_term(ϕ_m)), order) - tmp4706 = Taylor1(-(constant_term(tmp4705)), order) - tmp4707 = Taylor1(sin(constant_term(θ_m)), order) - tmp5707 = Taylor1(cos(constant_term(θ_m)), order) - RotM[3, 2, mo] = Taylor1(constant_term(tmp4706) * constant_term(tmp4707), order) - tmp4709 = Taylor1(sin(constant_term(θ_m)), order) - tmp5708 = Taylor1(cos(constant_term(θ_m)), order) - tmp4710 = Taylor1(sin(constant_term(ψ_m)), order) - tmp5709 = Taylor1(cos(constant_term(ψ_m)), order) - RotM[1, 3, mo] = Taylor1(constant_term(tmp4709) * constant_term(tmp4710), order) - tmp4712 = Taylor1(cos(constant_term(ψ_m)), order) - tmp5710 = Taylor1(sin(constant_term(ψ_m)), order) - tmp4713 = Taylor1(sin(constant_term(θ_m)), order) - tmp5711 = Taylor1(cos(constant_term(θ_m)), order) - RotM[2, 3, mo] = Taylor1(constant_term(tmp4712) * constant_term(tmp4713), order) + tmp4718 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp5737 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4719 = Taylor1(cos(constant_term(ψ_m)), order) + tmp5738 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4720 = Taylor1(constant_term(tmp4718) * constant_term(tmp4719), order) + tmp4721 = Taylor1(cos(constant_term(θ_m)), order) + tmp5739 = Taylor1(sin(constant_term(θ_m)), order) + tmp4722 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp5740 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4723 = Taylor1(constant_term(tmp4721) * constant_term(tmp4722), order) + tmp4724 = Taylor1(sin(constant_term(ψ_m)), order) + tmp5741 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4725 = Taylor1(constant_term(tmp4723) * constant_term(tmp4724), order) + RotM[1, 1, mo] = Taylor1(constant_term(tmp4720) - constant_term(tmp4725), order) + tmp4727 = Taylor1(cos(constant_term(θ_m)), order) + tmp5742 = Taylor1(sin(constant_term(θ_m)), order) + tmp4728 = Taylor1(-(constant_term(tmp4727)), order) + tmp4729 = Taylor1(cos(constant_term(ψ_m)), order) + tmp5743 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4730 = Taylor1(constant_term(tmp4728) * constant_term(tmp4729), order) + tmp4731 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp5744 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4732 = Taylor1(constant_term(tmp4730) * constant_term(tmp4731), order) + tmp4733 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp5745 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4734 = Taylor1(sin(constant_term(ψ_m)), order) + tmp5746 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4735 = Taylor1(constant_term(tmp4733) * constant_term(tmp4734), order) + RotM[2, 1, mo] = Taylor1(constant_term(tmp4732) - constant_term(tmp4735), order) + tmp4737 = Taylor1(sin(constant_term(θ_m)), order) + tmp5747 = Taylor1(cos(constant_term(θ_m)), order) + tmp4738 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp5748 = Taylor1(cos(constant_term(ϕ_m)), order) + RotM[3, 1, mo] = Taylor1(constant_term(tmp4737) * constant_term(tmp4738), order) + tmp4740 = Taylor1(cos(constant_term(ψ_m)), order) + tmp5749 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4741 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp5750 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4742 = Taylor1(constant_term(tmp4740) * constant_term(tmp4741), order) + tmp4743 = Taylor1(cos(constant_term(θ_m)), order) + tmp5751 = Taylor1(sin(constant_term(θ_m)), order) + tmp4744 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp5752 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4745 = Taylor1(constant_term(tmp4743) * constant_term(tmp4744), order) + tmp4746 = Taylor1(sin(constant_term(ψ_m)), order) + tmp5753 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4747 = Taylor1(constant_term(tmp4745) * constant_term(tmp4746), order) + RotM[1, 2, mo] = Taylor1(constant_term(tmp4742) + constant_term(tmp4747), order) + tmp4749 = Taylor1(cos(constant_term(θ_m)), order) + tmp5754 = Taylor1(sin(constant_term(θ_m)), order) + tmp4750 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp5755 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4751 = Taylor1(constant_term(tmp4749) * constant_term(tmp4750), order) + tmp4752 = Taylor1(cos(constant_term(ψ_m)), order) + tmp5756 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4753 = Taylor1(constant_term(tmp4751) * constant_term(tmp4752), order) + tmp4754 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp5757 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp4755 = Taylor1(sin(constant_term(ψ_m)), order) + tmp5758 = Taylor1(cos(constant_term(ψ_m)), order) + tmp4756 = Taylor1(constant_term(tmp4754) * constant_term(tmp4755), order) + RotM[2, 2, mo] = Taylor1(constant_term(tmp4753) - constant_term(tmp4756), order) + tmp4758 = Taylor1(cos(constant_term(ϕ_m)), order) + tmp5759 = Taylor1(sin(constant_term(ϕ_m)), order) + tmp4759 = Taylor1(-(constant_term(tmp4758)), order) + tmp4760 = Taylor1(sin(constant_term(θ_m)), order) + tmp5760 = Taylor1(cos(constant_term(θ_m)), order) + RotM[3, 2, mo] = Taylor1(constant_term(tmp4759) * constant_term(tmp4760), order) + tmp4762 = Taylor1(sin(constant_term(θ_m)), order) + tmp5761 = Taylor1(cos(constant_term(θ_m)), order) + tmp4763 = Taylor1(sin(constant_term(ψ_m)), order) + tmp5762 = Taylor1(cos(constant_term(ψ_m)), order) + RotM[1, 3, mo] = Taylor1(constant_term(tmp4762) * constant_term(tmp4763), order) + tmp4765 = Taylor1(cos(constant_term(ψ_m)), order) + tmp5763 = Taylor1(sin(constant_term(ψ_m)), order) + tmp4766 = Taylor1(sin(constant_term(θ_m)), order) + tmp5764 = Taylor1(cos(constant_term(θ_m)), order) + RotM[2, 3, mo] = Taylor1(constant_term(tmp4765) * constant_term(tmp4766), order) RotM[3, 3, mo] = Taylor1(cos(constant_term(θ_m)), order) - tmp5712 = Taylor1(sin(constant_term(θ_m)), order) + tmp5765 = Taylor1(sin(constant_term(θ_m)), order) mantlef2coref = Array{S}(undef, 3, 3) ϕ_c = Taylor1(identity(constant_term(q[6N + 7])), order) - tmp4716 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp5713 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4717 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp4716), order) - tmp4718 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp5714 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4719 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp4718), order) - mantlef2coref[1, 1] = Taylor1(constant_term(tmp4717) + constant_term(tmp4719), order) - tmp4721 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) - tmp4722 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp5715 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4723 = Taylor1(constant_term(tmp4721) * constant_term(tmp4722), order) - tmp4724 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp5716 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4725 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp4724), order) - mantlef2coref[2, 1] = Taylor1(constant_term(tmp4723) + constant_term(tmp4725), order) + tmp4769 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp5766 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4770 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(tmp4769), order) + tmp4771 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp5767 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4772 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp4771), order) + mantlef2coref[1, 1] = Taylor1(constant_term(tmp4770) + constant_term(tmp4772), order) + tmp4774 = Taylor1(-(constant_term(RotM[1, 1, mo])), order) + tmp4775 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp5768 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4776 = Taylor1(constant_term(tmp4774) * constant_term(tmp4775), order) + tmp4777 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp5769 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4778 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(tmp4777), order) + mantlef2coref[2, 1] = Taylor1(constant_term(tmp4776) + constant_term(tmp4778), order) mantlef2coref[3, 1] = Taylor1(identity(constant_term(RotM[1, 3, mo])), order) - tmp4727 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp5717 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4728 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp4727), order) - tmp4729 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp5718 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4730 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp4729), order) - mantlef2coref[1, 2] = Taylor1(constant_term(tmp4728) + constant_term(tmp4730), order) - tmp4732 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) - tmp4733 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp5719 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4734 = Taylor1(constant_term(tmp4732) * constant_term(tmp4733), order) - tmp4735 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp5720 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4736 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp4735), order) - mantlef2coref[2, 2] = Taylor1(constant_term(tmp4734) + constant_term(tmp4736), order) + tmp4780 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp5770 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4781 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(tmp4780), order) + tmp4782 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp5771 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4783 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp4782), order) + mantlef2coref[1, 2] = Taylor1(constant_term(tmp4781) + constant_term(tmp4783), order) + tmp4785 = Taylor1(-(constant_term(RotM[2, 1, mo])), order) + tmp4786 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp5772 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4787 = Taylor1(constant_term(tmp4785) * constant_term(tmp4786), order) + tmp4788 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp5773 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4789 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(tmp4788), order) + mantlef2coref[2, 2] = Taylor1(constant_term(tmp4787) + constant_term(tmp4789), order) mantlef2coref[3, 2] = Taylor1(identity(constant_term(RotM[2, 3, mo])), order) - tmp4738 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp5721 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4739 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp4738), order) - tmp4740 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp5722 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4741 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp4740), order) - mantlef2coref[1, 3] = Taylor1(constant_term(tmp4739) + constant_term(tmp4741), order) - tmp4743 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) - tmp4744 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp5723 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp4745 = Taylor1(constant_term(tmp4743) * constant_term(tmp4744), order) - tmp4746 = Taylor1(cos(constant_term(ϕ_c)), order) - tmp5724 = Taylor1(sin(constant_term(ϕ_c)), order) - tmp4747 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp4746), order) - mantlef2coref[2, 3] = Taylor1(constant_term(tmp4745) + constant_term(tmp4747), order) + tmp4791 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp5774 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4792 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(tmp4791), order) + tmp4793 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp5775 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4794 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp4793), order) + mantlef2coref[1, 3] = Taylor1(constant_term(tmp4792) + constant_term(tmp4794), order) + tmp4796 = Taylor1(-(constant_term(RotM[3, 1, mo])), order) + tmp4797 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp5776 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp4798 = Taylor1(constant_term(tmp4796) * constant_term(tmp4797), order) + tmp4799 = Taylor1(cos(constant_term(ϕ_c)), order) + tmp5777 = Taylor1(sin(constant_term(ϕ_c)), order) + tmp4800 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(tmp4799), order) + mantlef2coref[2, 3] = Taylor1(constant_term(tmp4798) + constant_term(tmp4800), order) mantlef2coref[3, 3] = Taylor1(identity(constant_term(RotM[3, 3, mo])), order) - tmp4749 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) - tmp4750 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) - tmp4751 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) - tmp4752 = Taylor1(constant_term(tmp4750) + constant_term(tmp4751), order) - ω_c_CE_1 = Taylor1(constant_term(tmp4749) + constant_term(tmp4752), order) - tmp4754 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) - tmp4755 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) - tmp4756 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) - tmp4757 = Taylor1(constant_term(tmp4755) + constant_term(tmp4756), order) - ω_c_CE_2 = Taylor1(constant_term(tmp4754) + constant_term(tmp4757), order) - tmp4759 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) - tmp4760 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) - tmp4761 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) - tmp4762 = Taylor1(constant_term(tmp4760) + constant_term(tmp4761), order) - ω_c_CE_3 = Taylor1(constant_term(tmp4759) + constant_term(tmp4762), order) + tmp4802 = Taylor1(constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]), order) + tmp4803 = Taylor1(constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]), order) + tmp4804 = Taylor1(constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]), order) + tmp4805 = Taylor1(constant_term(tmp4803) + constant_term(tmp4804), order) + ω_c_CE_1 = Taylor1(constant_term(tmp4802) + constant_term(tmp4805), order) + tmp4807 = Taylor1(constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]), order) + tmp4808 = Taylor1(constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]), order) + tmp4809 = Taylor1(constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]), order) + tmp4810 = Taylor1(constant_term(tmp4808) + constant_term(tmp4809), order) + ω_c_CE_2 = Taylor1(constant_term(tmp4807) + constant_term(tmp4810), order) + tmp4812 = Taylor1(constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]), order) + tmp4813 = Taylor1(constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]), order) + tmp4814 = Taylor1(constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]), order) + tmp4815 = Taylor1(constant_term(tmp4813) + constant_term(tmp4814), order) + ω_c_CE_3 = Taylor1(constant_term(tmp4812) + constant_term(tmp4815), order) local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 local J2S_t = JSEM[su, 2] * one_t J2_t = Array{S}(undef, 5) J2_t[su] = Taylor1(identity(constant_term(J2S_t)), order) J2_t[ea] = Taylor1(identity(constant_term(J2E_t)), order) local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t - local μ_mo_div_μ_ea = μ[mo] / μ[ea] - local tid_num_coeff = 1.5 * (1.0 + μ_mo_div_μ_ea) local q_ME_τ_0 = q_del_τ_0[3mo - 2:3mo] .- q_del_τ_0[3 * ea - 2:3 * ea] local q_ME_τ_1 = q_del_τ_1[3mo - 2:3mo] .- q_del_τ_1[3 * ea - 2:3 * ea] local q_ME_τ_2 = q_del_τ_2[3mo - 2:3mo] .- q_del_τ_2[3 * ea - 2:3 * ea] @@ -4960,61 +9892,61 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract accY[j] = Taylor1(identity(constant_term(zero_q_1)), order) accZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp4771 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4771 .= Taylor1(zero(_S), order) - tmp4773 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4773 .= Taylor1(zero(_S), order) - tmp4776 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4776 .= Taylor1(zero(_S), order) - tmp4778 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4778 .= Taylor1(zero(_S), order) - tmp4781 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4781 .= Taylor1(zero(_S), order) - tmp4783 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4783 .= Taylor1(zero(_S), order) + tmp4880 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4880 .= Taylor1(zero(_S), order) + tmp4882 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4882 .= Taylor1(zero(_S), order) + tmp4883 = Array{Taylor1{_S}}(undef, size(tmp4880)) + tmp4883 .= Taylor1(zero(_S), order) + tmp4885 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4885 .= Taylor1(zero(_S), order) + tmp4824 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4824 .= Taylor1(zero(_S), order) + tmp4826 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4826 .= Taylor1(zero(_S), order) + tmp4829 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4829 .= Taylor1(zero(_S), order) + tmp4831 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4831 .= Taylor1(zero(_S), order) + tmp4834 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4834 .= Taylor1(zero(_S), order) + tmp4836 = Array{Taylor1{_S}}(undef, size(dq)) + tmp4836 .= Taylor1(zero(_S), order) pn2x = Array{Taylor1{_S}}(undef, size(X)) pn2x .= Taylor1(zero(_S), order) pn2y = Array{Taylor1{_S}}(undef, size(Y)) pn2y .= Taylor1(zero(_S), order) pn2z = Array{Taylor1{_S}}(undef, size(Z)) pn2z .= Taylor1(zero(_S), order) - tmp4791 = Array{Taylor1{_S}}(undef, size(UU)) - tmp4791 .= Taylor1(zero(_S), order) - tmp4794 = Array{Taylor1{_S}}(undef, size(X)) - tmp4794 .= Taylor1(zero(_S), order) - tmp4796 = Array{Taylor1{_S}}(undef, size(Y)) - tmp4796 .= Taylor1(zero(_S), order) - tmp4797 = Array{Taylor1{_S}}(undef, size(tmp4794)) - tmp4797 .= Taylor1(zero(_S), order) - tmp4799 = Array{Taylor1{_S}}(undef, size(Z)) - tmp4799 .= Taylor1(zero(_S), order) - tmp4807 = Array{Taylor1{_S}}(undef, size(pn2x)) - tmp4807 .= Taylor1(zero(_S), order) - tmp4808 = Array{Taylor1{_S}}(undef, size(tmp4807)) - tmp4808 .= Taylor1(zero(_S), order) - tmp4819 = Array{Taylor1{_S}}(undef, size(X)) - tmp4819 .= Taylor1(zero(_S), order) - temp_001 = Array{Taylor1{_S}}(undef, size(tmp4819)) + tmp4844 = Array{Taylor1{_S}}(undef, size(UU)) + tmp4844 .= Taylor1(zero(_S), order) + tmp4847 = Array{Taylor1{_S}}(undef, size(X)) + tmp4847 .= Taylor1(zero(_S), order) + tmp4849 = Array{Taylor1{_S}}(undef, size(Y)) + tmp4849 .= Taylor1(zero(_S), order) + tmp4850 = Array{Taylor1{_S}}(undef, size(tmp4847)) + tmp4850 .= Taylor1(zero(_S), order) + tmp4852 = Array{Taylor1{_S}}(undef, size(Z)) + tmp4852 .= Taylor1(zero(_S), order) + tmp4860 = Array{Taylor1{_S}}(undef, size(pn2x)) + tmp4860 .= Taylor1(zero(_S), order) + tmp4861 = Array{Taylor1{_S}}(undef, size(tmp4860)) + tmp4861 .= Taylor1(zero(_S), order) + tmp4872 = Array{Taylor1{_S}}(undef, size(X)) + tmp4872 .= Taylor1(zero(_S), order) + temp_001 = Array{Taylor1{_S}}(undef, size(tmp4872)) temp_001 .= Taylor1(zero(_S), order) - tmp4821 = Array{Taylor1{_S}}(undef, size(Y)) - tmp4821 .= Taylor1(zero(_S), order) - temp_002 = Array{Taylor1{_S}}(undef, size(tmp4821)) + tmp4874 = Array{Taylor1{_S}}(undef, size(Y)) + tmp4874 .= Taylor1(zero(_S), order) + temp_002 = Array{Taylor1{_S}}(undef, size(tmp4874)) temp_002 .= Taylor1(zero(_S), order) - tmp4823 = Array{Taylor1{_S}}(undef, size(Z)) - tmp4823 .= Taylor1(zero(_S), order) - temp_003 = Array{Taylor1{_S}}(undef, size(tmp4823)) + tmp4876 = Array{Taylor1{_S}}(undef, size(Z)) + tmp4876 .= Taylor1(zero(_S), order) + temp_003 = Array{Taylor1{_S}}(undef, size(tmp4876)) temp_003 .= Taylor1(zero(_S), order) temp_004 = Array{Taylor1{_S}}(undef, size(newtonian1b_Potential)) temp_004 .= Taylor1(zero(_S), order) - tmp4827 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4827 .= Taylor1(zero(_S), order) - tmp4829 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4829 .= Taylor1(zero(_S), order) - tmp4830 = Array{Taylor1{_S}}(undef, size(tmp4827)) - tmp4830 .= Taylor1(zero(_S), order) - tmp4832 = Array{Taylor1{_S}}(undef, size(dq)) - tmp4832 .= Taylor1(zero(_S), order) - #= REPL[19]:380 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:373 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -5025,35 +9957,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract U[i, j] = Taylor1(constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]), order) V[i, j] = Taylor1(constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]), order) W[i, j] = Taylor1(constant_term(dq[3i]) - constant_term(dq[3j]), order) - tmp4771[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) - tmp4773[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) - _4U_m_3X[i, j] = Taylor1(constant_term(tmp4771[3j - 2]) - constant_term(tmp4773[3i - 2]), order) - tmp4776[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) - tmp4778[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) - _4V_m_3Y[i, j] = Taylor1(constant_term(tmp4776[3j - 1]) - constant_term(tmp4778[3i - 1]), order) - tmp4781[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) - tmp4783[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) - _4W_m_3Z[i, j] = Taylor1(constant_term(tmp4781[3j]) - constant_term(tmp4783[3i]), order) + tmp4824[3j - 2] = Taylor1(constant_term(4) * constant_term(dq[3j - 2]), order) + tmp4826[3i - 2] = Taylor1(constant_term(3) * constant_term(dq[3i - 2]), order) + _4U_m_3X[i, j] = Taylor1(constant_term(tmp4824[3j - 2]) - constant_term(tmp4826[3i - 2]), order) + tmp4829[3j - 1] = Taylor1(constant_term(4) * constant_term(dq[3j - 1]), order) + tmp4831[3i - 1] = Taylor1(constant_term(3) * constant_term(dq[3i - 1]), order) + _4V_m_3Y[i, j] = Taylor1(constant_term(tmp4829[3j - 1]) - constant_term(tmp4831[3i - 1]), order) + tmp4834[3j] = Taylor1(constant_term(4) * constant_term(dq[3j]), order) + tmp4836[3i] = Taylor1(constant_term(3) * constant_term(dq[3i]), order) + _4W_m_3Z[i, j] = Taylor1(constant_term(tmp4834[3j]) - constant_term(tmp4836[3i]), order) pn2x[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]), order) pn2y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]), order) pn2z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]), order) UU[i, j] = Taylor1(constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]), order) VV[i, j] = Taylor1(constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]), order) WW[i, j] = Taylor1(constant_term(dq[3i]) * constant_term(dq[3j]), order) - tmp4791[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) - vi_dot_vj[i, j] = Taylor1(constant_term(tmp4791[i, j]) + constant_term(WW[i, j]), order) - tmp4794[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) - tmp4796[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) - tmp4797[i, j] = Taylor1(constant_term(tmp4794[i, j]) + constant_term(tmp4796[i, j]), order) - tmp4799[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) - r_p2[i, j] = Taylor1(constant_term(tmp4797[i, j]) + constant_term(tmp4799[i, j]), order) + tmp4844[i, j] = Taylor1(constant_term(UU[i, j]) + constant_term(VV[i, j]), order) + vi_dot_vj[i, j] = Taylor1(constant_term(tmp4844[i, j]) + constant_term(WW[i, j]), order) + tmp4847[i, j] = Taylor1(constant_term(X[i, j]) ^ float(constant_term(2)), order) + tmp4849[i, j] = Taylor1(constant_term(Y[i, j]) ^ float(constant_term(2)), order) + tmp4850[i, j] = Taylor1(constant_term(tmp4847[i, j]) + constant_term(tmp4849[i, j]), order) + tmp4852[i, j] = Taylor1(constant_term(Z[i, j]) ^ float(constant_term(2)), order) + r_p2[i, j] = Taylor1(constant_term(tmp4850[i, j]) + constant_term(tmp4852[i, j]), order) r_p1d2[i, j] = Taylor1(sqrt(constant_term(r_p2[i, j])), order) r_p3d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(1.5)), order) r_p7d2[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(3.5)), order) newtonianCoeff[i, j] = Taylor1(constant_term(μ[i]) / constant_term(r_p3d2[i, j]), order) - tmp4807[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) - tmp4808[i, j] = Taylor1(constant_term(tmp4807[i, j]) + constant_term(pn2z[i, j]), order) - pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp4808[i, j]), order) + tmp4860[i, j] = Taylor1(constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]), order) + tmp4861[i, j] = Taylor1(constant_term(tmp4860[i, j]) + constant_term(pn2z[i, j]), order) + pn2[i, j] = Taylor1(constant_term(newtonianCoeff[i, j]) * constant_term(tmp4861[i, j]), order) newton_acc_X[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Y[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) newton_acc_Z[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) @@ -5062,305 +9994,305 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract U_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(U[i, j]), order) V_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(V[i, j]), order) W_t_pn2[i, j] = Taylor1(constant_term(pn2[i, j]) * constant_term(W[i, j]), order) - tmp4819[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp4819[i, j]), order) + tmp4872[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_001[i, j] = Taylor1(constant_term(newtonX[j]) + constant_term(tmp4872[i, j]), order) newtonX[j] = Taylor1(identity(constant_term(temp_001[i, j])), order) - tmp4821[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp4821[i, j]), order) + tmp4874[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_002[i, j] = Taylor1(constant_term(newtonY[j]) + constant_term(tmp4874[i, j]), order) newtonY[j] = Taylor1(identity(constant_term(temp_002[i, j])), order) - tmp4823[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) - temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp4823[i, j]), order) + tmp4876[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]), order) + temp_003[i, j] = Taylor1(constant_term(newtonZ[j]) + constant_term(tmp4876[i, j]), order) newtonZ[j] = Taylor1(identity(constant_term(temp_003[i, j])), order) temp_004[i, j] = Taylor1(constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]), order) newtonianNb_Potential[j] = Taylor1(identity(constant_term(temp_004[i, j])), order) end end - tmp4827[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) - tmp4829[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) - tmp4830[3j - 2] = Taylor1(constant_term(tmp4827[3j - 2]) + constant_term(tmp4829[3j - 1]), order) - tmp4832[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) - v2[j] = Taylor1(constant_term(tmp4830[3j - 2]) + constant_term(tmp4832[3j]), order) + tmp4880[3j - 2] = Taylor1(constant_term(dq[3j - 2]) ^ float(constant_term(2)), order) + tmp4882[3j - 1] = Taylor1(constant_term(dq[3j - 1]) ^ float(constant_term(2)), order) + tmp4883[3j - 2] = Taylor1(constant_term(tmp4880[3j - 2]) + constant_term(tmp4882[3j - 1]), order) + tmp4885[3j] = Taylor1(constant_term(dq[3j]) ^ float(constant_term(2)), order) + v2[j] = Taylor1(constant_term(tmp4883[3j - 2]) + constant_term(tmp4885[3j]), order) end - tmp4834 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) - tmp4836 = Taylor1(constant_term(tmp4834) / constant_term(2), order) - tmp4837 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp4836), order) - J2M_t = Taylor1(constant_term(tmp4837) / constant_term(μ[mo]), order) - tmp4839 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) - tmp4840 = Taylor1(constant_term(tmp4839) / constant_term(μ[mo]), order) - C22M_t = Taylor1(constant_term(tmp4840) / constant_term(4), order) - tmp4843 = Taylor1(-(constant_term(I_M_t[1, 3])), order) - C21M_t = Taylor1(constant_term(tmp4843) / constant_term(μ[mo]), order) - tmp4845 = Taylor1(-(constant_term(I_M_t[3, 2])), order) - S21M_t = Taylor1(constant_term(tmp4845) / constant_term(μ[mo]), order) - tmp4847 = Taylor1(-(constant_term(I_M_t[2, 1])), order) - tmp4848 = Taylor1(constant_term(tmp4847) / constant_term(μ[mo]), order) - S22M_t = Taylor1(constant_term(tmp4848) / constant_term(2), order) + tmp4887 = Taylor1(constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]), order) + tmp4889 = Taylor1(constant_term(tmp4887) / constant_term(2), order) + tmp4890 = Taylor1(constant_term(I_M_t[3, 3]) - constant_term(tmp4889), order) + J2M_t = Taylor1(constant_term(tmp4890) / constant_term(μ[mo]), order) + tmp4892 = Taylor1(constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]), order) + tmp4893 = Taylor1(constant_term(tmp4892) / constant_term(μ[mo]), order) + C22M_t = Taylor1(constant_term(tmp4893) / constant_term(4), order) + tmp4896 = Taylor1(-(constant_term(I_M_t[1, 3])), order) + C21M_t = Taylor1(constant_term(tmp4896) / constant_term(μ[mo]), order) + tmp4898 = Taylor1(-(constant_term(I_M_t[3, 2])), order) + S21M_t = Taylor1(constant_term(tmp4898) / constant_term(μ[mo]), order) + tmp4900 = Taylor1(-(constant_term(I_M_t[2, 1])), order) + tmp4901 = Taylor1(constant_term(tmp4900) / constant_term(μ[mo]), order) + S22M_t = Taylor1(constant_term(tmp4901) / constant_term(2), order) J2_t[mo] = Taylor1(identity(constant_term(J2M_t)), order) - tmp4860 = Array{Taylor1{_S}}(undef, size(X_bf_1)) - tmp4860 .= Taylor1(zero(_S), order) - tmp4862 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) - tmp4862 .= Taylor1(zero(_S), order) - tmp4864 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) - tmp4864 .= Taylor1(zero(_S), order) - tmp4868 = Array{Taylor1{_S}}(undef, size(X_bf)) - tmp4868 .= Taylor1(zero(_S), order) - tmp4870 = Array{Taylor1{_S}}(undef, size(Y_bf)) - tmp4870 .= Taylor1(zero(_S), order) - tmp4871 = Array{Taylor1{_S}}(undef, size(tmp4868)) - tmp4871 .= Taylor1(zero(_S), order) - tmp4876 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp4876 .= Taylor1(zero(_S), order) - tmp4877 = Array{Taylor1{_S}}(undef, size(tmp4876)) - tmp4877 .= Taylor1(zero(_S), order) - tmp4878 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp4878 .= Taylor1(zero(_S), order) - tmp4880 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp4880 .= Taylor1(zero(_S), order) - tmp4881 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp4881 .= Taylor1(zero(_S), order) - tmp4886 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp4886 .= Taylor1(zero(_S), order) - tmp4887 = Array{Taylor1{_S}}(undef, size(tmp4886)) - tmp4887 .= Taylor1(zero(_S), order) - tmp4889 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp4889 .= Taylor1(zero(_S), order) - tmp4890 = Array{Taylor1{_S}}(undef, size(tmp4889)) - tmp4890 .= Taylor1(zero(_S), order) - tmp4891 = Array{Taylor1{_S}}(undef, size(tmp4890)) - tmp4891 .= Taylor1(zero(_S), order) - tmp4893 = Array{Taylor1{_S}}(undef, size(P_n)) - tmp4893 .= Taylor1(zero(_S), order) - tmp4894 = Array{Taylor1{_S}}(undef, size(tmp4893)) - tmp4894 .= Taylor1(zero(_S), order) - tmp4895 = Array{Taylor1{_S}}(undef, size(tmp4894)) - tmp4895 .= Taylor1(zero(_S), order) - tmp4897 = Array{Taylor1{_S}}(undef, size(dP_n)) - tmp4897 .= Taylor1(zero(_S), order) - tmp4898 = Array{Taylor1{_S}}(undef, size(tmp4897)) - tmp4898 .= Taylor1(zero(_S), order) - tmp4899 = Array{Taylor1{_S}}(undef, size(tmp4898)) - tmp4899 .= Taylor1(zero(_S), order) - tmp4900 = Array{Taylor1{_S}}(undef, size(tmp4899)) - tmp4900 .= Taylor1(zero(_S), order) - tmp4903 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp4903 .= Taylor1(zero(_S), order) - tmp4904 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp4904 .= Taylor1(zero(_S), order) - tmp4906 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp4906 .= Taylor1(zero(_S), order) - tmp4907 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp4907 .= Taylor1(zero(_S), order) - tmp4909 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4909 .= Taylor1(zero(_S), order) - tmp4912 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4912 .= Taylor1(zero(_S), order) - tmp4914 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4914 .= Taylor1(zero(_S), order) - tmp4916 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4916 .= Taylor1(zero(_S), order) - tmp4917 = Array{Taylor1{_S}}(undef, size(tmp4916)) + tmp4913 = Array{Taylor1{_S}}(undef, size(X_bf_1)) + tmp4913 .= Taylor1(zero(_S), order) + tmp4915 = Array{Taylor1{_S}}(undef, size(Y_bf_1)) + tmp4915 .= Taylor1(zero(_S), order) + tmp4917 = Array{Taylor1{_S}}(undef, size(Z_bf_1)) tmp4917 .= Taylor1(zero(_S), order) - tmp4918 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4918 .= Taylor1(zero(_S), order) - tmp4921 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4921 = Array{Taylor1{_S}}(undef, size(X_bf)) tmp4921 .= Taylor1(zero(_S), order) - tmp4922 = Array{Taylor1{_S}}(undef, size(tmp4921)) - tmp4922 .= Taylor1(zero(_S), order) - tmp4923 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4923 = Array{Taylor1{_S}}(undef, size(Y_bf)) tmp4923 .= Taylor1(zero(_S), order) - tmp4925 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp4925 .= Taylor1(zero(_S), order) - tmp4926 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp4926 .= Taylor1(zero(_S), order) - tmp4927 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp4927 .= Taylor1(zero(_S), order) - tmp4928 = Array{Taylor1{_S}}(undef, size(tmp4926)) - tmp4928 .= Taylor1(zero(_S), order) - tmp4929 = Array{Taylor1{_S}}(undef, size(tmp4925)) - tmp4929 .= Taylor1(zero(_S), order) - tmp4930 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp4930 .= Taylor1(zero(_S), order) - tmp4931 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp4931 .= Taylor1(zero(_S), order) - tmp4932 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp4932 .= Taylor1(zero(_S), order) - tmp4933 = Array{Taylor1{_S}}(undef, size(tmp4931)) - tmp4933 .= Taylor1(zero(_S), order) - tmp4934 = Array{Taylor1{_S}}(undef, size(tmp4930)) - tmp4934 .= Taylor1(zero(_S), order) - tmp4935 = Array{Taylor1{_S}}(undef, size(tmp4929)) - tmp4935 .= Taylor1(zero(_S), order) - tmp4937 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4937 .= Taylor1(zero(_S), order) - tmp4938 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp4938 .= Taylor1(zero(_S), order) - tmp4939 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4924 = Array{Taylor1{_S}}(undef, size(tmp4921)) + tmp4924 .= Taylor1(zero(_S), order) + tmp4939 = Array{Taylor1{_S}}(undef, size(P_n)) tmp4939 .= Taylor1(zero(_S), order) - tmp4940 = Array{Taylor1{_S}}(undef, size(tmp4938)) + tmp4940 = Array{Taylor1{_S}}(undef, size(tmp4939)) tmp4940 .= Taylor1(zero(_S), order) - tmp4941 = Array{Taylor1{_S}}(undef, size(tmp4937)) - tmp4941 .= Taylor1(zero(_S), order) - tmp4942 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4942 = Array{Taylor1{_S}}(undef, size(dP_n)) tmp4942 .= Taylor1(zero(_S), order) - tmp4943 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp4943 = Array{Taylor1{_S}}(undef, size(tmp4942)) tmp4943 .= Taylor1(zero(_S), order) - tmp4944 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4944 = Array{Taylor1{_S}}(undef, size(tmp4943)) tmp4944 .= Taylor1(zero(_S), order) - tmp4945 = Array{Taylor1{_S}}(undef, size(tmp4943)) - tmp4945 .= Taylor1(zero(_S), order) - tmp4946 = Array{Taylor1{_S}}(undef, size(tmp4942)) + tmp5041 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp5041 .= Taylor1(zero(_S), order) + tmp5044 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp5044 .= Taylor1(zero(_S), order) + tmp5046 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5046 .= Taylor1(zero(_S), order) + tmp5047 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5047 .= Taylor1(zero(_S), order) + tmp5048 = Array{Taylor1{_S}}(undef, size(tmp5046)) + tmp5048 .= Taylor1(zero(_S), order) + tmp5049 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5049 .= Taylor1(zero(_S), order) + tmp5051 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5051 .= Taylor1(zero(_S), order) + tmp5052 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5052 .= Taylor1(zero(_S), order) + tmp5053 = Array{Taylor1{_S}}(undef, size(tmp5051)) + tmp5053 .= Taylor1(zero(_S), order) + tmp5054 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5054 .= Taylor1(zero(_S), order) + tmp5056 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5056 .= Taylor1(zero(_S), order) + tmp5057 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5057 .= Taylor1(zero(_S), order) + tmp5058 = Array{Taylor1{_S}}(undef, size(tmp5056)) + tmp5058 .= Taylor1(zero(_S), order) + tmp5059 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5059 .= Taylor1(zero(_S), order) + tmp5061 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5061 .= Taylor1(zero(_S), order) + tmp5062 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5062 .= Taylor1(zero(_S), order) + tmp5063 = Array{Taylor1{_S}}(undef, size(tmp5061)) + tmp5063 .= Taylor1(zero(_S), order) + tmp5064 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5064 .= Taylor1(zero(_S), order) + tmp5066 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5066 .= Taylor1(zero(_S), order) + tmp5067 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5067 .= Taylor1(zero(_S), order) + tmp5068 = Array{Taylor1{_S}}(undef, size(tmp5066)) + tmp5068 .= Taylor1(zero(_S), order) + tmp5069 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5069 .= Taylor1(zero(_S), order) + tmp5071 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5071 .= Taylor1(zero(_S), order) + tmp5072 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5072 .= Taylor1(zero(_S), order) + tmp5073 = Array{Taylor1{_S}}(undef, size(tmp5071)) + tmp5073 .= Taylor1(zero(_S), order) + tmp5074 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5074 .= Taylor1(zero(_S), order) + tmp5076 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5076 .= Taylor1(zero(_S), order) + tmp5077 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5077 .= Taylor1(zero(_S), order) + tmp5078 = Array{Taylor1{_S}}(undef, size(tmp5076)) + tmp5078 .= Taylor1(zero(_S), order) + tmp5079 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5079 .= Taylor1(zero(_S), order) + tmp5081 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5081 .= Taylor1(zero(_S), order) + tmp5082 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5082 .= Taylor1(zero(_S), order) + tmp5083 = Array{Taylor1{_S}}(undef, size(tmp5081)) + tmp5083 .= Taylor1(zero(_S), order) + tmp5084 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5084 .= Taylor1(zero(_S), order) + tmp5086 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5086 .= Taylor1(zero(_S), order) + tmp5087 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5087 .= Taylor1(zero(_S), order) + tmp5088 = Array{Taylor1{_S}}(undef, size(tmp5086)) + tmp5088 .= Taylor1(zero(_S), order) + tmp5089 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5089 .= Taylor1(zero(_S), order) + tmp5091 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5091 .= Taylor1(zero(_S), order) + tmp5092 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5092 .= Taylor1(zero(_S), order) + tmp5093 = Array{Taylor1{_S}}(undef, size(tmp5091)) + tmp5093 .= Taylor1(zero(_S), order) + tmp5094 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5094 .= Taylor1(zero(_S), order) + tmp5096 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5096 .= Taylor1(zero(_S), order) + tmp5097 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5097 .= Taylor1(zero(_S), order) + tmp5098 = Array{Taylor1{_S}}(undef, size(tmp5096)) + tmp5098 .= Taylor1(zero(_S), order) + tmp5099 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5099 .= Taylor1(zero(_S), order) + tmp5101 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5101 .= Taylor1(zero(_S), order) + tmp5102 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5102 .= Taylor1(zero(_S), order) + tmp5103 = Array{Taylor1{_S}}(undef, size(tmp5101)) + tmp5103 .= Taylor1(zero(_S), order) + tmp5104 = Array{Taylor1{_S}}(undef, size(Gc2p)) + tmp5104 .= Taylor1(zero(_S), order) + tmp4929 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp4929 .= Taylor1(zero(_S), order) + tmp4930 = Array{Taylor1{_S}}(undef, size(tmp4929)) + tmp4930 .= Taylor1(zero(_S), order) + tmp4931 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp4931 .= Taylor1(zero(_S), order) + tmp4933 = Array{Taylor1{_S}}(undef, size(dP_n)) + tmp4933 .= Taylor1(zero(_S), order) + tmp4934 = Array{Taylor1{_S}}(undef, size(P_n)) + tmp4934 .= Taylor1(zero(_S), order) + tmp4946 = Array{Taylor1{_S}}(undef, size(P_n)) tmp4946 .= Taylor1(zero(_S), order) - tmp4947 = Array{Taylor1{_S}}(undef, size(tmp4941)) + tmp4947 = Array{Taylor1{_S}}(undef, size(tmp4946)) tmp4947 .= Taylor1(zero(_S), order) - tmp4949 = Array{Taylor1{_S}}(undef, size(cos_mλ)) - tmp4949 .= Taylor1(zero(_S), order) - tmp4950 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4948 = Array{Taylor1{_S}}(undef, size(tmp4947)) + tmp4948 .= Taylor1(zero(_S), order) + tmp4950 = Array{Taylor1{_S}}(undef, size(dP_n)) tmp4950 .= Taylor1(zero(_S), order) - tmp4951 = Array{Taylor1{_S}}(undef, size(tmp4949)) + tmp4951 = Array{Taylor1{_S}}(undef, size(tmp4950)) tmp4951 .= Taylor1(zero(_S), order) - tmp4952 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + tmp4952 = Array{Taylor1{_S}}(undef, size(tmp4951)) tmp4952 .= Taylor1(zero(_S), order) - tmp4953 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp4953 = Array{Taylor1{_S}}(undef, size(tmp4952)) tmp4953 .= Taylor1(zero(_S), order) - tmp4954 = Array{Taylor1{_S}}(undef, size(sin_mλ)) - tmp4954 .= Taylor1(zero(_S), order) - tmp4955 = Array{Taylor1{_S}}(undef, size(tmp4953)) - tmp4955 .= Taylor1(zero(_S), order) - tmp4956 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp4956 .= Taylor1(zero(_S), order) - tmp4957 = Array{Taylor1{_S}}(undef, size(tmp4952)) - tmp4957 .= Taylor1(zero(_S), order) - tmp4963 = Array{Taylor1{_S}}(undef, size(P_nm)) - tmp4963 .= Taylor1(zero(_S), order) - tmp4964 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp4964 .= Taylor1(zero(_S), order) - tmp4965 = Array{Taylor1{_S}}(undef, size(tmp4963)) - tmp4965 .= Taylor1(zero(_S), order) - tmp4966 = Array{Taylor1{_S}}(undef, size(tmp4965)) - tmp4966 .= Taylor1(zero(_S), order) - tmp4968 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) - tmp4968 .= Taylor1(zero(_S), order) - tmp4969 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) - tmp4969 .= Taylor1(zero(_S), order) - tmp4970 = Array{Taylor1{_S}}(undef, size(tmp4968)) - tmp4970 .= Taylor1(zero(_S), order) - tmp4971 = Array{Taylor1{_S}}(undef, size(tmp4970)) - tmp4971 .= Taylor1(zero(_S), order) - tmp4973 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) - tmp4973 .= Taylor1(zero(_S), order) - tmp4974 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) - tmp4974 .= Taylor1(zero(_S), order) - tmp4975 = Array{Taylor1{_S}}(undef, size(tmp4974)) - tmp4975 .= Taylor1(zero(_S), order) - tmp4977 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) - tmp4977 .= Taylor1(zero(_S), order) - tmp4978 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + tmp4978 = Array{Taylor1{_S}}(undef, size(P_nm)) tmp4978 .= Taylor1(zero(_S), order) - tmp4981 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + tmp4979 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp4979 .= Taylor1(zero(_S), order) + tmp4980 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4980 .= Taylor1(zero(_S), order) + tmp4981 = Array{Taylor1{_S}}(undef, size(tmp4979)) tmp4981 .= Taylor1(zero(_S), order) - tmp4982 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + tmp4982 = Array{Taylor1{_S}}(undef, size(tmp4978)) tmp4982 .= Taylor1(zero(_S), order) - tmp4988 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp4983 = Array{Taylor1{_S}}(undef, size(P_nm)) + tmp4983 .= Taylor1(zero(_S), order) + tmp4984 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp4984 .= Taylor1(zero(_S), order) + tmp4985 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4985 .= Taylor1(zero(_S), order) + tmp4986 = Array{Taylor1{_S}}(undef, size(tmp4984)) + tmp4986 .= Taylor1(zero(_S), order) + tmp4987 = Array{Taylor1{_S}}(undef, size(tmp4983)) + tmp4987 .= Taylor1(zero(_S), order) + tmp4988 = Array{Taylor1{_S}}(undef, size(tmp4982)) tmp4988 .= Taylor1(zero(_S), order) - tmp4991 = Array{Taylor1{_S}}(undef, size(sin_ϕ)) + tmp4990 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4990 .= Taylor1(zero(_S), order) + tmp4991 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp4991 .= Taylor1(zero(_S), order) - tmp4993 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp4992 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4992 .= Taylor1(zero(_S), order) + tmp4993 = Array{Taylor1{_S}}(undef, size(tmp4991)) tmp4993 .= Taylor1(zero(_S), order) - tmp4994 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp4994 = Array{Taylor1{_S}}(undef, size(tmp4990)) tmp4994 .= Taylor1(zero(_S), order) - tmp4995 = Array{Taylor1{_S}}(undef, size(tmp4993)) + tmp4995 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) tmp4995 .= Taylor1(zero(_S), order) - tmp4996 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp4996 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp4996 .= Taylor1(zero(_S), order) - tmp4998 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp4997 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4997 .= Taylor1(zero(_S), order) + tmp4998 = Array{Taylor1{_S}}(undef, size(tmp4996)) tmp4998 .= Taylor1(zero(_S), order) - tmp4999 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp4999 = Array{Taylor1{_S}}(undef, size(tmp4995)) tmp4999 .= Taylor1(zero(_S), order) - tmp5000 = Array{Taylor1{_S}}(undef, size(tmp4998)) + tmp5000 = Array{Taylor1{_S}}(undef, size(tmp4994)) tmp5000 .= Taylor1(zero(_S), order) - tmp5001 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5001 .= Taylor1(zero(_S), order) - tmp5003 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5002 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp5002 .= Taylor1(zero(_S), order) + tmp5003 = Array{Taylor1{_S}}(undef, size(sin_mλ)) tmp5003 .= Taylor1(zero(_S), order) - tmp5004 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5004 = Array{Taylor1{_S}}(undef, size(tmp5002)) tmp5004 .= Taylor1(zero(_S), order) - tmp5005 = Array{Taylor1{_S}}(undef, size(tmp5003)) + tmp5005 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) tmp5005 .= Taylor1(zero(_S), order) - tmp5006 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5006 = Array{Taylor1{_S}}(undef, size(cos_mλ)) tmp5006 .= Taylor1(zero(_S), order) - tmp5008 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5007 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp5007 .= Taylor1(zero(_S), order) + tmp5008 = Array{Taylor1{_S}}(undef, size(tmp5006)) tmp5008 .= Taylor1(zero(_S), order) - tmp5009 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5009 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) tmp5009 .= Taylor1(zero(_S), order) - tmp5010 = Array{Taylor1{_S}}(undef, size(tmp5008)) + tmp5010 = Array{Taylor1{_S}}(undef, size(tmp5005)) tmp5010 .= Taylor1(zero(_S), order) - tmp5011 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5011 .= Taylor1(zero(_S), order) - tmp5013 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5013 .= Taylor1(zero(_S), order) - tmp5014 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5014 .= Taylor1(zero(_S), order) - tmp5015 = Array{Taylor1{_S}}(undef, size(tmp5013)) - tmp5015 .= Taylor1(zero(_S), order) - tmp5016 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5030 = Array{Taylor1{_S}}(undef, size(F_J_ξ)) + tmp5030 .= Taylor1(zero(_S), order) + tmp5031 = Array{Taylor1{_S}}(undef, size(F_CS_ξ)) + tmp5031 .= Taylor1(zero(_S), order) + tmp5034 = Array{Taylor1{_S}}(undef, size(F_J_ζ)) + tmp5034 .= Taylor1(zero(_S), order) + tmp5035 = Array{Taylor1{_S}}(undef, size(F_CS_ζ)) + tmp5035 .= Taylor1(zero(_S), order) + tmp4956 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp4956 .= Taylor1(zero(_S), order) + tmp4957 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4957 .= Taylor1(zero(_S), order) + tmp4959 = Array{Taylor1{_S}}(undef, size(cos_mλ)) + tmp4959 .= Taylor1(zero(_S), order) + tmp4960 = Array{Taylor1{_S}}(undef, size(sin_mλ)) + tmp4960 .= Taylor1(zero(_S), order) + tmp4962 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4962 .= Taylor1(zero(_S), order) + tmp4965 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4965 .= Taylor1(zero(_S), order) + tmp4974 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4974 .= Taylor1(zero(_S), order) + tmp4975 = Array{Taylor1{_S}}(undef, size(tmp4974)) + tmp4975 .= Taylor1(zero(_S), order) + tmp4976 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4976 .= Taylor1(zero(_S), order) + tmp4967 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4967 .= Taylor1(zero(_S), order) + tmp4969 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4969 .= Taylor1(zero(_S), order) + tmp4970 = Array{Taylor1{_S}}(undef, size(tmp4969)) + tmp4970 .= Taylor1(zero(_S), order) + tmp4971 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) + tmp4971 .= Taylor1(zero(_S), order) + tmp5016 = Array{Taylor1{_S}}(undef, size(P_nm)) tmp5016 .= Taylor1(zero(_S), order) - tmp5018 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5017 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) + tmp5017 .= Taylor1(zero(_S), order) + tmp5018 = Array{Taylor1{_S}}(undef, size(tmp5016)) tmp5018 .= Taylor1(zero(_S), order) - tmp5019 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5019 = Array{Taylor1{_S}}(undef, size(tmp5018)) tmp5019 .= Taylor1(zero(_S), order) - tmp5020 = Array{Taylor1{_S}}(undef, size(tmp5018)) - tmp5020 .= Taylor1(zero(_S), order) - tmp5021 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5021 = Array{Taylor1{_S}}(undef, size(secϕ_P_nm)) tmp5021 .= Taylor1(zero(_S), order) - tmp5023 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5022 = Array{Taylor1{_S}}(undef, size(Snm_cosmλ)) + tmp5022 .= Taylor1(zero(_S), order) + tmp5023 = Array{Taylor1{_S}}(undef, size(tmp5021)) tmp5023 .= Taylor1(zero(_S), order) - tmp5024 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5024 = Array{Taylor1{_S}}(undef, size(tmp5023)) tmp5024 .= Taylor1(zero(_S), order) - tmp5025 = Array{Taylor1{_S}}(undef, size(tmp5023)) - tmp5025 .= Taylor1(zero(_S), order) - tmp5026 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5026 = Array{Taylor1{_S}}(undef, size(Cnm_cosmλ)) tmp5026 .= Taylor1(zero(_S), order) - tmp5028 = Array{Taylor1{_S}}(undef, size(Rb2p)) + tmp5027 = Array{Taylor1{_S}}(undef, size(cosϕ_dP_nm)) + tmp5027 .= Taylor1(zero(_S), order) + tmp5028 = Array{Taylor1{_S}}(undef, size(tmp5027)) tmp5028 .= Taylor1(zero(_S), order) - tmp5029 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5029 .= Taylor1(zero(_S), order) - tmp5030 = Array{Taylor1{_S}}(undef, size(tmp5028)) - tmp5030 .= Taylor1(zero(_S), order) - tmp5031 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5031 .= Taylor1(zero(_S), order) - tmp5033 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5033 .= Taylor1(zero(_S), order) - tmp5034 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5034 .= Taylor1(zero(_S), order) - tmp5035 = Array{Taylor1{_S}}(undef, size(tmp5033)) - tmp5035 .= Taylor1(zero(_S), order) - tmp5036 = Array{Taylor1{_S}}(undef, size(Rb2p)) - tmp5036 .= Taylor1(zero(_S), order) - tmp5038 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5038 .= Taylor1(zero(_S), order) - tmp5039 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5039 .= Taylor1(zero(_S), order) - tmp5040 = Array{Taylor1{_S}}(undef, size(tmp5038)) - tmp5040 .= Taylor1(zero(_S), order) - tmp5041 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5041 .= Taylor1(zero(_S), order) - tmp5043 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5043 .= Taylor1(zero(_S), order) - tmp5044 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5044 .= Taylor1(zero(_S), order) - tmp5045 = Array{Taylor1{_S}}(undef, size(tmp5043)) - tmp5045 .= Taylor1(zero(_S), order) - tmp5046 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5046 .= Taylor1(zero(_S), order) - tmp5048 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5048 .= Taylor1(zero(_S), order) - tmp5049 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5049 .= Taylor1(zero(_S), order) - tmp5050 = Array{Taylor1{_S}}(undef, size(tmp5048)) - tmp5050 .= Taylor1(zero(_S), order) - tmp5051 = Array{Taylor1{_S}}(undef, size(Gc2p)) - tmp5051 .= Taylor1(zero(_S), order) - #= REPL[19]:474 =# Threads.@threads for j = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:467 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -5375,17 +10307,17 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract Z_bf_1[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(RotM[3, 1, j]), order) Z_bf_2[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]), order) Z_bf_3[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]), order) - tmp4860[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) - X_bf[i, j] = Taylor1(constant_term(tmp4860[i, j]) + constant_term(X_bf_3[i, j]), order) - tmp4862[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) - Y_bf[i, j] = Taylor1(constant_term(tmp4862[i, j]) + constant_term(Y_bf_3[i, j]), order) - tmp4864[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) - Z_bf[i, j] = Taylor1(constant_term(tmp4864[i, j]) + constant_term(Z_bf_3[i, j]), order) + tmp4913[i, j] = Taylor1(constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]), order) + X_bf[i, j] = Taylor1(constant_term(tmp4913[i, j]) + constant_term(X_bf_3[i, j]), order) + tmp4915[i, j] = Taylor1(constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]), order) + Y_bf[i, j] = Taylor1(constant_term(tmp4915[i, j]) + constant_term(Y_bf_3[i, j]), order) + tmp4917[i, j] = Taylor1(constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]), order) + Z_bf[i, j] = Taylor1(constant_term(tmp4917[i, j]) + constant_term(Z_bf_3[i, j]), order) sin_ϕ[i, j] = Taylor1(constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]), order) - tmp4868[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) - tmp4870[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) - tmp4871[i, j] = Taylor1(constant_term(tmp4868[i, j]) + constant_term(tmp4870[i, j]), order) - r_xy[i, j] = Taylor1(sqrt(constant_term(tmp4871[i, j])), order) + tmp4921[i, j] = Taylor1(constant_term(X_bf[i, j]) ^ float(constant_term(2)), order) + tmp4923[i, j] = Taylor1(constant_term(Y_bf[i, j]) ^ float(constant_term(2)), order) + tmp4924[i, j] = Taylor1(constant_term(tmp4921[i, j]) + constant_term(tmp4923[i, j]), order) + r_xy[i, j] = Taylor1(sqrt(constant_term(tmp4924[i, j])), order) cos_ϕ[i, j] = Taylor1(constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]), order) sin_λ[i, j] = Taylor1(constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]), order) cos_λ[i, j] = Taylor1(constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]), order) @@ -5394,35 +10326,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract dP_n[i, j, 1] = Taylor1(identity(constant_term(zero_q_1)), order) dP_n[i, j, 2] = Taylor1(identity(constant_term(one_t)), order) for n = 2:n1SEM[j] - tmp4876[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp4877[i, j, n] = Taylor1(constant_term(tmp4876[i, j, n]) * constant_term(fact1_jsem[n]), order) - tmp4878[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) - P_n[i, j, n + 1] = Taylor1(constant_term(tmp4877[i, j, n]) - constant_term(tmp4878[i, j, n - 1]), order) - tmp4880[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) - tmp4881[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) - dP_n[i, j, n + 1] = Taylor1(constant_term(tmp4880[i, j, n]) + constant_term(tmp4881[i, j, n]), order) + tmp4929[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp4930[i, j, n] = Taylor1(constant_term(tmp4929[i, j, n]) * constant_term(fact1_jsem[n]), order) + tmp4931[i, j, n - 1] = Taylor1(constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]), order) + P_n[i, j, n + 1] = Taylor1(constant_term(tmp4930[i, j, n]) - constant_term(tmp4931[i, j, n - 1]), order) + tmp4933[i, j, n] = Taylor1(constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]), order) + tmp4934[i, j, n] = Taylor1(constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]), order) + dP_n[i, j, n + 1] = Taylor1(constant_term(tmp4933[i, j, n]) + constant_term(tmp4934[i, j, n]), order) temp_rn[i, j, n] = Taylor1(constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])), order) end r_p4[i, j] = Taylor1(constant_term(r_p2[i, j]) ^ float(constant_term(2)), order) - tmp4886[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) - tmp4887[i, j, 3] = Taylor1(constant_term(tmp4886[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ξ[i, j] = Taylor1(constant_term(tmp4887[i, j, 3]) / constant_term(r_p4[i, j]), order) - tmp4889[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) - tmp4890[i, j, 3] = Taylor1(constant_term(tmp4889[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) - tmp4891[i, j, 3] = Taylor1(constant_term(tmp4890[i, j, 3]) * constant_term(J2_t[j]), order) - F_J_ζ[i, j] = Taylor1(constant_term(tmp4891[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp4939[i, j, 3] = Taylor1(constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]), order) + tmp4940[i, j, 3] = Taylor1(constant_term(tmp4939[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ξ[i, j] = Taylor1(constant_term(tmp4940[i, j, 3]) / constant_term(r_p4[i, j]), order) + tmp4942[i, j, 3] = Taylor1(-(constant_term(dP_n[i, j, 3])), order) + tmp4943[i, j, 3] = Taylor1(constant_term(tmp4942[i, j, 3]) * constant_term(cos_ϕ[i, j]), order) + tmp4944[i, j, 3] = Taylor1(constant_term(tmp4943[i, j, 3]) * constant_term(J2_t[j]), order) + F_J_ζ[i, j] = Taylor1(constant_term(tmp4944[i, j, 3]) / constant_term(r_p4[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) for n = 3:n1SEM[j] - tmp4893[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) - tmp4894[i, j, n + 1] = Taylor1(constant_term(tmp4893[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp4895[i, j, n + 1] = Taylor1(constant_term(tmp4894[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjξ[i, j, n] = Taylor1(constant_term(tmp4895[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) - tmp4897[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) - tmp4898[i, j, n + 1] = Taylor1(constant_term(tmp4897[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) - tmp4899[i, j, n + 1] = Taylor1(constant_term(tmp4898[i, j, n + 1]) * constant_term(JSEM[j, n]), order) - tmp4900[i, j, n + 1] = Taylor1(constant_term(tmp4899[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) - temp_fjζ[i, j, n] = Taylor1(constant_term(tmp4900[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) + tmp4946[i, j, n + 1] = Taylor1(constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]), order) + tmp4947[i, j, n + 1] = Taylor1(constant_term(tmp4946[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp4948[i, j, n + 1] = Taylor1(constant_term(tmp4947[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjξ[i, j, n] = Taylor1(constant_term(tmp4948[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]), order) + tmp4950[i, j, n + 1] = Taylor1(-(constant_term(dP_n[i, j, n + 1])), order) + tmp4951[i, j, n + 1] = Taylor1(constant_term(tmp4950[i, j, n + 1]) * constant_term(cos_ϕ[i, j]), order) + tmp4952[i, j, n + 1] = Taylor1(constant_term(tmp4951[i, j, n + 1]) * constant_term(JSEM[j, n]), order) + tmp4953[i, j, n + 1] = Taylor1(constant_term(tmp4952[i, j, n + 1]) / constant_term(temp_rn[i, j, n]), order) + temp_fjζ[i, j, n] = Taylor1(constant_term(tmp4953[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]), order) F_J_ξ_36[i, j] = Taylor1(identity(constant_term(temp_fjξ[i, j, n])), order) F_J_ζ_36[i, j] = Taylor1(identity(constant_term(temp_fjζ[i, j, n])), order) end @@ -5435,69 +10367,69 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract P_nm[i, j, 1, 1] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) cosϕ_dP_nm[i, j, 1, 1] = Taylor1(constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]), order) else - tmp4903[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - tmp4904[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - sin_mλ[i, j, m] = Taylor1(constant_term(tmp4903[i, j, m - 1]) + constant_term(tmp4904[i, j, m - 1]), order) - tmp4906[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) - tmp4907[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) - cos_mλ[i, j, m] = Taylor1(constant_term(tmp4906[i, j, m - 1]) - constant_term(tmp4907[i, j, m - 1]), order) - tmp4909[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) - secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp4909[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) + tmp4956[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + tmp4957[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + sin_mλ[i, j, m] = Taylor1(constant_term(tmp4956[i, j, m - 1]) + constant_term(tmp4957[i, j, m - 1]), order) + tmp4959[i, j, m - 1] = Taylor1(constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]), order) + tmp4960[i, j, m - 1] = Taylor1(constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]), order) + cos_mλ[i, j, m] = Taylor1(constant_term(tmp4959[i, j, m - 1]) - constant_term(tmp4960[i, j, m - 1]), order) + tmp4962[i, j, m - 1, m - 1] = Taylor1(constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]), order) + secϕ_P_nm[i, j, m, m] = Taylor1(constant_term(tmp4962[i, j, m - 1, m - 1]) * constant_term(lnm5[m]), order) P_nm[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]), order) - tmp4912[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) - cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp4912[i, j, m, m]) * constant_term(lnm3[m]), order) + tmp4965[i, j, m, m] = Taylor1(constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]), order) + cosϕ_dP_nm[i, j, m, m] = Taylor1(constant_term(tmp4965[i, j, m, m]) * constant_term(lnm3[m]), order) end for n = m + 1:n1SEM[mo] if n == m + 1 - tmp4914[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp4914[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp4967[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp4967[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) else - tmp4916[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) - tmp4917[i, j, n - 1, m] = Taylor1(constant_term(tmp4916[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) - tmp4918[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) - secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp4917[i, j, n - 1, m]) + constant_term(tmp4918[i, j, n - 2, m]), order) + tmp4969[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]), order) + tmp4970[i, j, n - 1, m] = Taylor1(constant_term(tmp4969[i, j, n - 1, m]) * constant_term(lnm1[n, m]), order) + tmp4971[i, j, n - 2, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]), order) + secϕ_P_nm[i, j, n, m] = Taylor1(constant_term(tmp4970[i, j, n - 1, m]) + constant_term(tmp4971[i, j, n - 2, m]), order) end P_nm[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]), order) - tmp4921[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) - tmp4922[i, j, n, m] = Taylor1(constant_term(tmp4921[i, j, n, m]) * constant_term(lnm3[n]), order) - tmp4923[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) - cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp4922[i, j, n, m]) + constant_term(tmp4923[i, j, n - 1, m]), order) + tmp4974[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]), order) + tmp4975[i, j, n, m] = Taylor1(constant_term(tmp4974[i, j, n, m]) * constant_term(lnm3[n]), order) + tmp4976[i, j, n - 1, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]), order) + cosϕ_dP_nm[i, j, n, m] = Taylor1(constant_term(tmp4975[i, j, n, m]) + constant_term(tmp4976[i, j, n - 1, m]), order) end end - tmp4925[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) - tmp4926[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp4927[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp4928[i, j, 1] = Taylor1(constant_term(tmp4926[i, j, 1]) + constant_term(tmp4927[i, j, 1]), order) - tmp4929[i, j, 2, 1] = Taylor1(constant_term(tmp4925[i, j, 2, 1]) * constant_term(tmp4928[i, j, 1]), order) - tmp4930[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) - tmp4931[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp4932[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp4933[i, j, 2] = Taylor1(constant_term(tmp4931[i, j, 2]) + constant_term(tmp4932[i, j, 2]), order) - tmp4934[i, j, 2, 2] = Taylor1(constant_term(tmp4930[i, j, 2, 2]) * constant_term(tmp4933[i, j, 2]), order) - tmp4935[i, j, 2, 1] = Taylor1(constant_term(tmp4929[i, j, 2, 1]) + constant_term(tmp4934[i, j, 2, 2]), order) - F_CS_ξ[i, j] = Taylor1(constant_term(tmp4935[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp4937[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) - tmp4938[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp4939[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp4940[i, j, 1] = Taylor1(constant_term(tmp4938[i, j, 1]) - constant_term(tmp4939[i, j, 1]), order) - tmp4941[i, j, 2, 1] = Taylor1(constant_term(tmp4937[i, j, 2, 1]) * constant_term(tmp4940[i, j, 1]), order) - tmp4942[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) - tmp4943[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp4944[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp4945[i, j, 2] = Taylor1(constant_term(tmp4943[i, j, 2]) - constant_term(tmp4944[i, j, 2]), order) - tmp4946[i, j, 2, 2] = Taylor1(constant_term(tmp4942[i, j, 2, 2]) * constant_term(tmp4945[i, j, 2]), order) - tmp4947[i, j, 2, 1] = Taylor1(constant_term(tmp4941[i, j, 2, 1]) + constant_term(tmp4946[i, j, 2, 2]), order) - F_CS_η[i, j] = Taylor1(constant_term(tmp4947[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) - tmp4949[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) - tmp4950[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) - tmp4951[i, j, 1] = Taylor1(constant_term(tmp4949[i, j, 1]) + constant_term(tmp4950[i, j, 1]), order) - tmp4952[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp4951[i, j, 1]), order) - tmp4953[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) - tmp4954[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) - tmp4955[i, j, 2] = Taylor1(constant_term(tmp4953[i, j, 2]) + constant_term(tmp4954[i, j, 2]), order) - tmp4956[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp4955[i, j, 2]), order) - tmp4957[i, j, 2, 1] = Taylor1(constant_term(tmp4952[i, j, 2, 1]) + constant_term(tmp4956[i, j, 2, 2]), order) - F_CS_ζ[i, j] = Taylor1(constant_term(tmp4957[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp4978[i, j, 2, 1] = Taylor1(constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]), order) + tmp4979[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp4980[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp4981[i, j, 1] = Taylor1(constant_term(tmp4979[i, j, 1]) + constant_term(tmp4980[i, j, 1]), order) + tmp4982[i, j, 2, 1] = Taylor1(constant_term(tmp4978[i, j, 2, 1]) * constant_term(tmp4981[i, j, 1]), order) + tmp4983[i, j, 2, 2] = Taylor1(constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]), order) + tmp4984[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp4985[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp4986[i, j, 2] = Taylor1(constant_term(tmp4984[i, j, 2]) + constant_term(tmp4985[i, j, 2]), order) + tmp4987[i, j, 2, 2] = Taylor1(constant_term(tmp4983[i, j, 2, 2]) * constant_term(tmp4986[i, j, 2]), order) + tmp4988[i, j, 2, 1] = Taylor1(constant_term(tmp4982[i, j, 2, 1]) + constant_term(tmp4987[i, j, 2, 2]), order) + F_CS_ξ[i, j] = Taylor1(constant_term(tmp4988[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp4990[i, j, 2, 1] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]), order) + tmp4991[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp4992[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp4993[i, j, 1] = Taylor1(constant_term(tmp4991[i, j, 1]) - constant_term(tmp4992[i, j, 1]), order) + tmp4994[i, j, 2, 1] = Taylor1(constant_term(tmp4990[i, j, 2, 1]) * constant_term(tmp4993[i, j, 1]), order) + tmp4995[i, j, 2, 2] = Taylor1(constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]), order) + tmp4996[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp4997[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp4998[i, j, 2] = Taylor1(constant_term(tmp4996[i, j, 2]) - constant_term(tmp4997[i, j, 2]), order) + tmp4999[i, j, 2, 2] = Taylor1(constant_term(tmp4995[i, j, 2, 2]) * constant_term(tmp4998[i, j, 2]), order) + tmp5000[i, j, 2, 1] = Taylor1(constant_term(tmp4994[i, j, 2, 1]) + constant_term(tmp4999[i, j, 2, 2]), order) + F_CS_η[i, j] = Taylor1(constant_term(tmp5000[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) + tmp5002[i, j, 1] = Taylor1(constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]), order) + tmp5003[i, j, 1] = Taylor1(constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]), order) + tmp5004[i, j, 1] = Taylor1(constant_term(tmp5002[i, j, 1]) + constant_term(tmp5003[i, j, 1]), order) + tmp5005[i, j, 2, 1] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp5004[i, j, 1]), order) + tmp5006[i, j, 2] = Taylor1(constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]), order) + tmp5007[i, j, 2] = Taylor1(constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]), order) + tmp5008[i, j, 2] = Taylor1(constant_term(tmp5006[i, j, 2]) + constant_term(tmp5007[i, j, 2]), order) + tmp5009[i, j, 2, 2] = Taylor1(constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp5008[i, j, 2]), order) + tmp5010[i, j, 2, 1] = Taylor1(constant_term(tmp5005[i, j, 2, 1]) + constant_term(tmp5009[i, j, 2, 2]), order) + F_CS_ζ[i, j] = Taylor1(constant_term(tmp5010[i, j, 2, 1]) / constant_term(r_p4[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -5507,32 +10439,32 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract Cnm_sinmλ[i, j, n, m] = Taylor1(constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]), order) Snm_cosmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]), order) Snm_sinmλ[i, j, n, m] = Taylor1(constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]), order) - tmp4963[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) - tmp4964[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp4965[i, j, n, m] = Taylor1(constant_term(tmp4963[i, j, n, m]) * constant_term(tmp4964[i, j, n, m]), order) - tmp4966[i, j, n, m] = Taylor1(constant_term(tmp4965[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp4966[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) - tmp4968[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) - tmp4969[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) - tmp4970[i, j, n, m] = Taylor1(constant_term(tmp4968[i, j, n, m]) * constant_term(tmp4969[i, j, n, m]), order) - tmp4971[i, j, n, m] = Taylor1(constant_term(tmp4970[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp4971[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) - tmp4973[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) - tmp4974[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp4973[i, j, n, m]), order) - tmp4975[i, j, n, m] = Taylor1(constant_term(tmp4974[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) - temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp4975[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) + tmp5016[i, j, n, m] = Taylor1(constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]), order) + tmp5017[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp5018[i, j, n, m] = Taylor1(constant_term(tmp5016[i, j, n, m]) * constant_term(tmp5017[i, j, n, m]), order) + tmp5019[i, j, n, m] = Taylor1(constant_term(tmp5018[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ξ[i, j, n, m] = Taylor1(constant_term(tmp5019[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]), order) + tmp5021[i, j, n, m] = Taylor1(constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]), order) + tmp5022[i, j, n, m] = Taylor1(constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]), order) + tmp5023[i, j, n, m] = Taylor1(constant_term(tmp5021[i, j, n, m]) * constant_term(tmp5022[i, j, n, m]), order) + tmp5024[i, j, n, m] = Taylor1(constant_term(tmp5023[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_η[i, j, n, m] = Taylor1(constant_term(tmp5024[i, j, n, m]) + constant_term(F_CS_η_36[i, j]), order) + tmp5026[i, j, n, m] = Taylor1(constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]), order) + tmp5027[i, j, n, m] = Taylor1(constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp5026[i, j, n, m]), order) + tmp5028[i, j, n, m] = Taylor1(constant_term(tmp5027[i, j, n, m]) / constant_term(temp_rn[i, j, n]), order) + temp_CS_ζ[i, j, n, m] = Taylor1(constant_term(tmp5028[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]), order) F_CS_ξ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ξ[i, j, n, m])), order) F_CS_η_36[i, j] = Taylor1(identity(constant_term(temp_CS_η[i, j, n, m])), order) F_CS_ζ_36[i, j] = Taylor1(identity(constant_term(temp_CS_ζ[i, j, n, m])), order) end end - tmp4977[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) - tmp4978[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) - F_JCS_ξ[i, j] = Taylor1(constant_term(tmp4977[i, j]) + constant_term(tmp4978[i, j]), order) + tmp5030[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) + tmp5031[i, j] = Taylor1(constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]), order) + F_JCS_ξ[i, j] = Taylor1(constant_term(tmp5030[i, j]) + constant_term(tmp5031[i, j]), order) F_JCS_η[i, j] = Taylor1(constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]), order) - tmp4981[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) - tmp4982[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) - F_JCS_ζ[i, j] = Taylor1(constant_term(tmp4981[i, j]) + constant_term(tmp4982[i, j]), order) + tmp5034[i, j] = Taylor1(constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]), order) + tmp5035[i, j] = Taylor1(constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]), order) + F_JCS_ζ[i, j] = Taylor1(constant_term(tmp5034[i, j]) + constant_term(tmp5035[i, j]), order) else F_JCS_ξ[i, j] = Taylor1(constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]), order) F_JCS_η[i, j] = Taylor1(identity(constant_term(zero_q_1)), order) @@ -5540,146 +10472,146 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end Rb2p[i, j, 1, 1] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 2, 1] = Taylor1(-(constant_term(sin_λ[i, j])), order) - tmp4988[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp4988[i, j]) * constant_term(cos_λ[i, j]), order) + tmp5041[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 1] = Taylor1(constant_term(tmp5041[i, j]) * constant_term(cos_λ[i, j]), order) Rb2p[i, j, 1, 2] = Taylor1(constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 2, 2] = Taylor1(identity(constant_term(cos_λ[i, j])), order) - tmp4991[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) - Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp4991[i, j]) * constant_term(sin_λ[i, j]), order) + tmp5044[i, j] = Taylor1(-(constant_term(sin_ϕ[i, j])), order) + Rb2p[i, j, 3, 2] = Taylor1(constant_term(tmp5044[i, j]) * constant_term(sin_λ[i, j]), order) Rb2p[i, j, 1, 3] = Taylor1(identity(constant_term(sin_ϕ[i, j])), order) Rb2p[i, j, 2, 3] = Taylor1(identity(constant_term(zero_q_1)), order) Rb2p[i, j, 3, 3] = Taylor1(identity(constant_term(cos_ϕ[i, j])), order) - tmp4993[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) - tmp4994[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) - tmp4995[i, j, 1, 1] = Taylor1(constant_term(tmp4993[i, j, 1, 1]) + constant_term(tmp4994[i, j, 1, 2]), order) - tmp4996[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp4995[i, j, 1, 1]) + constant_term(tmp4996[i, j, 1, 3]), order) - tmp4998[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) - tmp4999[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) - tmp5000[i, j, 2, 1] = Taylor1(constant_term(tmp4998[i, j, 2, 1]) + constant_term(tmp4999[i, j, 2, 2]), order) - tmp5001[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp5000[i, j, 2, 1]) + constant_term(tmp5001[i, j, 2, 3]), order) - tmp5003[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) - tmp5004[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) - tmp5005[i, j, 3, 1] = Taylor1(constant_term(tmp5003[i, j, 3, 1]) + constant_term(tmp5004[i, j, 3, 2]), order) - tmp5006[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) - Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp5005[i, j, 3, 1]) + constant_term(tmp5006[i, j, 3, 3]), order) - tmp5008[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) - tmp5009[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) - tmp5010[i, j, 1, 1] = Taylor1(constant_term(tmp5008[i, j, 1, 1]) + constant_term(tmp5009[i, j, 1, 2]), order) - tmp5011[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp5010[i, j, 1, 1]) + constant_term(tmp5011[i, j, 1, 3]), order) - tmp5013[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) - tmp5014[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) - tmp5015[i, j, 2, 1] = Taylor1(constant_term(tmp5013[i, j, 2, 1]) + constant_term(tmp5014[i, j, 2, 2]), order) - tmp5016[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp5015[i, j, 2, 1]) + constant_term(tmp5016[i, j, 2, 3]), order) - tmp5018[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) - tmp5019[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) - tmp5020[i, j, 3, 1] = Taylor1(constant_term(tmp5018[i, j, 3, 1]) + constant_term(tmp5019[i, j, 3, 2]), order) - tmp5021[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) - Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp5020[i, j, 3, 1]) + constant_term(tmp5021[i, j, 3, 3]), order) - tmp5023[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) - tmp5024[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) - tmp5025[i, j, 1, 1] = Taylor1(constant_term(tmp5023[i, j, 1, 1]) + constant_term(tmp5024[i, j, 1, 2]), order) - tmp5026[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp5025[i, j, 1, 1]) + constant_term(tmp5026[i, j, 1, 3]), order) - tmp5028[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) - tmp5029[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) - tmp5030[i, j, 2, 1] = Taylor1(constant_term(tmp5028[i, j, 2, 1]) + constant_term(tmp5029[i, j, 2, 2]), order) - tmp5031[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp5030[i, j, 2, 1]) + constant_term(tmp5031[i, j, 2, 3]), order) - tmp5033[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) - tmp5034[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) - tmp5035[i, j, 3, 1] = Taylor1(constant_term(tmp5033[i, j, 3, 1]) + constant_term(tmp5034[i, j, 3, 2]), order) - tmp5036[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) - Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp5035[i, j, 3, 1]) + constant_term(tmp5036[i, j, 3, 3]), order) - tmp5038[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) - tmp5039[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) - tmp5040[i, j, 1, 1] = Taylor1(constant_term(tmp5038[i, j, 1, 1]) + constant_term(tmp5039[i, j, 2, 1]), order) - tmp5041[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) - F_JCS_x[i, j] = Taylor1(constant_term(tmp5040[i, j, 1, 1]) + constant_term(tmp5041[i, j, 3, 1]), order) - tmp5043[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) - tmp5044[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) - tmp5045[i, j, 1, 2] = Taylor1(constant_term(tmp5043[i, j, 1, 2]) + constant_term(tmp5044[i, j, 2, 2]), order) - tmp5046[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) - F_JCS_y[i, j] = Taylor1(constant_term(tmp5045[i, j, 1, 2]) + constant_term(tmp5046[i, j, 3, 2]), order) - tmp5048[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) - tmp5049[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) - tmp5050[i, j, 1, 3] = Taylor1(constant_term(tmp5048[i, j, 1, 3]) + constant_term(tmp5049[i, j, 2, 3]), order) - tmp5051[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) - F_JCS_z[i, j] = Taylor1(constant_term(tmp5050[i, j, 1, 3]) + constant_term(tmp5051[i, j, 3, 3]), order) + tmp5046[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]), order) + tmp5047[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]), order) + tmp5048[i, j, 1, 1] = Taylor1(constant_term(tmp5046[i, j, 1, 1]) + constant_term(tmp5047[i, j, 1, 2]), order) + tmp5049[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 1, 1] = Taylor1(constant_term(tmp5048[i, j, 1, 1]) + constant_term(tmp5049[i, j, 1, 3]), order) + tmp5051[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]), order) + tmp5052[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]), order) + tmp5053[i, j, 2, 1] = Taylor1(constant_term(tmp5051[i, j, 2, 1]) + constant_term(tmp5052[i, j, 2, 2]), order) + tmp5054[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 2, 1] = Taylor1(constant_term(tmp5053[i, j, 2, 1]) + constant_term(tmp5054[i, j, 2, 3]), order) + tmp5056[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]), order) + tmp5057[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]), order) + tmp5058[i, j, 3, 1] = Taylor1(constant_term(tmp5056[i, j, 3, 1]) + constant_term(tmp5057[i, j, 3, 2]), order) + tmp5059[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]), order) + Gc2p[i, j, 3, 1] = Taylor1(constant_term(tmp5058[i, j, 3, 1]) + constant_term(tmp5059[i, j, 3, 3]), order) + tmp5061[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]), order) + tmp5062[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]), order) + tmp5063[i, j, 1, 1] = Taylor1(constant_term(tmp5061[i, j, 1, 1]) + constant_term(tmp5062[i, j, 1, 2]), order) + tmp5064[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 1, 2] = Taylor1(constant_term(tmp5063[i, j, 1, 1]) + constant_term(tmp5064[i, j, 1, 3]), order) + tmp5066[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]), order) + tmp5067[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]), order) + tmp5068[i, j, 2, 1] = Taylor1(constant_term(tmp5066[i, j, 2, 1]) + constant_term(tmp5067[i, j, 2, 2]), order) + tmp5069[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 2, 2] = Taylor1(constant_term(tmp5068[i, j, 2, 1]) + constant_term(tmp5069[i, j, 2, 3]), order) + tmp5071[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]), order) + tmp5072[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]), order) + tmp5073[i, j, 3, 1] = Taylor1(constant_term(tmp5071[i, j, 3, 1]) + constant_term(tmp5072[i, j, 3, 2]), order) + tmp5074[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]), order) + Gc2p[i, j, 3, 2] = Taylor1(constant_term(tmp5073[i, j, 3, 1]) + constant_term(tmp5074[i, j, 3, 3]), order) + tmp5076[i, j, 1, 1] = Taylor1(constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]), order) + tmp5077[i, j, 1, 2] = Taylor1(constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]), order) + tmp5078[i, j, 1, 1] = Taylor1(constant_term(tmp5076[i, j, 1, 1]) + constant_term(tmp5077[i, j, 1, 2]), order) + tmp5079[i, j, 1, 3] = Taylor1(constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 1, 3] = Taylor1(constant_term(tmp5078[i, j, 1, 1]) + constant_term(tmp5079[i, j, 1, 3]), order) + tmp5081[i, j, 2, 1] = Taylor1(constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]), order) + tmp5082[i, j, 2, 2] = Taylor1(constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]), order) + tmp5083[i, j, 2, 1] = Taylor1(constant_term(tmp5081[i, j, 2, 1]) + constant_term(tmp5082[i, j, 2, 2]), order) + tmp5084[i, j, 2, 3] = Taylor1(constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 2, 3] = Taylor1(constant_term(tmp5083[i, j, 2, 1]) + constant_term(tmp5084[i, j, 2, 3]), order) + tmp5086[i, j, 3, 1] = Taylor1(constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]), order) + tmp5087[i, j, 3, 2] = Taylor1(constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]), order) + tmp5088[i, j, 3, 1] = Taylor1(constant_term(tmp5086[i, j, 3, 1]) + constant_term(tmp5087[i, j, 3, 2]), order) + tmp5089[i, j, 3, 3] = Taylor1(constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]), order) + Gc2p[i, j, 3, 3] = Taylor1(constant_term(tmp5088[i, j, 3, 1]) + constant_term(tmp5089[i, j, 3, 3]), order) + tmp5091[i, j, 1, 1] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]), order) + tmp5092[i, j, 2, 1] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]), order) + tmp5093[i, j, 1, 1] = Taylor1(constant_term(tmp5091[i, j, 1, 1]) + constant_term(tmp5092[i, j, 2, 1]), order) + tmp5094[i, j, 3, 1] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]), order) + F_JCS_x[i, j] = Taylor1(constant_term(tmp5093[i, j, 1, 1]) + constant_term(tmp5094[i, j, 3, 1]), order) + tmp5096[i, j, 1, 2] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]), order) + tmp5097[i, j, 2, 2] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]), order) + tmp5098[i, j, 1, 2] = Taylor1(constant_term(tmp5096[i, j, 1, 2]) + constant_term(tmp5097[i, j, 2, 2]), order) + tmp5099[i, j, 3, 2] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]), order) + F_JCS_y[i, j] = Taylor1(constant_term(tmp5098[i, j, 1, 2]) + constant_term(tmp5099[i, j, 3, 2]), order) + tmp5101[i, j, 1, 3] = Taylor1(constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]), order) + tmp5102[i, j, 2, 3] = Taylor1(constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]), order) + tmp5103[i, j, 1, 3] = Taylor1(constant_term(tmp5101[i, j, 1, 3]) + constant_term(tmp5102[i, j, 2, 3]), order) + tmp5104[i, j, 3, 3] = Taylor1(constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]), order) + F_JCS_z[i, j] = Taylor1(constant_term(tmp5103[i, j, 1, 3]) + constant_term(tmp5104[i, j, 3, 3]), order) end end end end - tmp5053 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp5053 .= Taylor1(zero(_S), order) - tmp5055 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp5055 .= Taylor1(zero(_S), order) - tmp5057 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp5057 .= Taylor1(zero(_S), order) - tmp5059 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) - tmp5059 .= Taylor1(zero(_S), order) - tmp5061 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) - tmp5061 .= Taylor1(zero(_S), order) - tmp5063 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) - tmp5063 .= Taylor1(zero(_S), order) - tmp5065 = Array{Taylor1{_S}}(undef, size(Y)) - tmp5065 .= Taylor1(zero(_S), order) - tmp5066 = Array{Taylor1{_S}}(undef, size(Z)) - tmp5066 .= Taylor1(zero(_S), order) - tmp5067 = Array{Taylor1{_S}}(undef, size(tmp5065)) - tmp5067 .= Taylor1(zero(_S), order) - tmp5069 = Array{Taylor1{_S}}(undef, size(Z)) - tmp5069 .= Taylor1(zero(_S), order) - tmp5070 = Array{Taylor1{_S}}(undef, size(X)) - tmp5070 .= Taylor1(zero(_S), order) - tmp5071 = Array{Taylor1{_S}}(undef, size(tmp5069)) - tmp5071 .= Taylor1(zero(_S), order) - tmp5073 = Array{Taylor1{_S}}(undef, size(X)) - tmp5073 .= Taylor1(zero(_S), order) - tmp5074 = Array{Taylor1{_S}}(undef, size(Y)) - tmp5074 .= Taylor1(zero(_S), order) - tmp5075 = Array{Taylor1{_S}}(undef, size(tmp5073)) - tmp5075 .= Taylor1(zero(_S), order) + tmp5106 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + tmp5106 .= Taylor1(zero(_S), order) + tmp5108 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + tmp5108 .= Taylor1(zero(_S), order) + tmp5110 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + tmp5110 .= Taylor1(zero(_S), order) + tmp5112 = Array{Taylor1{_S}}(undef, size(F_JCS_x)) + tmp5112 .= Taylor1(zero(_S), order) + tmp5114 = Array{Taylor1{_S}}(undef, size(F_JCS_y)) + tmp5114 .= Taylor1(zero(_S), order) + tmp5116 = Array{Taylor1{_S}}(undef, size(F_JCS_z)) + tmp5116 .= Taylor1(zero(_S), order) + tmp5118 = Array{Taylor1{_S}}(undef, size(Y)) + tmp5118 .= Taylor1(zero(_S), order) + tmp5119 = Array{Taylor1{_S}}(undef, size(Z)) + tmp5119 .= Taylor1(zero(_S), order) + tmp5120 = Array{Taylor1{_S}}(undef, size(tmp5118)) + tmp5120 .= Taylor1(zero(_S), order) + tmp5122 = Array{Taylor1{_S}}(undef, size(Z)) + tmp5122 .= Taylor1(zero(_S), order) + tmp5123 = Array{Taylor1{_S}}(undef, size(X)) + tmp5123 .= Taylor1(zero(_S), order) + tmp5124 = Array{Taylor1{_S}}(undef, size(tmp5122)) + tmp5124 .= Taylor1(zero(_S), order) + tmp5126 = Array{Taylor1{_S}}(undef, size(X)) + tmp5126 .= Taylor1(zero(_S), order) + tmp5127 = Array{Taylor1{_S}}(undef, size(Y)) + tmp5127 .= Taylor1(zero(_S), order) + tmp5128 = Array{Taylor1{_S}}(undef, size(tmp5126)) + tmp5128 .= Taylor1(zero(_S), order) for j = 1:N_ext for i = 1:N_ext if i == j continue else if UJ_interaction[i, j] - tmp5053[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp5053[i, j]), order) + tmp5106[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_j[i, j] = Taylor1(constant_term(accX[j]) - constant_term(tmp5106[i, j]), order) accX[j] = Taylor1(identity(constant_term(temp_accX_j[i, j])), order) - tmp5055[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp5055[i, j]), order) + tmp5108[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_j[i, j] = Taylor1(constant_term(accY[j]) - constant_term(tmp5108[i, j]), order) accY[j] = Taylor1(identity(constant_term(temp_accY_j[i, j])), order) - tmp5057[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp5057[i, j]), order) + tmp5110[i, j] = Taylor1(constant_term(μ[i]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_j[i, j] = Taylor1(constant_term(accZ[j]) - constant_term(tmp5110[i, j]), order) accZ[j] = Taylor1(identity(constant_term(temp_accZ_j[i, j])), order) - tmp5059[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) - temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp5059[i, j]), order) + tmp5112[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_x[i, j]), order) + temp_accX_i[i, j] = Taylor1(constant_term(accX[i]) + constant_term(tmp5112[i, j]), order) accX[i] = Taylor1(identity(constant_term(temp_accX_i[i, j])), order) - tmp5061[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) - temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp5061[i, j]), order) + tmp5114[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_y[i, j]), order) + temp_accY_i[i, j] = Taylor1(constant_term(accY[i]) + constant_term(tmp5114[i, j]), order) accY[i] = Taylor1(identity(constant_term(temp_accY_i[i, j])), order) - tmp5063[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) - temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp5063[i, j]), order) + tmp5116[i, j] = Taylor1(constant_term(μ[j]) * constant_term(F_JCS_z[i, j]), order) + temp_accZ_i[i, j] = Taylor1(constant_term(accZ[i]) + constant_term(tmp5116[i, j]), order) accZ[i] = Taylor1(identity(constant_term(temp_accZ_i[i, j])), order) if j == mo - tmp5065[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp5066[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp5067[i, j] = Taylor1(constant_term(tmp5065[i, j]) - constant_term(tmp5066[i, j]), order) - N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp5067[i, j]), order) - tmp5069[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp5070[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) - tmp5071[i, j] = Taylor1(constant_term(tmp5069[i, j]) - constant_term(tmp5070[i, j]), order) - N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp5071[i, j]), order) - tmp5073[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) - tmp5074[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) - tmp5075[i, j] = Taylor1(constant_term(tmp5073[i, j]) - constant_term(tmp5074[i, j]), order) - N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp5075[i, j]), order) + tmp5118[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp5119[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp5120[i, j] = Taylor1(constant_term(tmp5118[i, j]) - constant_term(tmp5119[i, j]), order) + N_MfigM_pmA_x[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp5120[i, j]), order) + tmp5122[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp5123[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]), order) + tmp5124[i, j] = Taylor1(constant_term(tmp5122[i, j]) - constant_term(tmp5123[i, j]), order) + N_MfigM_pmA_y[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp5124[i, j]), order) + tmp5126[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]), order) + tmp5127[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]), order) + tmp5128[i, j] = Taylor1(constant_term(tmp5126[i, j]) - constant_term(tmp5127[i, j]), order) + N_MfigM_pmA_z[i] = Taylor1(constant_term(μ[i]) * constant_term(tmp5128[i, j]), order) temp_N_M_x[i] = Taylor1(constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]), order) N_MfigM[1] = Taylor1(identity(constant_term(temp_N_M_x[i])), order) temp_N_M_y[i] = Taylor1(constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]), order) @@ -5691,27 +10623,27 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end end end - tmp5087 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) - tmp5087 .= Taylor1(zero(_S), order) + tmp5140 = Array{Taylor1{_S}}(undef, size(vi_dot_vj)) + tmp5140 .= Taylor1(zero(_S), order) Xij_t_Ui = Array{Taylor1{_S}}(undef, size(X)) Xij_t_Ui .= Taylor1(zero(_S), order) Yij_t_Vi = Array{Taylor1{_S}}(undef, size(Y)) Yij_t_Vi .= Taylor1(zero(_S), order) Zij_t_Wi = Array{Taylor1{_S}}(undef, size(Z)) Zij_t_Wi .= Taylor1(zero(_S), order) - tmp5093 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) - tmp5093 .= Taylor1(zero(_S), order) - Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp5093)) + tmp5146 = Array{Taylor1{_S}}(undef, size(Xij_t_Ui)) + tmp5146 .= Taylor1(zero(_S), order) + Rij_dot_Vi = Array{Taylor1{_S}}(undef, size(tmp5146)) Rij_dot_Vi .= Taylor1(zero(_S), order) - tmp5096 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) - tmp5096 .= Taylor1(zero(_S), order) - pn1t7 = Array{Taylor1{_S}}(undef, size(tmp5096)) + tmp5149 = Array{Taylor1{_S}}(undef, size(Rij_dot_Vi)) + tmp5149 .= Taylor1(zero(_S), order) + pn1t7 = Array{Taylor1{_S}}(undef, size(tmp5149)) pn1t7 .= Taylor1(zero(_S), order) - tmp5099 = Array{Taylor1{_S}}(undef, size(pn1t7)) - tmp5099 .= Taylor1(zero(_S), order) + tmp5152 = Array{Taylor1{_S}}(undef, size(pn1t7)) + tmp5152 .= Taylor1(zero(_S), order) pn1t2_7 = Array{Taylor1{_S}}(undef, size(ϕs_and_vs)) pn1t2_7 .= Taylor1(zero(_S), order) - #= REPL[19]:713 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:706 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -5720,18 +10652,18 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract ϕi_plus_4ϕj[i, j] = Taylor1(constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]), order) _2v2[i, j] = Taylor1(constant_term(2) * constant_term(v2[i]), order) sj2_plus_2si2[i, j] = Taylor1(constant_term(v2[j]) + constant_term(_2v2[i, j]), order) - tmp5087[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) - sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp5087[i, j]), order) + tmp5140[i, j] = Taylor1(constant_term(4) * constant_term(vi_dot_vj[i, j]), order) + sj2_plus_2si2_minus_4vivj[i, j] = Taylor1(constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp5140[i, j]), order) ϕs_and_vs[i, j] = Taylor1(constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]), order) Xij_t_Ui[i, j] = Taylor1(constant_term(X[i, j]) * constant_term(dq[3i - 2]), order) Yij_t_Vi[i, j] = Taylor1(constant_term(Y[i, j]) * constant_term(dq[3i - 1]), order) Zij_t_Wi[i, j] = Taylor1(constant_term(Z[i, j]) * constant_term(dq[3i]), order) - tmp5093[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) - Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp5093[i, j]) + constant_term(Zij_t_Wi[i, j]), order) - tmp5096[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) - pn1t7[i, j] = Taylor1(constant_term(tmp5096[i, j]) / constant_term(r_p2[i, j]), order) - tmp5099[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) - pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp5099[i, j]), order) + tmp5146[i, j] = Taylor1(constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]), order) + Rij_dot_Vi[i, j] = Taylor1(constant_term(tmp5146[i, j]) + constant_term(Zij_t_Wi[i, j]), order) + tmp5149[i, j] = Taylor1(constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)), order) + pn1t7[i, j] = Taylor1(constant_term(tmp5149[i, j]) / constant_term(r_p2[i, j]), order) + tmp5152[i, j] = Taylor1(constant_term(1.5) * constant_term(pn1t7[i, j]), order) + pn1t2_7[i, j] = Taylor1(constant_term(ϕs_and_vs[i, j]) - constant_term(tmp5152[i, j]), order) pn1t1_7[i, j] = Taylor1(constant_term(c_p2) + constant_term(pn1t2_7[i, j]), order) end end @@ -5739,31 +10671,31 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract pntempY[j] = Taylor1(identity(constant_term(zero_q_1)), order) pntempZ[j] = Taylor1(identity(constant_term(zero_q_1)), order) end - tmp5106 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) - tmp5106 .= Taylor1(zero(_S), order) - tmp5107 = Array{Taylor1{_S}}(undef, size(tmp5106)) - tmp5107 .= Taylor1(zero(_S), order) - tmp5108 = Array{Taylor1{_S}}(undef, size(tmp5107)) - tmp5108 .= Taylor1(zero(_S), order) - tmp5116 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) - tmp5116 .= Taylor1(zero(_S), order) + tmp5159 = Array{Taylor1{_S}}(undef, size(pNX_t_X)) + tmp5159 .= Taylor1(zero(_S), order) + tmp5160 = Array{Taylor1{_S}}(undef, size(tmp5159)) + tmp5160 .= Taylor1(zero(_S), order) + tmp5161 = Array{Taylor1{_S}}(undef, size(tmp5160)) + tmp5161 .= Taylor1(zero(_S), order) + tmp5169 = Array{Taylor1{_S}}(undef, size(U_t_pn2)) + tmp5169 .= Taylor1(zero(_S), order) termpnx = Array{Taylor1{_S}}(undef, size(X_t_pn1)) termpnx .= Taylor1(zero(_S), order) sumpnx = Array{Taylor1{_S}}(undef, size(termpnx)) sumpnx .= Taylor1(zero(_S), order) - tmp5119 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) - tmp5119 .= Taylor1(zero(_S), order) + tmp5172 = Array{Taylor1{_S}}(undef, size(V_t_pn2)) + tmp5172 .= Taylor1(zero(_S), order) termpny = Array{Taylor1{_S}}(undef, size(Y_t_pn1)) termpny .= Taylor1(zero(_S), order) sumpny = Array{Taylor1{_S}}(undef, size(termpny)) sumpny .= Taylor1(zero(_S), order) - tmp5122 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) - tmp5122 .= Taylor1(zero(_S), order) + tmp5175 = Array{Taylor1{_S}}(undef, size(W_t_pn2)) + tmp5175 .= Taylor1(zero(_S), order) termpnz = Array{Taylor1{_S}}(undef, size(Z_t_pn1)) termpnz .= Taylor1(zero(_S), order) sumpnz = Array{Taylor1{_S}}(undef, size(termpnz)) sumpnz .= Taylor1(zero(_S), order) - #= REPL[19]:752 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:745 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -5771,26 +10703,26 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract pNX_t_X[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(X[i, j]), order) pNY_t_Y[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(Y[i, j]), order) pNZ_t_Z[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(Z[i, j]), order) - tmp5106[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) - tmp5107[i, j] = Taylor1(constant_term(tmp5106[i, j]) + constant_term(pNZ_t_Z[i, j]), order) - tmp5108[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp5107[i, j]), order) - pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp5108[i, j]), order) + tmp5159[i, j] = Taylor1(constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]), order) + tmp5160[i, j] = Taylor1(constant_term(tmp5159[i, j]) + constant_term(pNZ_t_Z[i, j]), order) + tmp5161[i, j] = Taylor1(constant_term(0.5) * constant_term(tmp5160[i, j]), order) + pn1[i, j] = Taylor1(constant_term(pn1t1_7[i, j]) + constant_term(tmp5161[i, j]), order) X_t_pn1[i, j] = Taylor1(constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]), order) Y_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]), order) Z_t_pn1[i, j] = Taylor1(constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]), order) pNX_t_pn3[i, j] = Taylor1(constant_term(newtonX[i]) * constant_term(pn3[i, j]), order) pNY_t_pn3[i, j] = Taylor1(constant_term(newtonY[i]) * constant_term(pn3[i, j]), order) pNZ_t_pn3[i, j] = Taylor1(constant_term(newtonZ[i]) * constant_term(pn3[i, j]), order) - tmp5116[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) - termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp5116[i, j]), order) + tmp5169[i, j] = Taylor1(constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]), order) + termpnx[i, j] = Taylor1(constant_term(X_t_pn1[i, j]) + constant_term(tmp5169[i, j]), order) sumpnx[i, j] = Taylor1(constant_term(pntempX[j]) + constant_term(termpnx[i, j]), order) pntempX[j] = Taylor1(identity(constant_term(sumpnx[i, j])), order) - tmp5119[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) - termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp5119[i, j]), order) + tmp5172[i, j] = Taylor1(constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]), order) + termpny[i, j] = Taylor1(constant_term(Y_t_pn1[i, j]) + constant_term(tmp5172[i, j]), order) sumpny[i, j] = Taylor1(constant_term(pntempY[j]) + constant_term(termpny[i, j]), order) pntempY[j] = Taylor1(identity(constant_term(sumpny[i, j])), order) - tmp5122[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) - termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp5122[i, j]), order) + tmp5175[i, j] = Taylor1(constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]), order) + termpnz[i, j] = Taylor1(constant_term(Z_t_pn1[i, j]) + constant_term(tmp5175[i, j]), order) sumpnz[i, j] = Taylor1(constant_term(pntempZ[j]) + constant_term(termpnz[i, j]), order) pntempZ[j] = Taylor1(identity(constant_term(sumpnz[i, j])), order) end @@ -5802,9 +10734,9 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract x0s_M = Taylor1(identity(constant_term(r_star_M_0[1])), order) y0s_M = Taylor1(identity(constant_term(r_star_M_0[2])), order) z0s_M = Taylor1(identity(constant_term(r_star_M_0[3])), order) - tmp5129 = Taylor1(constant_term(x0s_M) ^ float(constant_term(2)), order) - tmp5131 = Taylor1(constant_term(y0s_M) ^ float(constant_term(2)), order) - ρ0s2_M = Taylor1(constant_term(tmp5129) + constant_term(tmp5131), order) + tmp5182 = Taylor1(constant_term(x0s_M) ^ float(constant_term(2)), order) + tmp5184 = Taylor1(constant_term(y0s_M) ^ float(constant_term(2)), order) + ρ0s2_M = Taylor1(constant_term(tmp5182) + constant_term(tmp5184), order) ρ0s_M = Taylor1(sqrt(constant_term(ρ0s2_M)), order) z0s2_M = Taylor1(constant_term(z0s_M) ^ float(constant_term(2)), order) r0s2_M = Taylor1(constant_term(ρ0s2_M) + constant_term(z0s2_M), order) @@ -5813,60 +10745,60 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract x0s_S = Taylor1(identity(constant_term(r_star_S_0[1])), order) y0s_S = Taylor1(identity(constant_term(r_star_S_0[2])), order) z0s_S = Taylor1(identity(constant_term(r_star_S_0[3])), order) - tmp5141 = Taylor1(constant_term(x0s_S) ^ float(constant_term(2)), order) - tmp5143 = Taylor1(constant_term(y0s_S) ^ float(constant_term(2)), order) - ρ0s2_S = Taylor1(constant_term(tmp5141) + constant_term(tmp5143), order) + tmp5194 = Taylor1(constant_term(x0s_S) ^ float(constant_term(2)), order) + tmp5196 = Taylor1(constant_term(y0s_S) ^ float(constant_term(2)), order) + ρ0s2_S = Taylor1(constant_term(tmp5194) + constant_term(tmp5196), order) ρ0s_S = Taylor1(sqrt(constant_term(ρ0s2_S)), order) z0s2_S = Taylor1(constant_term(z0s_S) ^ float(constant_term(2)), order) r0s2_S = Taylor1(constant_term(ρ0s2_S) + constant_term(z0s2_S), order) r0s_S = Taylor1(sqrt(constant_term(r0s2_S)), order) r0s5_S = Taylor1(constant_term(r0s_S) ^ float(constant_term(5)), order) - tmp5153 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]), order) - tmp5155 = Taylor1(constant_term(tmp5153) ^ float(constant_term(2)), order) - tmp5157 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M), order) - tmp5159 = Taylor1(constant_term(tmp5157) ^ float(constant_term(2)), order) - tmp5160 = Taylor1(constant_term(0.5) * constant_term(tmp5159), order) - tmp5161 = Taylor1(constant_term(tmp5155) + constant_term(tmp5160), order) - tmp5162 = Taylor1(constant_term(tmp5161) / constant_term(r_p2[mo, ea]), order) - tmp5163 = Taylor1(constant_term(5) * constant_term(tmp5162), order) - coeff0_M = Taylor1(constant_term(r0s2_M) - constant_term(tmp5163), order) - tmp5166 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]), order) - tmp5168 = Taylor1(constant_term(tmp5166) ^ float(constant_term(2)), order) - tmp5170 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S), order) - tmp5172 = Taylor1(constant_term(tmp5170) ^ float(constant_term(2)), order) - tmp5173 = Taylor1(constant_term(0.5) * constant_term(tmp5172), order) - tmp5174 = Taylor1(constant_term(tmp5168) + constant_term(tmp5173), order) - tmp5175 = Taylor1(constant_term(tmp5174) / constant_term(r_p2[mo, ea]), order) - tmp5176 = Taylor1(constant_term(5) * constant_term(tmp5175), order) - coeff0_S = Taylor1(constant_term(r0s2_S) - constant_term(tmp5176), order) + tmp5206 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]), order) + tmp5208 = Taylor1(constant_term(tmp5206) ^ float(constant_term(2)), order) + tmp5210 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M), order) + tmp5212 = Taylor1(constant_term(tmp5210) ^ float(constant_term(2)), order) + tmp5213 = Taylor1(constant_term(0.5) * constant_term(tmp5212), order) + tmp5214 = Taylor1(constant_term(tmp5208) + constant_term(tmp5213), order) + tmp5215 = Taylor1(constant_term(tmp5214) / constant_term(r_p2[mo, ea]), order) + tmp5216 = Taylor1(constant_term(5) * constant_term(tmp5215), order) + coeff0_M = Taylor1(constant_term(r0s2_M) - constant_term(tmp5216), order) + tmp5219 = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]), order) + tmp5221 = Taylor1(constant_term(tmp5219) ^ float(constant_term(2)), order) + tmp5223 = Taylor1(constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S), order) + tmp5225 = Taylor1(constant_term(tmp5223) ^ float(constant_term(2)), order) + tmp5226 = Taylor1(constant_term(0.5) * constant_term(tmp5225), order) + tmp5227 = Taylor1(constant_term(tmp5221) + constant_term(tmp5226), order) + tmp5228 = Taylor1(constant_term(tmp5227) / constant_term(r_p2[mo, ea]), order) + tmp5229 = Taylor1(constant_term(5) * constant_term(tmp5228), order) + coeff0_S = Taylor1(constant_term(r0s2_S) - constant_term(tmp5229), order) k_20E_div_r0s5_M = Taylor1(constant_term(k_20E) / constant_term(r0s5_M), order) k_20E_div_r0s5_S = Taylor1(constant_term(k_20E) / constant_term(r0s5_S), order) - tmp5180 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) - tmp5181 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp5180), order) - a_tid_0_M_x = Taylor1(constant_term(tmp5181) * constant_term(X_bf[mo, ea]), order) - tmp5183 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) - tmp5184 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp5183), order) - a_tid_0_M_y = Taylor1(constant_term(tmp5184) * constant_term(Y_bf[mo, ea]), order) - tmp5187 = Taylor1(constant_term(2) * constant_term(z0s2_M), order) - tmp5188 = Taylor1(constant_term(tmp5187) + constant_term(coeff0_M), order) - tmp5189 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp5188), order) - a_tid_0_M_z = Taylor1(constant_term(tmp5189) * constant_term(Z_bf[mo, ea]), order) - tmp5191 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) - tmp5192 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp5191), order) - a_tid_0_S_x = Taylor1(constant_term(tmp5192) * constant_term(X_bf[mo, ea]), order) - tmp5194 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) - tmp5195 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp5194), order) - a_tid_0_S_y = Taylor1(constant_term(tmp5195) * constant_term(Y_bf[mo, ea]), order) - tmp5198 = Taylor1(constant_term(2) * constant_term(z0s2_S), order) - tmp5199 = Taylor1(constant_term(tmp5198) + constant_term(coeff0_S), order) - tmp5200 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp5199), order) - a_tid_0_S_z = Taylor1(constant_term(tmp5200) * constant_term(Z_bf[mo, ea]), order) + tmp5233 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) + tmp5234 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp5233), order) + a_tid_0_M_x = Taylor1(constant_term(tmp5234) * constant_term(X_bf[mo, ea]), order) + tmp5236 = Taylor1(constant_term(ρ0s2_M) + constant_term(coeff0_M), order) + tmp5237 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp5236), order) + a_tid_0_M_y = Taylor1(constant_term(tmp5237) * constant_term(Y_bf[mo, ea]), order) + tmp5240 = Taylor1(constant_term(2) * constant_term(z0s2_M), order) + tmp5241 = Taylor1(constant_term(tmp5240) + constant_term(coeff0_M), order) + tmp5242 = Taylor1(constant_term(k_20E_div_r0s5_M) * constant_term(tmp5241), order) + a_tid_0_M_z = Taylor1(constant_term(tmp5242) * constant_term(Z_bf[mo, ea]), order) + tmp5244 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) + tmp5245 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp5244), order) + a_tid_0_S_x = Taylor1(constant_term(tmp5245) * constant_term(X_bf[mo, ea]), order) + tmp5247 = Taylor1(constant_term(ρ0s2_S) + constant_term(coeff0_S), order) + tmp5248 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp5247), order) + a_tid_0_S_y = Taylor1(constant_term(tmp5248) * constant_term(Y_bf[mo, ea]), order) + tmp5251 = Taylor1(constant_term(2) * constant_term(z0s2_S), order) + tmp5252 = Taylor1(constant_term(tmp5251) + constant_term(coeff0_S), order) + tmp5253 = Taylor1(constant_term(k_20E_div_r0s5_S) * constant_term(tmp5252), order) + a_tid_0_S_z = Taylor1(constant_term(tmp5253) * constant_term(Z_bf[mo, ea]), order) x1s_M = Taylor1(identity(constant_term(r_star_M_1[1])), order) y1s_M = Taylor1(identity(constant_term(r_star_M_1[2])), order) z1s_M = Taylor1(identity(constant_term(r_star_M_1[3])), order) - tmp5203 = Taylor1(constant_term(x1s_M) ^ float(constant_term(2)), order) - tmp5205 = Taylor1(constant_term(y1s_M) ^ float(constant_term(2)), order) - ρ1s2_M = Taylor1(constant_term(tmp5203) + constant_term(tmp5205), order) + tmp5256 = Taylor1(constant_term(x1s_M) ^ float(constant_term(2)), order) + tmp5258 = Taylor1(constant_term(y1s_M) ^ float(constant_term(2)), order) + ρ1s2_M = Taylor1(constant_term(tmp5256) + constant_term(tmp5258), order) ρ1s_M = Taylor1(sqrt(constant_term(ρ1s2_M)), order) z1s2_M = Taylor1(constant_term(z1s_M) ^ float(constant_term(2)), order) r1s2_M = Taylor1(constant_term(ρ1s2_M) + constant_term(z1s2_M), order) @@ -5875,66 +10807,66 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract x1s_S = Taylor1(identity(constant_term(r_star_S_1[1])), order) y1s_S = Taylor1(identity(constant_term(r_star_S_1[2])), order) z1s_S = Taylor1(identity(constant_term(r_star_S_1[3])), order) - tmp5215 = Taylor1(constant_term(x1s_S) ^ float(constant_term(2)), order) - tmp5217 = Taylor1(constant_term(y1s_S) ^ float(constant_term(2)), order) - ρ1s2_S = Taylor1(constant_term(tmp5215) + constant_term(tmp5217), order) + tmp5268 = Taylor1(constant_term(x1s_S) ^ float(constant_term(2)), order) + tmp5270 = Taylor1(constant_term(y1s_S) ^ float(constant_term(2)), order) + ρ1s2_S = Taylor1(constant_term(tmp5268) + constant_term(tmp5270), order) ρ1s_S = Taylor1(sqrt(constant_term(ρ1s2_S)), order) z1s2_S = Taylor1(constant_term(z1s_S) ^ float(constant_term(2)), order) r1s2_S = Taylor1(constant_term(ρ1s2_S) + constant_term(z1s2_S), order) r1s_S = Taylor1(sqrt(constant_term(r1s2_S)), order) r1s5_S = Taylor1(constant_term(r1s_S) ^ float(constant_term(5)), order) - tmp5226 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]), order) - tmp5227 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]), order) - coeff1_1_M = Taylor1(constant_term(tmp5226) + constant_term(tmp5227), order) - tmp5229 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]), order) - tmp5230 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]), order) - coeff1_1_S = Taylor1(constant_term(tmp5229) + constant_term(tmp5230), order) + tmp5279 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]), order) + tmp5280 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]), order) + coeff1_1_M = Taylor1(constant_term(tmp5279) + constant_term(tmp5280), order) + tmp5282 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]), order) + tmp5283 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]), order) + coeff1_1_S = Taylor1(constant_term(tmp5282) + constant_term(tmp5283), order) coeff2_1_M = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_1[3]), order) coeff2_1_S = Taylor1(constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_1[3]), order) - tmp5235 = Taylor1(constant_term(10) * constant_term(coeff1_1_M), order) - tmp5236 = Taylor1(constant_term(tmp5235) * constant_term(coeff2_1_M), order) - coeff3_1_M = Taylor1(constant_term(tmp5236) / constant_term(r_p2[mo, ea]), order) - tmp5239 = Taylor1(constant_term(10) * constant_term(coeff1_1_S), order) - tmp5240 = Taylor1(constant_term(tmp5239) * constant_term(coeff2_1_S), order) - coeff3_1_S = Taylor1(constant_term(tmp5240) / constant_term(r_p2[mo, ea]), order) + tmp5288 = Taylor1(constant_term(10) * constant_term(coeff1_1_M), order) + tmp5289 = Taylor1(constant_term(tmp5288) * constant_term(coeff2_1_M), order) + coeff3_1_M = Taylor1(constant_term(tmp5289) / constant_term(r_p2[mo, ea]), order) + tmp5292 = Taylor1(constant_term(10) * constant_term(coeff1_1_S), order) + tmp5293 = Taylor1(constant_term(tmp5292) * constant_term(coeff2_1_S), order) + coeff3_1_S = Taylor1(constant_term(tmp5293) / constant_term(r_p2[mo, ea]), order) k_21E_div_r1s5_M = Taylor1(constant_term(k_21E) / constant_term(r1s5_M), order) k_21E_div_r1s5_S = Taylor1(constant_term(k_21E) / constant_term(r1s5_S), order) - tmp5245 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) - tmp5246 = Taylor1(constant_term(tmp5245) * constant_term(r_star_M_1[1]), order) - tmp5247 = Taylor1(constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]), order) - tmp5248 = Taylor1(constant_term(tmp5246) - constant_term(tmp5247), order) - a_tid_1_M_x = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp5248), order) - tmp5251 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) - tmp5252 = Taylor1(constant_term(tmp5251) * constant_term(r_star_M_1[2]), order) - tmp5253 = Taylor1(constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]), order) - tmp5254 = Taylor1(constant_term(tmp5252) - constant_term(tmp5253), order) - a_tid_1_M_y = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp5254), order) - tmp5257 = Taylor1(constant_term(2) * constant_term(coeff1_1_M), order) - tmp5258 = Taylor1(constant_term(tmp5257) * constant_term(r_star_M_1[3]), order) - tmp5259 = Taylor1(constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]), order) - tmp5260 = Taylor1(constant_term(tmp5258) - constant_term(tmp5259), order) - a_tid_1_M_z = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp5260), order) - tmp5263 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) - tmp5264 = Taylor1(constant_term(tmp5263) * constant_term(r_star_S_1[1]), order) - tmp5265 = Taylor1(constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]), order) - tmp5266 = Taylor1(constant_term(tmp5264) - constant_term(tmp5265), order) - a_tid_1_S_x = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp5266), order) - tmp5269 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) - tmp5270 = Taylor1(constant_term(tmp5269) * constant_term(r_star_S_1[2]), order) - tmp5271 = Taylor1(constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]), order) - tmp5272 = Taylor1(constant_term(tmp5270) - constant_term(tmp5271), order) - a_tid_1_S_y = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp5272), order) - tmp5275 = Taylor1(constant_term(2) * constant_term(coeff1_1_S), order) - tmp5276 = Taylor1(constant_term(tmp5275) * constant_term(r_star_S_1[3]), order) - tmp5277 = Taylor1(constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]), order) - tmp5278 = Taylor1(constant_term(tmp5276) - constant_term(tmp5277), order) - a_tid_1_S_z = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp5278), order) + tmp5298 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) + tmp5299 = Taylor1(constant_term(tmp5298) * constant_term(r_star_M_1[1]), order) + tmp5300 = Taylor1(constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]), order) + tmp5301 = Taylor1(constant_term(tmp5299) - constant_term(tmp5300), order) + a_tid_1_M_x = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp5301), order) + tmp5304 = Taylor1(constant_term(2) * constant_term(coeff2_1_M), order) + tmp5305 = Taylor1(constant_term(tmp5304) * constant_term(r_star_M_1[2]), order) + tmp5306 = Taylor1(constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]), order) + tmp5307 = Taylor1(constant_term(tmp5305) - constant_term(tmp5306), order) + a_tid_1_M_y = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp5307), order) + tmp5310 = Taylor1(constant_term(2) * constant_term(coeff1_1_M), order) + tmp5311 = Taylor1(constant_term(tmp5310) * constant_term(r_star_M_1[3]), order) + tmp5312 = Taylor1(constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]), order) + tmp5313 = Taylor1(constant_term(tmp5311) - constant_term(tmp5312), order) + a_tid_1_M_z = Taylor1(constant_term(k_21E_div_r1s5_M) * constant_term(tmp5313), order) + tmp5316 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) + tmp5317 = Taylor1(constant_term(tmp5316) * constant_term(r_star_S_1[1]), order) + tmp5318 = Taylor1(constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]), order) + tmp5319 = Taylor1(constant_term(tmp5317) - constant_term(tmp5318), order) + a_tid_1_S_x = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp5319), order) + tmp5322 = Taylor1(constant_term(2) * constant_term(coeff2_1_S), order) + tmp5323 = Taylor1(constant_term(tmp5322) * constant_term(r_star_S_1[2]), order) + tmp5324 = Taylor1(constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]), order) + tmp5325 = Taylor1(constant_term(tmp5323) - constant_term(tmp5324), order) + a_tid_1_S_y = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp5325), order) + tmp5328 = Taylor1(constant_term(2) * constant_term(coeff1_1_S), order) + tmp5329 = Taylor1(constant_term(tmp5328) * constant_term(r_star_S_1[3]), order) + tmp5330 = Taylor1(constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]), order) + tmp5331 = Taylor1(constant_term(tmp5329) - constant_term(tmp5330), order) + a_tid_1_S_z = Taylor1(constant_term(k_21E_div_r1s5_S) * constant_term(tmp5331), order) x2s_M = Taylor1(identity(constant_term(r_star_M_2[1])), order) y2s_M = Taylor1(identity(constant_term(r_star_M_2[2])), order) z2s_M = Taylor1(identity(constant_term(r_star_M_2[3])), order) - tmp5281 = Taylor1(constant_term(x2s_M) ^ float(constant_term(2)), order) - tmp5283 = Taylor1(constant_term(y2s_M) ^ float(constant_term(2)), order) - ρ2s2_M = Taylor1(constant_term(tmp5281) + constant_term(tmp5283), order) + tmp5334 = Taylor1(constant_term(x2s_M) ^ float(constant_term(2)), order) + tmp5336 = Taylor1(constant_term(y2s_M) ^ float(constant_term(2)), order) + ρ2s2_M = Taylor1(constant_term(tmp5334) + constant_term(tmp5336), order) ρ2s_M = Taylor1(sqrt(constant_term(ρ2s2_M)), order) z2s2_M = Taylor1(constant_term(z2s_M) ^ float(constant_term(2)), order) r2s2_M = Taylor1(constant_term(ρ2s2_M) + constant_term(z2s2_M), order) @@ -5943,397 +10875,3643 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract x2s_S = Taylor1(identity(constant_term(r_star_S_2[1])), order) y2s_S = Taylor1(identity(constant_term(r_star_S_2[2])), order) z2s_S = Taylor1(identity(constant_term(r_star_S_2[3])), order) - tmp5293 = Taylor1(constant_term(x2s_S) ^ float(constant_term(2)), order) - tmp5295 = Taylor1(constant_term(y2s_S) ^ float(constant_term(2)), order) - ρ2s2_S = Taylor1(constant_term(tmp5293) + constant_term(tmp5295), order) + tmp5346 = Taylor1(constant_term(x2s_S) ^ float(constant_term(2)), order) + tmp5348 = Taylor1(constant_term(y2s_S) ^ float(constant_term(2)), order) + ρ2s2_S = Taylor1(constant_term(tmp5346) + constant_term(tmp5348), order) ρ2s_S = Taylor1(sqrt(constant_term(ρ2s2_S)), order) z2s2_S = Taylor1(constant_term(z2s_S) ^ float(constant_term(2)), order) r2s2_S = Taylor1(constant_term(ρ2s2_S) + constant_term(z2s2_S), order) r2s_S = Taylor1(sqrt(constant_term(r2s2_S)), order) r2s5_S = Taylor1(constant_term(r2s_S) ^ float(constant_term(5)), order) - tmp5304 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]), order) - tmp5305 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]), order) - coeff1_2_M = Taylor1(constant_term(tmp5304) + constant_term(tmp5305), order) - tmp5307 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]), order) - tmp5308 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]), order) - coeff1_2_S = Taylor1(constant_term(tmp5307) + constant_term(tmp5308), order) - tmp5312 = Taylor1(constant_term(coeff1_2_M) ^ float(constant_term(2)), order) - tmp5315 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) - tmp5316 = Taylor1(constant_term(0.5) * constant_term(tmp5315), order) - tmp5317 = Taylor1(constant_term(tmp5316) * constant_term(ρ2s2_M), order) - tmp5318 = Taylor1(constant_term(tmp5312) - constant_term(tmp5317), order) - tmp5319 = Taylor1(constant_term(5) * constant_term(tmp5318), order) - coeff3_2_M = Taylor1(constant_term(tmp5319) / constant_term(r_p2[mo, ea]), order) - tmp5323 = Taylor1(constant_term(coeff1_2_S) ^ float(constant_term(2)), order) - tmp5326 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) - tmp5327 = Taylor1(constant_term(0.5) * constant_term(tmp5326), order) - tmp5328 = Taylor1(constant_term(tmp5327) * constant_term(ρ2s2_S), order) - tmp5329 = Taylor1(constant_term(tmp5323) - constant_term(tmp5328), order) - tmp5330 = Taylor1(constant_term(5) * constant_term(tmp5329), order) - coeff3_2_S = Taylor1(constant_term(tmp5330) / constant_term(r_p2[mo, ea]), order) + tmp5357 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]), order) + tmp5358 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]), order) + coeff1_2_M = Taylor1(constant_term(tmp5357) + constant_term(tmp5358), order) + tmp5360 = Taylor1(constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]), order) + tmp5361 = Taylor1(constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]), order) + coeff1_2_S = Taylor1(constant_term(tmp5360) + constant_term(tmp5361), order) + tmp5365 = Taylor1(constant_term(coeff1_2_M) ^ float(constant_term(2)), order) + tmp5368 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) + tmp5369 = Taylor1(constant_term(0.5) * constant_term(tmp5368), order) + tmp5370 = Taylor1(constant_term(tmp5369) * constant_term(ρ2s2_M), order) + tmp5371 = Taylor1(constant_term(tmp5365) - constant_term(tmp5370), order) + tmp5372 = Taylor1(constant_term(5) * constant_term(tmp5371), order) + coeff3_2_M = Taylor1(constant_term(tmp5372) / constant_term(r_p2[mo, ea]), order) + tmp5376 = Taylor1(constant_term(coeff1_2_S) ^ float(constant_term(2)), order) + tmp5379 = Taylor1(constant_term(r_xy[mo, ea]) ^ float(constant_term(2)), order) + tmp5380 = Taylor1(constant_term(0.5) * constant_term(tmp5379), order) + tmp5381 = Taylor1(constant_term(tmp5380) * constant_term(ρ2s2_S), order) + tmp5382 = Taylor1(constant_term(tmp5376) - constant_term(tmp5381), order) + tmp5383 = Taylor1(constant_term(5) * constant_term(tmp5382), order) + coeff3_2_S = Taylor1(constant_term(tmp5383) / constant_term(r_p2[mo, ea]), order) k_22E_div_r2s5_M = Taylor1(constant_term(k_22E) / constant_term(r2s5_M), order) k_22E_div_r2s5_S = Taylor1(constant_term(k_22E) / constant_term(r2s5_S), order) - tmp5335 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) - tmp5336 = Taylor1(constant_term(tmp5335) * constant_term(r_star_M_2[1]), order) - tmp5337 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) - tmp5338 = Taylor1(constant_term(tmp5337) * constant_term(X_bf[mo, ea]), order) - tmp5339 = Taylor1(constant_term(tmp5336) - constant_term(tmp5338), order) - a_tid_2_M_x = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp5339), order) - tmp5342 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) - tmp5343 = Taylor1(constant_term(tmp5342) * constant_term(r_star_M_2[2]), order) - tmp5344 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) - tmp5345 = Taylor1(constant_term(tmp5344) * constant_term(Y_bf[mo, ea]), order) - tmp5346 = Taylor1(constant_term(tmp5343) - constant_term(tmp5345), order) - a_tid_2_M_y = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp5346), order) - tmp5348 = Taylor1(-(constant_term(coeff3_2_M)), order) - tmp5349 = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp5348), order) - a_tid_2_M_z = Taylor1(constant_term(tmp5349) * constant_term(Z_bf[mo, ea]), order) - tmp5352 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) - tmp5353 = Taylor1(constant_term(tmp5352) * constant_term(r_star_S_2[1]), order) - tmp5354 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) - tmp5355 = Taylor1(constant_term(tmp5354) * constant_term(X_bf[mo, ea]), order) - tmp5356 = Taylor1(constant_term(tmp5353) - constant_term(tmp5355), order) - a_tid_2_S_x = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp5356), order) - tmp5359 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) - tmp5360 = Taylor1(constant_term(tmp5359) * constant_term(r_star_S_2[2]), order) - tmp5361 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) - tmp5362 = Taylor1(constant_term(tmp5361) * constant_term(Y_bf[mo, ea]), order) - tmp5363 = Taylor1(constant_term(tmp5360) - constant_term(tmp5362), order) - a_tid_2_S_y = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp5363), order) - tmp5365 = Taylor1(-(constant_term(coeff3_2_S)), order) - tmp5366 = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp5365), order) - a_tid_2_S_z = Taylor1(constant_term(tmp5366) * constant_term(Z_bf[mo, ea]), order) - tmp5368 = Taylor1(constant_term(RE_au) / constant_term(r_p1d2[mo, ea]), order) - RE_div_r_p5 = Taylor1(constant_term(tmp5368) ^ float(constant_term(5)), order) + tmp5388 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) + tmp5389 = Taylor1(constant_term(tmp5388) * constant_term(r_star_M_2[1]), order) + tmp5390 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) + tmp5391 = Taylor1(constant_term(tmp5390) * constant_term(X_bf[mo, ea]), order) + tmp5392 = Taylor1(constant_term(tmp5389) - constant_term(tmp5391), order) + a_tid_2_M_x = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp5392), order) + tmp5395 = Taylor1(constant_term(2) * constant_term(coeff1_2_M), order) + tmp5396 = Taylor1(constant_term(tmp5395) * constant_term(r_star_M_2[2]), order) + tmp5397 = Taylor1(constant_term(ρ2s2_M) + constant_term(coeff3_2_M), order) + tmp5398 = Taylor1(constant_term(tmp5397) * constant_term(Y_bf[mo, ea]), order) + tmp5399 = Taylor1(constant_term(tmp5396) - constant_term(tmp5398), order) + a_tid_2_M_y = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp5399), order) + tmp5401 = Taylor1(-(constant_term(coeff3_2_M)), order) + tmp5402 = Taylor1(constant_term(k_22E_div_r2s5_M) * constant_term(tmp5401), order) + a_tid_2_M_z = Taylor1(constant_term(tmp5402) * constant_term(Z_bf[mo, ea]), order) + tmp5405 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) + tmp5406 = Taylor1(constant_term(tmp5405) * constant_term(r_star_S_2[1]), order) + tmp5407 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) + tmp5408 = Taylor1(constant_term(tmp5407) * constant_term(X_bf[mo, ea]), order) + tmp5409 = Taylor1(constant_term(tmp5406) - constant_term(tmp5408), order) + a_tid_2_S_x = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp5409), order) + tmp5412 = Taylor1(constant_term(2) * constant_term(coeff1_2_S), order) + tmp5413 = Taylor1(constant_term(tmp5412) * constant_term(r_star_S_2[2]), order) + tmp5414 = Taylor1(constant_term(ρ2s2_S) + constant_term(coeff3_2_S), order) + tmp5415 = Taylor1(constant_term(tmp5414) * constant_term(Y_bf[mo, ea]), order) + tmp5416 = Taylor1(constant_term(tmp5413) - constant_term(tmp5415), order) + a_tid_2_S_y = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp5416), order) + tmp5418 = Taylor1(-(constant_term(coeff3_2_S)), order) + tmp5419 = Taylor1(constant_term(k_22E_div_r2s5_S) * constant_term(tmp5418), order) + a_tid_2_S_z = Taylor1(constant_term(tmp5419) * constant_term(Z_bf[mo, ea]), order) + tmp5421 = Taylor1(constant_term(RE_au) / constant_term(r_p1d2[mo, ea]), order) + RE_div_r_p5 = Taylor1(constant_term(tmp5421) ^ float(constant_term(5)), order) aux_tidacc = Taylor1(constant_term(tid_num_coeff) * constant_term(RE_div_r_p5), order) a_tidal_coeff_M = Taylor1(constant_term(μ[mo]) * constant_term(aux_tidacc), order) a_tidal_coeff_S = Taylor1(constant_term(μ[su]) * constant_term(aux_tidacc), order) - tmp5374 = Taylor1(constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x), order) - tmp5375 = Taylor1(constant_term(tmp5374) + constant_term(a_tid_2_M_x), order) - tmp5376 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp5375), order) - tmp5377 = Taylor1(constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x), order) - tmp5378 = Taylor1(constant_term(tmp5377) + constant_term(a_tid_2_S_x), order) - tmp5379 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp5378), order) - a_tidal_tod_x = Taylor1(constant_term(tmp5376) + constant_term(tmp5379), order) - tmp5381 = Taylor1(constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y), order) - tmp5382 = Taylor1(constant_term(tmp5381) + constant_term(a_tid_2_M_y), order) - tmp5383 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp5382), order) - tmp5384 = Taylor1(constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y), order) - tmp5385 = Taylor1(constant_term(tmp5384) + constant_term(a_tid_2_S_y), order) - tmp5386 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp5385), order) - a_tidal_tod_y = Taylor1(constant_term(tmp5383) + constant_term(tmp5386), order) - tmp5388 = Taylor1(constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z), order) - tmp5389 = Taylor1(constant_term(tmp5388) + constant_term(a_tid_2_M_z), order) - tmp5390 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp5389), order) - tmp5391 = Taylor1(constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z), order) - tmp5392 = Taylor1(constant_term(tmp5391) + constant_term(a_tid_2_S_z), order) - tmp5393 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp5392), order) - a_tidal_tod_z = Taylor1(constant_term(tmp5390) + constant_term(tmp5393), order) - tmp5395 = Taylor1(constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x), order) - tmp5396 = Taylor1(constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y), order) - tmp5397 = Taylor1(constant_term(tmp5395) + constant_term(tmp5396), order) - tmp5398 = Taylor1(constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_x = Taylor1(constant_term(tmp5397) + constant_term(tmp5398), order) - tmp5400 = Taylor1(constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x), order) - tmp5401 = Taylor1(constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y), order) - tmp5402 = Taylor1(constant_term(tmp5400) + constant_term(tmp5401), order) - tmp5403 = Taylor1(constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_y = Taylor1(constant_term(tmp5402) + constant_term(tmp5403), order) - tmp5405 = Taylor1(constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x), order) - tmp5406 = Taylor1(constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y), order) - tmp5407 = Taylor1(constant_term(tmp5405) + constant_term(tmp5406), order) - tmp5408 = Taylor1(constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z), order) - a_tidal_z = Taylor1(constant_term(tmp5407) + constant_term(tmp5408), order) + tmp5427 = Taylor1(constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x), order) + tmp5428 = Taylor1(constant_term(tmp5427) + constant_term(a_tid_2_M_x), order) + tmp5429 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp5428), order) + tmp5430 = Taylor1(constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x), order) + tmp5431 = Taylor1(constant_term(tmp5430) + constant_term(a_tid_2_S_x), order) + tmp5432 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp5431), order) + a_tidal_tod_x = Taylor1(constant_term(tmp5429) + constant_term(tmp5432), order) + tmp5434 = Taylor1(constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y), order) + tmp5435 = Taylor1(constant_term(tmp5434) + constant_term(a_tid_2_M_y), order) + tmp5436 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp5435), order) + tmp5437 = Taylor1(constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y), order) + tmp5438 = Taylor1(constant_term(tmp5437) + constant_term(a_tid_2_S_y), order) + tmp5439 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp5438), order) + a_tidal_tod_y = Taylor1(constant_term(tmp5436) + constant_term(tmp5439), order) + tmp5441 = Taylor1(constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z), order) + tmp5442 = Taylor1(constant_term(tmp5441) + constant_term(a_tid_2_M_z), order) + tmp5443 = Taylor1(constant_term(a_tidal_coeff_M) * constant_term(tmp5442), order) + tmp5444 = Taylor1(constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z), order) + tmp5445 = Taylor1(constant_term(tmp5444) + constant_term(a_tid_2_S_z), order) + tmp5446 = Taylor1(constant_term(a_tidal_coeff_S) * constant_term(tmp5445), order) + a_tidal_tod_z = Taylor1(constant_term(tmp5443) + constant_term(tmp5446), order) + tmp5448 = Taylor1(constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x), order) + tmp5449 = Taylor1(constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y), order) + tmp5450 = Taylor1(constant_term(tmp5448) + constant_term(tmp5449), order) + tmp5451 = Taylor1(constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_x = Taylor1(constant_term(tmp5450) + constant_term(tmp5451), order) + tmp5453 = Taylor1(constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x), order) + tmp5454 = Taylor1(constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y), order) + tmp5455 = Taylor1(constant_term(tmp5453) + constant_term(tmp5454), order) + tmp5456 = Taylor1(constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_y = Taylor1(constant_term(tmp5455) + constant_term(tmp5456), order) + tmp5458 = Taylor1(constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x), order) + tmp5459 = Taylor1(constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y), order) + tmp5460 = Taylor1(constant_term(tmp5458) + constant_term(tmp5459), order) + tmp5461 = Taylor1(constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z), order) + a_tidal_z = Taylor1(constant_term(tmp5460) + constant_term(tmp5461), order) accX_mo_tides = Taylor1(constant_term(accX[mo]) + constant_term(a_tidal_x), order) accY_mo_tides = Taylor1(constant_term(accY[mo]) + constant_term(a_tidal_y), order) accZ_mo_tides = Taylor1(constant_term(accZ[mo]) + constant_term(a_tidal_z), order) accX[mo] = Taylor1(identity(constant_term(accX_mo_tides)), order) accY[mo] = Taylor1(identity(constant_term(accY_mo_tides)), order) accZ[mo] = Taylor1(identity(constant_term(accZ_mo_tides)), order) - #= REPL[19]:991 =# Threads.@threads for i = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:984 =# Threads.@threads for i = 1:N_ext dq[3 * (N + i) - 2] = Taylor1(constant_term(postNewtonX[i]) + constant_term(accX[i]), order) dq[3 * (N + i) - 1] = Taylor1(constant_term(postNewtonY[i]) + constant_term(accY[i]), order) dq[3 * (N + i)] = Taylor1(constant_term(postNewtonZ[i]) + constant_term(accZ[i]), order) end - #= REPL[19]:996 =# Threads.@threads for i = N_ext + 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:989 =# Threads.@threads for i = N_ext + 1:N dq[3 * (N + i) - 2] = Taylor1(identity(constant_term(postNewtonX[i])), order) dq[3 * (N + i) - 1] = Taylor1(identity(constant_term(postNewtonY[i])), order) dq[3 * (N + i)] = Taylor1(identity(constant_term(postNewtonZ[i])), order) end - tmp5416 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp5417 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp5418 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp5419 = Taylor1(constant_term(tmp5417) + constant_term(tmp5418), order) - Iω_x = Taylor1(constant_term(tmp5416) + constant_term(tmp5419), order) - tmp5421 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp5422 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp5423 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp5424 = Taylor1(constant_term(tmp5422) + constant_term(tmp5423), order) - Iω_y = Taylor1(constant_term(tmp5421) + constant_term(tmp5424), order) - tmp5426 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp5427 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp5428 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp5429 = Taylor1(constant_term(tmp5427) + constant_term(tmp5428), order) - Iω_z = Taylor1(constant_term(tmp5426) + constant_term(tmp5429), order) - tmp5431 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) - tmp5432 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) - ωxIω_x = Taylor1(constant_term(tmp5431) - constant_term(tmp5432), order) - tmp5434 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) - tmp5435 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) - ωxIω_y = Taylor1(constant_term(tmp5434) - constant_term(tmp5435), order) - tmp5437 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) - tmp5438 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) - ωxIω_z = Taylor1(constant_term(tmp5437) - constant_term(tmp5438), order) - tmp5440 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) - tmp5441 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) - tmp5442 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) - tmp5443 = Taylor1(constant_term(tmp5441) + constant_term(tmp5442), order) - dIω_x = Taylor1(constant_term(tmp5440) + constant_term(tmp5443), order) - tmp5445 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) - tmp5446 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) - tmp5447 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) - tmp5448 = Taylor1(constant_term(tmp5446) + constant_term(tmp5447), order) - dIω_y = Taylor1(constant_term(tmp5445) + constant_term(tmp5448), order) - tmp5450 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) - tmp5451 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) - tmp5452 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) - tmp5453 = Taylor1(constant_term(tmp5451) + constant_term(tmp5452), order) - dIω_z = Taylor1(constant_term(tmp5450) + constant_term(tmp5453), order) + tmp5469 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp5470 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp5471 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp5472 = Taylor1(constant_term(tmp5470) + constant_term(tmp5471), order) + Iω_x = Taylor1(constant_term(tmp5469) + constant_term(tmp5472), order) + tmp5474 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp5475 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp5476 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp5477 = Taylor1(constant_term(tmp5475) + constant_term(tmp5476), order) + Iω_y = Taylor1(constant_term(tmp5474) + constant_term(tmp5477), order) + tmp5479 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp5480 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp5481 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp5482 = Taylor1(constant_term(tmp5480) + constant_term(tmp5481), order) + Iω_z = Taylor1(constant_term(tmp5479) + constant_term(tmp5482), order) + tmp5484 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_z), order) + tmp5485 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_y), order) + ωxIω_x = Taylor1(constant_term(tmp5484) - constant_term(tmp5485), order) + tmp5487 = Taylor1(constant_term(q[6N + 6]) * constant_term(Iω_x), order) + tmp5488 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_z), order) + ωxIω_y = Taylor1(constant_term(tmp5487) - constant_term(tmp5488), order) + tmp5490 = Taylor1(constant_term(q[6N + 4]) * constant_term(Iω_y), order) + tmp5491 = Taylor1(constant_term(q[6N + 5]) * constant_term(Iω_x), order) + ωxIω_z = Taylor1(constant_term(tmp5490) - constant_term(tmp5491), order) + tmp5493 = Taylor1(constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]), order) + tmp5494 = Taylor1(constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]), order) + tmp5495 = Taylor1(constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]), order) + tmp5496 = Taylor1(constant_term(tmp5494) + constant_term(tmp5495), order) + dIω_x = Taylor1(constant_term(tmp5493) + constant_term(tmp5496), order) + tmp5498 = Taylor1(constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]), order) + tmp5499 = Taylor1(constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]), order) + tmp5500 = Taylor1(constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]), order) + tmp5501 = Taylor1(constant_term(tmp5499) + constant_term(tmp5500), order) + dIω_y = Taylor1(constant_term(tmp5498) + constant_term(tmp5501), order) + tmp5503 = Taylor1(constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]), order) + tmp5504 = Taylor1(constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]), order) + tmp5505 = Taylor1(constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]), order) + tmp5506 = Taylor1(constant_term(tmp5504) + constant_term(tmp5505), order) + dIω_z = Taylor1(constant_term(tmp5503) + constant_term(tmp5506), order) er_EM_I_1 = Taylor1(constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_2 = Taylor1(constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) er_EM_I_3 = Taylor1(constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]), order) p_E_I_1 = Taylor1(identity(constant_term(RotM[3, 1, ea])), order) p_E_I_2 = Taylor1(identity(constant_term(RotM[3, 2, ea])), order) p_E_I_3 = Taylor1(identity(constant_term(RotM[3, 3, ea])), order) - tmp5458 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) - tmp5459 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) - tmp5460 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) - tmp5461 = Taylor1(constant_term(tmp5459) + constant_term(tmp5460), order) - er_EM_1 = Taylor1(constant_term(tmp5458) + constant_term(tmp5461), order) - tmp5463 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) - tmp5464 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) - tmp5465 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) - tmp5466 = Taylor1(constant_term(tmp5464) + constant_term(tmp5465), order) - er_EM_2 = Taylor1(constant_term(tmp5463) + constant_term(tmp5466), order) - tmp5468 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) - tmp5469 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) - tmp5470 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) - tmp5471 = Taylor1(constant_term(tmp5469) + constant_term(tmp5470), order) - er_EM_3 = Taylor1(constant_term(tmp5468) + constant_term(tmp5471), order) - tmp5473 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) - tmp5474 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) - tmp5475 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) - tmp5476 = Taylor1(constant_term(tmp5474) + constant_term(tmp5475), order) - p_E_1 = Taylor1(constant_term(tmp5473) + constant_term(tmp5476), order) - tmp5478 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) - tmp5479 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) - tmp5480 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) - tmp5481 = Taylor1(constant_term(tmp5479) + constant_term(tmp5480), order) - p_E_2 = Taylor1(constant_term(tmp5478) + constant_term(tmp5481), order) - tmp5483 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) - tmp5484 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) - tmp5485 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) - tmp5486 = Taylor1(constant_term(tmp5484) + constant_term(tmp5485), order) - p_E_3 = Taylor1(constant_term(tmp5483) + constant_term(tmp5486), order) - tmp5488 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) - tmp5489 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) - tmp5490 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) - tmp5491 = Taylor1(constant_term(tmp5489) + constant_term(tmp5490), order) - I_er_EM_1 = Taylor1(constant_term(tmp5488) + constant_term(tmp5491), order) - tmp5493 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) - tmp5494 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) - tmp5495 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) - tmp5496 = Taylor1(constant_term(tmp5494) + constant_term(tmp5495), order) - I_er_EM_2 = Taylor1(constant_term(tmp5493) + constant_term(tmp5496), order) - tmp5498 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) - tmp5499 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) - tmp5500 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) - tmp5501 = Taylor1(constant_term(tmp5499) + constant_term(tmp5500), order) - I_er_EM_3 = Taylor1(constant_term(tmp5498) + constant_term(tmp5501), order) - tmp5503 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) - tmp5504 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) - tmp5505 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) - tmp5506 = Taylor1(constant_term(tmp5504) + constant_term(tmp5505), order) - I_p_E_1 = Taylor1(constant_term(tmp5503) + constant_term(tmp5506), order) - tmp5508 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) - tmp5509 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) - tmp5510 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) - tmp5511 = Taylor1(constant_term(tmp5509) + constant_term(tmp5510), order) - I_p_E_2 = Taylor1(constant_term(tmp5508) + constant_term(tmp5511), order) - tmp5513 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) - tmp5514 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) - tmp5515 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) - tmp5516 = Taylor1(constant_term(tmp5514) + constant_term(tmp5515), order) - I_p_E_3 = Taylor1(constant_term(tmp5513) + constant_term(tmp5516), order) - tmp5518 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) - tmp5519 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) - er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp5518) - constant_term(tmp5519), order) - tmp5521 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) - tmp5522 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) - er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp5521) - constant_term(tmp5522), order) - tmp5524 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) - tmp5525 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) - er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp5524) - constant_term(tmp5525), order) - tmp5527 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) - tmp5528 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) - er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp5527) - constant_term(tmp5528), order) - tmp5530 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) - tmp5531 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) - er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp5530) - constant_term(tmp5531), order) - tmp5533 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) - tmp5534 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) - er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp5533) - constant_term(tmp5534), order) - tmp5536 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) - tmp5537 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) - p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp5536) - constant_term(tmp5537), order) - tmp5539 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) - tmp5540 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) - p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp5539) - constant_term(tmp5540), order) - tmp5542 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) - tmp5543 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) - p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp5542) - constant_term(tmp5543), order) - tmp5545 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) - tmp5546 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) - p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp5545) - constant_term(tmp5546), order) - tmp5548 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) - tmp5549 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) - p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp5548) - constant_term(tmp5549), order) - tmp5551 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) - tmp5552 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) - p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp5551) - constant_term(tmp5552), order) - tmp5556 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) - tmp5557 = Taylor1(constant_term(7) * constant_term(tmp5556), order) - one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp5557), order) + tmp5511 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1), order) + tmp5512 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2), order) + tmp5513 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3), order) + tmp5514 = Taylor1(constant_term(tmp5512) + constant_term(tmp5513), order) + er_EM_1 = Taylor1(constant_term(tmp5511) + constant_term(tmp5514), order) + tmp5516 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1), order) + tmp5517 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2), order) + tmp5518 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3), order) + tmp5519 = Taylor1(constant_term(tmp5517) + constant_term(tmp5518), order) + er_EM_2 = Taylor1(constant_term(tmp5516) + constant_term(tmp5519), order) + tmp5521 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1), order) + tmp5522 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2), order) + tmp5523 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3), order) + tmp5524 = Taylor1(constant_term(tmp5522) + constant_term(tmp5523), order) + er_EM_3 = Taylor1(constant_term(tmp5521) + constant_term(tmp5524), order) + tmp5526 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1), order) + tmp5527 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2), order) + tmp5528 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3), order) + tmp5529 = Taylor1(constant_term(tmp5527) + constant_term(tmp5528), order) + p_E_1 = Taylor1(constant_term(tmp5526) + constant_term(tmp5529), order) + tmp5531 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1), order) + tmp5532 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2), order) + tmp5533 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3), order) + tmp5534 = Taylor1(constant_term(tmp5532) + constant_term(tmp5533), order) + p_E_2 = Taylor1(constant_term(tmp5531) + constant_term(tmp5534), order) + tmp5536 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1), order) + tmp5537 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2), order) + tmp5538 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3), order) + tmp5539 = Taylor1(constant_term(tmp5537) + constant_term(tmp5538), order) + p_E_3 = Taylor1(constant_term(tmp5536) + constant_term(tmp5539), order) + tmp5541 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(er_EM_1), order) + tmp5542 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(er_EM_2), order) + tmp5543 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(er_EM_3), order) + tmp5544 = Taylor1(constant_term(tmp5542) + constant_term(tmp5543), order) + I_er_EM_1 = Taylor1(constant_term(tmp5541) + constant_term(tmp5544), order) + tmp5546 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(er_EM_1), order) + tmp5547 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(er_EM_2), order) + tmp5548 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(er_EM_3), order) + tmp5549 = Taylor1(constant_term(tmp5547) + constant_term(tmp5548), order) + I_er_EM_2 = Taylor1(constant_term(tmp5546) + constant_term(tmp5549), order) + tmp5551 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(er_EM_1), order) + tmp5552 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(er_EM_2), order) + tmp5553 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(er_EM_3), order) + tmp5554 = Taylor1(constant_term(tmp5552) + constant_term(tmp5553), order) + I_er_EM_3 = Taylor1(constant_term(tmp5551) + constant_term(tmp5554), order) + tmp5556 = Taylor1(constant_term(I_m_t[1, 1]) * constant_term(p_E_1), order) + tmp5557 = Taylor1(constant_term(I_m_t[1, 2]) * constant_term(p_E_2), order) + tmp5558 = Taylor1(constant_term(I_m_t[1, 3]) * constant_term(p_E_3), order) + tmp5559 = Taylor1(constant_term(tmp5557) + constant_term(tmp5558), order) + I_p_E_1 = Taylor1(constant_term(tmp5556) + constant_term(tmp5559), order) + tmp5561 = Taylor1(constant_term(I_m_t[2, 1]) * constant_term(p_E_1), order) + tmp5562 = Taylor1(constant_term(I_m_t[2, 2]) * constant_term(p_E_2), order) + tmp5563 = Taylor1(constant_term(I_m_t[2, 3]) * constant_term(p_E_3), order) + tmp5564 = Taylor1(constant_term(tmp5562) + constant_term(tmp5563), order) + I_p_E_2 = Taylor1(constant_term(tmp5561) + constant_term(tmp5564), order) + tmp5566 = Taylor1(constant_term(I_m_t[3, 1]) * constant_term(p_E_1), order) + tmp5567 = Taylor1(constant_term(I_m_t[3, 2]) * constant_term(p_E_2), order) + tmp5568 = Taylor1(constant_term(I_m_t[3, 3]) * constant_term(p_E_3), order) + tmp5569 = Taylor1(constant_term(tmp5567) + constant_term(tmp5568), order) + I_p_E_3 = Taylor1(constant_term(tmp5566) + constant_term(tmp5569), order) + tmp5571 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_3), order) + tmp5572 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_2), order) + er_EM_cross_I_er_EM_1 = Taylor1(constant_term(tmp5571) - constant_term(tmp5572), order) + tmp5574 = Taylor1(constant_term(er_EM_3) * constant_term(I_er_EM_1), order) + tmp5575 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_3), order) + er_EM_cross_I_er_EM_2 = Taylor1(constant_term(tmp5574) - constant_term(tmp5575), order) + tmp5577 = Taylor1(constant_term(er_EM_1) * constant_term(I_er_EM_2), order) + tmp5578 = Taylor1(constant_term(er_EM_2) * constant_term(I_er_EM_1), order) + er_EM_cross_I_er_EM_3 = Taylor1(constant_term(tmp5577) - constant_term(tmp5578), order) + tmp5580 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_3), order) + tmp5581 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_2), order) + er_EM_cross_I_p_E_1 = Taylor1(constant_term(tmp5580) - constant_term(tmp5581), order) + tmp5583 = Taylor1(constant_term(er_EM_3) * constant_term(I_p_E_1), order) + tmp5584 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_3), order) + er_EM_cross_I_p_E_2 = Taylor1(constant_term(tmp5583) - constant_term(tmp5584), order) + tmp5586 = Taylor1(constant_term(er_EM_1) * constant_term(I_p_E_2), order) + tmp5587 = Taylor1(constant_term(er_EM_2) * constant_term(I_p_E_1), order) + er_EM_cross_I_p_E_3 = Taylor1(constant_term(tmp5586) - constant_term(tmp5587), order) + tmp5589 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_3), order) + tmp5590 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_2), order) + p_E_cross_I_er_EM_1 = Taylor1(constant_term(tmp5589) - constant_term(tmp5590), order) + tmp5592 = Taylor1(constant_term(p_E_3) * constant_term(I_er_EM_1), order) + tmp5593 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_3), order) + p_E_cross_I_er_EM_2 = Taylor1(constant_term(tmp5592) - constant_term(tmp5593), order) + tmp5595 = Taylor1(constant_term(p_E_1) * constant_term(I_er_EM_2), order) + tmp5596 = Taylor1(constant_term(p_E_2) * constant_term(I_er_EM_1), order) + p_E_cross_I_er_EM_3 = Taylor1(constant_term(tmp5595) - constant_term(tmp5596), order) + tmp5598 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_3), order) + tmp5599 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_2), order) + p_E_cross_I_p_E_1 = Taylor1(constant_term(tmp5598) - constant_term(tmp5599), order) + tmp5601 = Taylor1(constant_term(p_E_3) * constant_term(I_p_E_1), order) + tmp5602 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_3), order) + p_E_cross_I_p_E_2 = Taylor1(constant_term(tmp5601) - constant_term(tmp5602), order) + tmp5604 = Taylor1(constant_term(p_E_1) * constant_term(I_p_E_2), order) + tmp5605 = Taylor1(constant_term(p_E_2) * constant_term(I_p_E_1), order) + p_E_cross_I_p_E_3 = Taylor1(constant_term(tmp5604) - constant_term(tmp5605), order) + tmp5609 = Taylor1(constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)), order) + tmp5610 = Taylor1(constant_term(7) * constant_term(tmp5609), order) + one_minus_7sin2ϕEM = Taylor1(constant_term(one_t) - constant_term(tmp5610), order) two_sinϕEM = Taylor1(constant_term(2) * constant_term(sin_ϕ[ea, mo]), order) - tmp5562 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) - N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp5562), order) - tmp5564 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) - tmp5565 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) - tmp5566 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp5565), order) - tmp5567 = Taylor1(constant_term(tmp5564) + constant_term(tmp5566), order) - tmp5569 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) - tmp5570 = Taylor1(constant_term(tmp5567) - constant_term(tmp5569), order) - N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5570), order) - tmp5572 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) - tmp5573 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) - tmp5574 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp5573), order) - tmp5575 = Taylor1(constant_term(tmp5572) + constant_term(tmp5574), order) - tmp5577 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) - tmp5578 = Taylor1(constant_term(tmp5575) - constant_term(tmp5577), order) - N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5578), order) - tmp5580 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) - tmp5581 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) - tmp5582 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp5581), order) - tmp5583 = Taylor1(constant_term(tmp5580) + constant_term(tmp5582), order) - tmp5585 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) - tmp5586 = Taylor1(constant_term(tmp5583) - constant_term(tmp5585), order) - N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5586), order) - tmp5588 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp5589 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp5590 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp5591 = Taylor1(constant_term(tmp5589) + constant_term(tmp5590), order) - N_1_LMF = Taylor1(constant_term(tmp5588) + constant_term(tmp5591), order) - tmp5593 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp5594 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp5595 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp5596 = Taylor1(constant_term(tmp5594) + constant_term(tmp5595), order) - N_2_LMF = Taylor1(constant_term(tmp5593) + constant_term(tmp5596), order) - tmp5598 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) - tmp5599 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) - tmp5600 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) - tmp5601 = Taylor1(constant_term(tmp5599) + constant_term(tmp5600), order) - N_3_LMF = Taylor1(constant_term(tmp5598) + constant_term(tmp5601), order) - tmp5603 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) - tmp5604 = Taylor1(constant_term(k_ν) * constant_term(tmp5603), order) - tmp5605 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp5606 = Taylor1(constant_term(tmp5605) * constant_term(q[6N + 11]), order) - N_cmb_1 = Taylor1(constant_term(tmp5604) - constant_term(tmp5606), order) - tmp5608 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) - tmp5609 = Taylor1(constant_term(k_ν) * constant_term(tmp5608), order) - tmp5610 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) - tmp5611 = Taylor1(constant_term(tmp5610) * constant_term(q[6N + 10]), order) - N_cmb_2 = Taylor1(constant_term(tmp5609) + constant_term(tmp5611), order) - tmp5613 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) - N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp5613), order) - tmp5615 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) - tmp5616 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp5615), order) - tmp5617 = Taylor1(constant_term(tmp5616) + constant_term(N_cmb_1), order) - tmp5618 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) - I_dω_1 = Taylor1(constant_term(tmp5617) - constant_term(tmp5618), order) - tmp5620 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) - tmp5621 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp5620), order) - tmp5622 = Taylor1(constant_term(tmp5621) + constant_term(N_cmb_2), order) - tmp5623 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) - I_dω_2 = Taylor1(constant_term(tmp5622) - constant_term(tmp5623), order) - tmp5625 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) - tmp5626 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp5625), order) - tmp5627 = Taylor1(constant_term(tmp5626) + constant_term(N_cmb_3), order) - tmp5628 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) - I_dω_3 = Taylor1(constant_term(tmp5627) - constant_term(tmp5628), order) + tmp5615 = Taylor1(constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)), order) + N_MfigM_figE_factor_div_rEMp5 = Taylor1(constant_term(N_MfigM_figE_factor) / constant_term(tmp5615), order) + tmp5617 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1), order) + tmp5618 = Taylor1(constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1), order) + tmp5619 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp5618), order) + tmp5620 = Taylor1(constant_term(tmp5617) + constant_term(tmp5619), order) + tmp5622 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_1), order) + tmp5623 = Taylor1(constant_term(tmp5620) - constant_term(tmp5622), order) + N_MfigM_figE_1 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5623), order) + tmp5625 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2), order) + tmp5626 = Taylor1(constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2), order) + tmp5627 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp5626), order) + tmp5628 = Taylor1(constant_term(tmp5625) + constant_term(tmp5627), order) + tmp5630 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_2), order) + tmp5631 = Taylor1(constant_term(tmp5628) - constant_term(tmp5630), order) + N_MfigM_figE_2 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5631), order) + tmp5633 = Taylor1(constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3), order) + tmp5634 = Taylor1(constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3), order) + tmp5635 = Taylor1(constant_term(two_sinϕEM) * constant_term(tmp5634), order) + tmp5636 = Taylor1(constant_term(tmp5633) + constant_term(tmp5635), order) + tmp5638 = Taylor1(constant_term(0.4) * constant_term(p_E_cross_I_p_E_3), order) + tmp5639 = Taylor1(constant_term(tmp5636) - constant_term(tmp5638), order) + N_MfigM_figE_3 = Taylor1(constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5639), order) + tmp5641 = Taylor1(constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp5642 = Taylor1(constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp5643 = Taylor1(constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp5644 = Taylor1(constant_term(tmp5642) + constant_term(tmp5643), order) + N_1_LMF = Taylor1(constant_term(tmp5641) + constant_term(tmp5644), order) + tmp5646 = Taylor1(constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp5647 = Taylor1(constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp5648 = Taylor1(constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp5649 = Taylor1(constant_term(tmp5647) + constant_term(tmp5648), order) + N_2_LMF = Taylor1(constant_term(tmp5646) + constant_term(tmp5649), order) + tmp5651 = Taylor1(constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]), order) + tmp5652 = Taylor1(constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]), order) + tmp5653 = Taylor1(constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]), order) + tmp5654 = Taylor1(constant_term(tmp5652) + constant_term(tmp5653), order) + N_3_LMF = Taylor1(constant_term(tmp5651) + constant_term(tmp5654), order) + tmp5656 = Taylor1(constant_term(q[6N + 10]) - constant_term(q[6N + 4]), order) + tmp5657 = Taylor1(constant_term(k_ν) * constant_term(tmp5656), order) + tmp5658 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp5659 = Taylor1(constant_term(tmp5658) * constant_term(q[6N + 11]), order) + N_cmb_1 = Taylor1(constant_term(tmp5657) - constant_term(tmp5659), order) + tmp5661 = Taylor1(constant_term(q[6N + 11]) - constant_term(q[6N + 5]), order) + tmp5662 = Taylor1(constant_term(k_ν) * constant_term(tmp5661), order) + tmp5663 = Taylor1(constant_term(C_c_m_A_c) * constant_term(q[6N + 12]), order) + tmp5664 = Taylor1(constant_term(tmp5663) * constant_term(q[6N + 10]), order) + N_cmb_2 = Taylor1(constant_term(tmp5662) + constant_term(tmp5664), order) + tmp5666 = Taylor1(constant_term(q[6N + 12]) - constant_term(q[6N + 6]), order) + N_cmb_3 = Taylor1(constant_term(k_ν) * constant_term(tmp5666), order) + tmp5668 = Taylor1(constant_term(μ[mo]) * constant_term(N_1_LMF), order) + tmp5669 = Taylor1(constant_term(N_MfigM_figE_1) + constant_term(tmp5668), order) + tmp5670 = Taylor1(constant_term(tmp5669) + constant_term(N_cmb_1), order) + tmp5671 = Taylor1(constant_term(dIω_x) + constant_term(ωxIω_x), order) + I_dω_1 = Taylor1(constant_term(tmp5670) - constant_term(tmp5671), order) + tmp5673 = Taylor1(constant_term(μ[mo]) * constant_term(N_2_LMF), order) + tmp5674 = Taylor1(constant_term(N_MfigM_figE_2) + constant_term(tmp5673), order) + tmp5675 = Taylor1(constant_term(tmp5674) + constant_term(N_cmb_2), order) + tmp5676 = Taylor1(constant_term(dIω_y) + constant_term(ωxIω_y), order) + I_dω_2 = Taylor1(constant_term(tmp5675) - constant_term(tmp5676), order) + tmp5678 = Taylor1(constant_term(μ[mo]) * constant_term(N_3_LMF), order) + tmp5679 = Taylor1(constant_term(N_MfigM_figE_3) + constant_term(tmp5678), order) + tmp5680 = Taylor1(constant_term(tmp5679) + constant_term(N_cmb_3), order) + tmp5681 = Taylor1(constant_term(dIω_z) + constant_term(ωxIω_z), order) + I_dω_3 = Taylor1(constant_term(tmp5680) - constant_term(tmp5681), order) Ic_ωc_1 = Taylor1(constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]), order) Ic_ωc_2 = Taylor1(constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]), order) Ic_ωc_3 = Taylor1(constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]), order) - tmp5633 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) - tmp5634 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) - m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp5633) - constant_term(tmp5634), order) - tmp5636 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) - tmp5637 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) - m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp5636) - constant_term(tmp5637), order) - tmp5639 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) - tmp5640 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) - m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp5639) - constant_term(tmp5640), order) + tmp5686 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_2), order) + tmp5687 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_3), order) + m_ωm_x_Icωc_1 = Taylor1(constant_term(tmp5686) - constant_term(tmp5687), order) + tmp5689 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_3), order) + tmp5690 = Taylor1(constant_term(q[6N + 6]) * constant_term(Ic_ωc_1), order) + m_ωm_x_Icωc_2 = Taylor1(constant_term(tmp5689) - constant_term(tmp5690), order) + tmp5692 = Taylor1(constant_term(q[6N + 5]) * constant_term(Ic_ωc_1), order) + tmp5693 = Taylor1(constant_term(q[6N + 4]) * constant_term(Ic_ωc_2), order) + m_ωm_x_Icωc_3 = Taylor1(constant_term(tmp5692) - constant_term(tmp5693), order) Ic_dωc_1 = Taylor1(constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1), order) Ic_dωc_2 = Taylor1(constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2), order) Ic_dωc_3 = Taylor1(constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3), order) - tmp5645 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp5725 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp5646 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp5645), order) - tmp5647 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp5726 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp5648 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp5647), order) - tmp5649 = Taylor1(constant_term(tmp5646) + constant_term(tmp5648), order) - tmp5650 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp5727 = Taylor1(cos(constant_term(q[6N + 2])), order) - dq[6N + 1] = Taylor1(constant_term(tmp5649) / constant_term(tmp5650), order) - tmp5652 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp5728 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp5653 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp5652), order) - tmp5654 = Taylor1(sin(constant_term(q[6N + 3])), order) - tmp5729 = Taylor1(cos(constant_term(q[6N + 3])), order) - tmp5655 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp5654), order) - dq[6N + 2] = Taylor1(constant_term(tmp5653) - constant_term(tmp5655), order) - tmp5657 = Taylor1(cos(constant_term(q[6N + 2])), order) - tmp5730 = Taylor1(sin(constant_term(q[6N + 2])), order) - tmp5658 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp5657), order) - dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp5658), order) - tmp5660 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) - tmp5661 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) - tmp5662 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) - tmp5663 = Taylor1(constant_term(tmp5661) + constant_term(tmp5662), order) - dq[6N + 4] = Taylor1(constant_term(tmp5660) + constant_term(tmp5663), order) - tmp5665 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) - tmp5666 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) - tmp5667 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) - tmp5668 = Taylor1(constant_term(tmp5666) + constant_term(tmp5667), order) - dq[6N + 5] = Taylor1(constant_term(tmp5665) + constant_term(tmp5668), order) - tmp5670 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) - tmp5671 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) - tmp5672 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) - tmp5673 = Taylor1(constant_term(tmp5671) + constant_term(tmp5672), order) - dq[6N + 6] = Taylor1(constant_term(tmp5670) + constant_term(tmp5673), order) - tmp5675 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp5698 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp5778 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp5699 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp5698), order) + tmp5700 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp5779 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp5701 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp5700), order) + tmp5702 = Taylor1(constant_term(tmp5699) + constant_term(tmp5701), order) + tmp5703 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp5780 = Taylor1(cos(constant_term(q[6N + 2])), order) + dq[6N + 1] = Taylor1(constant_term(tmp5702) / constant_term(tmp5703), order) + tmp5705 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp5781 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp5706 = Taylor1(constant_term(q[6N + 4]) * constant_term(tmp5705), order) + tmp5707 = Taylor1(sin(constant_term(q[6N + 3])), order) + tmp5782 = Taylor1(cos(constant_term(q[6N + 3])), order) + tmp5708 = Taylor1(constant_term(q[6N + 5]) * constant_term(tmp5707), order) + dq[6N + 2] = Taylor1(constant_term(tmp5706) - constant_term(tmp5708), order) + tmp5710 = Taylor1(cos(constant_term(q[6N + 2])), order) + tmp5783 = Taylor1(sin(constant_term(q[6N + 2])), order) + tmp5711 = Taylor1(constant_term(dq[6N + 1]) * constant_term(tmp5710), order) + dq[6N + 3] = Taylor1(constant_term(q[6N + 6]) - constant_term(tmp5711), order) + tmp5713 = Taylor1(constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1), order) + tmp5714 = Taylor1(constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2), order) + tmp5715 = Taylor1(constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3), order) + tmp5716 = Taylor1(constant_term(tmp5714) + constant_term(tmp5715), order) + dq[6N + 4] = Taylor1(constant_term(tmp5713) + constant_term(tmp5716), order) + tmp5718 = Taylor1(constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1), order) + tmp5719 = Taylor1(constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2), order) + tmp5720 = Taylor1(constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3), order) + tmp5721 = Taylor1(constant_term(tmp5719) + constant_term(tmp5720), order) + dq[6N + 5] = Taylor1(constant_term(tmp5718) + constant_term(tmp5721), order) + tmp5723 = Taylor1(constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1), order) + tmp5724 = Taylor1(constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2), order) + tmp5725 = Taylor1(constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3), order) + tmp5726 = Taylor1(constant_term(tmp5724) + constant_term(tmp5725), order) + dq[6N + 6] = Taylor1(constant_term(tmp5723) + constant_term(tmp5726), order) + tmp5728 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp5784 = Taylor1(cos(constant_term(q[6N + 8])), order) + tmp5729 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp5728), order) + dq[6N + 9] = Taylor1(-(constant_term(tmp5729)), order) tmp5731 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp5676 = Taylor1(constant_term(ω_c_CE_2) / constant_term(tmp5675), order) - dq[6N + 9] = Taylor1(-(constant_term(tmp5676)), order) - tmp5678 = Taylor1(cos(constant_term(q[6N + 8])), order) - tmp5732 = Taylor1(sin(constant_term(q[6N + 8])), order) - tmp5679 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp5678), order) - dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp5679), order) + tmp5785 = Taylor1(sin(constant_term(q[6N + 8])), order) + tmp5732 = Taylor1(constant_term(dq[6N + 9]) * constant_term(tmp5731), order) + dq[6N + 7] = Taylor1(constant_term(ω_c_CE_3) - constant_term(tmp5732), order) dq[6N + 8] = Taylor1(identity(constant_term(ω_c_CE_1)), order) dq[6N + 10] = Taylor1(constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1), order) dq[6N + 11] = Taylor1(constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2), order) dq[6N + 12] = Taylor1(constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3), order) dq[6N + 13] = Taylor1(identity(constant_term(zero_q_1)), order) + return TaylorIntegration.RetAlloc{Taylor1{_S}}([tmp4718, tmp4719, tmp4720, tmp4721, tmp4722, tmp4723, tmp4724, tmp4725, tmp4727, tmp4728, tmp4729, tmp4730, tmp4731, tmp4732, tmp4733, tmp4734, tmp4735, tmp4737, tmp4738, tmp4740, tmp4741, tmp4742, tmp4743, tmp4744, tmp4745, tmp4746, tmp4747, tmp4749, tmp4750, tmp4751, tmp4752, tmp4753, tmp4754, tmp4755, tmp4756, tmp4758, tmp4759, tmp4760, tmp4762, tmp4763, tmp4765, tmp4766, tmp4769, tmp4770, tmp4771, tmp4772, tmp4774, tmp4775, tmp4776, tmp4777, tmp4778, tmp4780, tmp4781, tmp4782, tmp4783, tmp4785, tmp4786, tmp4787, tmp4788, tmp4789, tmp4791, tmp4792, tmp4793, tmp4794, tmp4796, tmp4797, tmp4798, tmp4799, tmp4800, tmp4802, tmp4803, tmp4804, tmp4805, tmp4807, tmp4808, tmp4809, tmp4810, tmp4812, tmp4813, tmp4814, tmp4815, tmp4887, tmp4889, tmp4890, tmp4892, tmp4893, tmp4896, tmp4898, tmp4900, tmp4901, tmp5182, tmp5184, tmp5194, tmp5196, tmp5206, tmp5208, tmp5210, tmp5212, tmp5213, tmp5214, tmp5215, tmp5216, tmp5219, tmp5221, tmp5223, tmp5225, tmp5226, tmp5227, tmp5228, tmp5229, tmp5233, tmp5234, tmp5236, tmp5237, tmp5240, tmp5241, tmp5242, tmp5244, tmp5245, tmp5247, tmp5248, tmp5251, tmp5252, tmp5253, tmp5256, tmp5258, tmp5268, tmp5270, tmp5279, tmp5280, tmp5282, tmp5283, tmp5288, tmp5289, tmp5292, tmp5293, tmp5298, tmp5299, tmp5300, tmp5301, tmp5304, tmp5305, tmp5306, tmp5307, tmp5310, tmp5311, tmp5312, tmp5313, tmp5316, tmp5317, tmp5318, tmp5319, tmp5322, tmp5323, tmp5324, tmp5325, tmp5328, tmp5329, tmp5330, tmp5331, tmp5334, tmp5336, tmp5346, tmp5348, tmp5357, tmp5358, tmp5360, tmp5361, tmp5365, tmp5368, tmp5369, tmp5370, tmp5371, tmp5372, tmp5376, tmp5379, tmp5380, tmp5381, tmp5382, tmp5383, tmp5388, tmp5389, tmp5390, tmp5391, tmp5392, tmp5395, tmp5396, tmp5397, tmp5398, tmp5399, tmp5401, tmp5402, tmp5405, tmp5406, tmp5407, tmp5408, tmp5409, tmp5412, tmp5413, tmp5414, tmp5415, tmp5416, tmp5418, tmp5419, tmp5421, tmp5427, tmp5428, tmp5429, tmp5430, tmp5431, tmp5432, tmp5434, tmp5435, tmp5436, tmp5437, tmp5438, tmp5439, tmp5441, tmp5442, tmp5443, tmp5444, tmp5445, tmp5446, tmp5448, tmp5449, tmp5450, tmp5451, tmp5453, tmp5454, tmp5455, tmp5456, tmp5458, tmp5459, tmp5460, tmp5461, tmp5469, tmp5470, tmp5471, tmp5472, tmp5474, tmp5475, tmp5476, tmp5477, tmp5479, tmp5480, tmp5481, tmp5482, tmp5484, tmp5485, tmp5487, tmp5488, tmp5490, tmp5491, tmp5493, tmp5494, tmp5495, tmp5496, tmp5498, tmp5499, tmp5500, tmp5501, tmp5503, tmp5504, tmp5505, tmp5506, tmp5511, tmp5512, tmp5513, tmp5514, tmp5516, tmp5517, tmp5518, tmp5519, tmp5521, tmp5522, tmp5523, tmp5524, tmp5526, tmp5527, tmp5528, tmp5529, tmp5531, tmp5532, tmp5533, tmp5534, tmp5536, tmp5537, tmp5538, tmp5539, tmp5541, tmp5542, tmp5543, tmp5544, tmp5546, tmp5547, tmp5548, tmp5549, tmp5551, tmp5552, tmp5553, tmp5554, tmp5556, tmp5557, tmp5558, tmp5559, tmp5561, tmp5562, tmp5563, tmp5564, tmp5566, tmp5567, tmp5568, tmp5569, tmp5571, tmp5572, tmp5574, tmp5575, tmp5577, tmp5578, tmp5580, tmp5581, tmp5583, tmp5584, tmp5586, tmp5587, tmp5589, tmp5590, tmp5592, tmp5593, tmp5595, tmp5596, tmp5598, tmp5599, tmp5601, tmp5602, tmp5604, tmp5605, tmp5609, tmp5610, tmp5615, tmp5617, tmp5618, tmp5619, tmp5620, tmp5622, tmp5623, tmp5625, tmp5626, tmp5627, tmp5628, tmp5630, tmp5631, tmp5633, tmp5634, tmp5635, tmp5636, tmp5638, tmp5639, tmp5641, tmp5642, tmp5643, tmp5644, tmp5646, tmp5647, tmp5648, tmp5649, tmp5651, tmp5652, tmp5653, tmp5654, tmp5656, tmp5657, tmp5658, tmp5659, tmp5661, tmp5662, tmp5663, tmp5664, tmp5666, tmp5668, tmp5669, tmp5670, tmp5671, tmp5673, tmp5674, tmp5675, tmp5676, tmp5678, tmp5679, tmp5680, tmp5681, tmp5686, tmp5687, tmp5689, tmp5690, tmp5692, tmp5693, tmp5698, tmp5699, tmp5700, tmp5701, tmp5702, tmp5703, tmp5705, tmp5706, tmp5707, tmp5708, tmp5710, tmp5711, tmp5713, tmp5714, tmp5715, tmp5716, tmp5718, tmp5719, tmp5720, tmp5721, tmp5723, tmp5724, tmp5725, tmp5726, tmp5728, tmp5729, tmp5731, tmp5732, ϕ_m, θ_m, ψ_m, tmp5737, tmp5738, tmp5739, tmp5740, tmp5741, tmp5742, tmp5743, tmp5744, tmp5745, tmp5746, tmp5747, tmp5748, tmp5749, tmp5750, tmp5751, tmp5752, tmp5753, tmp5754, tmp5755, tmp5756, tmp5757, tmp5758, tmp5759, tmp5760, tmp5761, tmp5762, tmp5763, tmp5764, tmp5765, ϕ_c, tmp5766, tmp5767, tmp5768, tmp5769, tmp5770, tmp5771, tmp5772, tmp5773, tmp5774, tmp5775, tmp5776, tmp5777, ω_c_CE_1, ω_c_CE_2, ω_c_CE_3, J2M_t, C22M_t, C21M_t, S21M_t, S22M_t, x0s_M, y0s_M, z0s_M, ρ0s2_M, ρ0s_M, z0s2_M, r0s2_M, r0s_M, r0s5_M, x0s_S, y0s_S, z0s_S, ρ0s2_S, ρ0s_S, z0s2_S, r0s2_S, r0s_S, r0s5_S, coeff0_M, coeff0_S, k_20E_div_r0s5_M, k_20E_div_r0s5_S, a_tid_0_M_x, a_tid_0_M_y, a_tid_0_M_z, a_tid_0_S_x, a_tid_0_S_y, a_tid_0_S_z, x1s_M, y1s_M, z1s_M, ρ1s2_M, ρ1s_M, z1s2_M, r1s2_M, r1s_M, r1s5_M, x1s_S, y1s_S, z1s_S, ρ1s2_S, ρ1s_S, z1s2_S, r1s2_S, r1s_S, r1s5_S, coeff1_1_M, coeff1_1_S, coeff2_1_M, coeff2_1_S, coeff3_1_M, coeff3_1_S, k_21E_div_r1s5_M, k_21E_div_r1s5_S, a_tid_1_M_x, a_tid_1_M_y, a_tid_1_M_z, a_tid_1_S_x, a_tid_1_S_y, a_tid_1_S_z, x2s_M, y2s_M, z2s_M, ρ2s2_M, ρ2s_M, z2s2_M, r2s2_M, r2s_M, r2s5_M, x2s_S, y2s_S, z2s_S, ρ2s2_S, ρ2s_S, z2s2_S, r2s2_S, r2s_S, r2s5_S, coeff1_2_M, coeff1_2_S, coeff3_2_M, coeff3_2_S, k_22E_div_r2s5_M, k_22E_div_r2s5_S, a_tid_2_M_x, a_tid_2_M_y, a_tid_2_M_z, a_tid_2_S_x, a_tid_2_S_y, a_tid_2_S_z, RE_div_r_p5, aux_tidacc, a_tidal_coeff_M, a_tidal_coeff_S, a_tidal_tod_x, a_tidal_tod_y, a_tidal_tod_z, a_tidal_x, a_tidal_y, a_tidal_z, accX_mo_tides, accY_mo_tides, accZ_mo_tides, Iω_x, Iω_y, Iω_z, ωxIω_x, ωxIω_y, ωxIω_z, dIω_x, dIω_y, dIω_z, er_EM_I_1, er_EM_I_2, er_EM_I_3, p_E_I_1, p_E_I_2, p_E_I_3, er_EM_1, er_EM_2, er_EM_3, p_E_1, p_E_2, p_E_3, I_er_EM_1, I_er_EM_2, I_er_EM_3, I_p_E_1, I_p_E_2, I_p_E_3, er_EM_cross_I_er_EM_1, er_EM_cross_I_er_EM_2, er_EM_cross_I_er_EM_3, er_EM_cross_I_p_E_1, er_EM_cross_I_p_E_2, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_1, p_E_cross_I_er_EM_2, p_E_cross_I_er_EM_3, p_E_cross_I_p_E_1, p_E_cross_I_p_E_2, p_E_cross_I_p_E_3, one_minus_7sin2ϕEM, two_sinϕEM, N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_1, N_MfigM_figE_2, N_MfigM_figE_3, N_1_LMF, N_2_LMF, N_3_LMF, N_cmb_1, N_cmb_2, N_cmb_3, I_dω_1, I_dω_2, I_dω_3, Ic_ωc_1, Ic_ωc_2, Ic_ωc_3, m_ωm_x_Icωc_1, m_ωm_x_Icωc_2, m_ωm_x_Icωc_3, Ic_dωc_1, Ic_dωc_2, Ic_dωc_3, tmp5778, tmp5779, tmp5780, tmp5781, tmp5782, tmp5783, tmp5784, tmp5785], [newtonX, newtonY, newtonZ, newtonianNb_Potential, v2, pntempX, pntempY, pntempZ, postNewtonX, postNewtonY, postNewtonZ, accX, accY, accZ, N_MfigM_pmA_x, N_MfigM_pmA_y, N_MfigM_pmA_z, temp_N_M_x, temp_N_M_y, temp_N_M_z, N_MfigM, J2_t, tmp4824, tmp4826, tmp4829, tmp4831, tmp4834, tmp4836, tmp4880, tmp4882, tmp4883, tmp4885], [X, Y, Z, r_p2, r_p1d2, r_p3d2, r_p7d2, newtonianCoeff, U, V, W, _4U_m_3X, _4V_m_3Y, _4W_m_3Z, UU, VV, WW, newtonian1b_Potential, newton_acc_X, newton_acc_Y, newton_acc_Z, _2v2, vi_dot_vj, pn2, U_t_pn2, V_t_pn2, W_t_pn2, pn3, pNX_t_pn3, pNY_t_pn3, pNZ_t_pn3, _4ϕj, ϕi_plus_4ϕj, sj2_plus_2si2, sj2_plus_2si2_minus_4vivj, ϕs_and_vs, pn1t1_7, pNX_t_X, pNY_t_Y, pNZ_t_Z, pn1, X_t_pn1, Y_t_pn1, Z_t_pn1, X_bf_1, Y_bf_1, Z_bf_1, X_bf_2, Y_bf_2, Z_bf_2, X_bf_3, Y_bf_3, Z_bf_3, X_bf, Y_bf, Z_bf, F_JCS_x, F_JCS_y, F_JCS_z, temp_accX_j, temp_accY_j, temp_accZ_j, temp_accX_i, temp_accY_i, temp_accZ_i, sin_ϕ, cos_ϕ, sin_λ, cos_λ, r_xy, r_p4, F_CS_ξ_36, F_CS_η_36, F_CS_ζ_36, F_J_ξ_36, F_J_ζ_36, F_J_ξ, F_J_ζ, F_CS_ξ, F_CS_η, F_CS_ζ, F_JCS_ξ, F_JCS_η, F_JCS_ζ, mantlef2coref, pn2x, pn2y, pn2z, tmp4844, tmp4847, tmp4849, tmp4850, tmp4852, tmp4860, tmp4861, tmp4872, temp_001, tmp4874, temp_002, tmp4876, temp_003, temp_004, tmp4913, tmp4915, tmp4917, tmp4921, tmp4923, tmp4924, tmp5030, tmp5031, tmp5034, tmp5035, tmp5041, tmp5044, tmp5106, tmp5108, tmp5110, tmp5112, tmp5114, tmp5116, tmp5118, tmp5119, tmp5120, tmp5122, tmp5123, tmp5124, tmp5126, tmp5127, tmp5128, tmp5140, Xij_t_Ui, Yij_t_Vi, Zij_t_Wi, tmp5146, Rij_dot_Vi, tmp5149, pn1t7, tmp5152, pn1t2_7, tmp5159, tmp5160, tmp5161, tmp5169, termpnx, sumpnx, tmp5172, termpny, sumpny, tmp5175, termpnz, sumpnz], [P_n, dP_n, temp_fjξ, temp_fjζ, temp_rn, sin_mλ, cos_mλ, RotM, tmp4929, tmp4930, tmp4931, tmp4933, tmp4934, tmp4939, tmp4940, tmp4942, tmp4943, tmp4944, tmp4946, tmp4947, tmp4948, tmp4950, tmp4951, tmp4952, tmp4953, tmp4956, tmp4957, tmp4959, tmp4960, tmp4979, tmp4980, tmp4981, tmp4984, tmp4985, tmp4986, tmp4991, tmp4992, tmp4993, tmp4996, tmp4997, tmp4998, tmp5002, tmp5003, tmp5004, tmp5006, tmp5007, tmp5008], [temp_CS_ξ, temp_CS_η, temp_CS_ζ, Cnm_cosmλ, Cnm_sinmλ, Snm_cosmλ, Snm_sinmλ, secϕ_P_nm, P_nm, cosϕ_dP_nm, Rb2p, Gc2p, tmp4962, tmp4965, tmp4967, tmp4969, tmp4970, tmp4971, tmp4974, tmp4975, tmp4976, tmp4978, tmp4982, tmp4983, tmp4987, tmp4988, tmp4990, tmp4994, tmp4995, tmp4999, tmp5000, tmp5005, tmp5009, tmp5010, tmp5016, tmp5017, tmp5018, tmp5019, tmp5021, tmp5022, tmp5023, tmp5024, tmp5026, tmp5027, tmp5028, tmp5046, tmp5047, tmp5048, tmp5049, tmp5051, tmp5052, tmp5053, tmp5054, tmp5056, tmp5057, tmp5058, tmp5059, tmp5061, tmp5062, tmp5063, tmp5064, tmp5066, tmp5067, tmp5068, tmp5069, tmp5071, tmp5072, tmp5073, tmp5074, tmp5076, tmp5077, tmp5078, tmp5079, tmp5081, tmp5082, tmp5083, tmp5084, tmp5086, tmp5087, tmp5088, tmp5089, tmp5091, tmp5092, tmp5093, tmp5094, tmp5096, tmp5097, tmp5098, tmp5099, tmp5101, tmp5102, tmp5103, tmp5104]) +end +# TaylorIntegration.jetcoeffs! method for src/dynamical_model.jl: DE430! +function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::AbstractArray{Taylor1{_S}, _N}, dq::AbstractArray{Taylor1{_S}, _N}, params, __ralloc::TaylorIntegration.RetAlloc{Taylor1{_S}}) where {_T <: Real, _S <: Number, _N} + order = t.order + tmp4718 = __ralloc.v0[1]::Taylor1{_S} + tmp4719 = __ralloc.v0[2]::Taylor1{_S} + tmp4720 = __ralloc.v0[3]::Taylor1{_S} + tmp4721 = __ralloc.v0[4]::Taylor1{_S} + tmp4722 = __ralloc.v0[5]::Taylor1{_S} + tmp4723 = __ralloc.v0[6]::Taylor1{_S} + tmp4724 = __ralloc.v0[7]::Taylor1{_S} + tmp4725 = __ralloc.v0[8]::Taylor1{_S} + tmp4727 = __ralloc.v0[9]::Taylor1{_S} + tmp4728 = __ralloc.v0[10]::Taylor1{_S} + tmp4729 = __ralloc.v0[11]::Taylor1{_S} + tmp4730 = __ralloc.v0[12]::Taylor1{_S} + tmp4731 = __ralloc.v0[13]::Taylor1{_S} + tmp4732 = __ralloc.v0[14]::Taylor1{_S} + tmp4733 = __ralloc.v0[15]::Taylor1{_S} + tmp4734 = __ralloc.v0[16]::Taylor1{_S} + tmp4735 = __ralloc.v0[17]::Taylor1{_S} + tmp4737 = __ralloc.v0[18]::Taylor1{_S} + tmp4738 = __ralloc.v0[19]::Taylor1{_S} + tmp4740 = __ralloc.v0[20]::Taylor1{_S} + tmp4741 = __ralloc.v0[21]::Taylor1{_S} + tmp4742 = __ralloc.v0[22]::Taylor1{_S} + tmp4743 = __ralloc.v0[23]::Taylor1{_S} + tmp4744 = __ralloc.v0[24]::Taylor1{_S} + tmp4745 = __ralloc.v0[25]::Taylor1{_S} + tmp4746 = __ralloc.v0[26]::Taylor1{_S} + tmp4747 = __ralloc.v0[27]::Taylor1{_S} + tmp4749 = __ralloc.v0[28]::Taylor1{_S} + tmp4750 = __ralloc.v0[29]::Taylor1{_S} + tmp4751 = __ralloc.v0[30]::Taylor1{_S} + tmp4752 = __ralloc.v0[31]::Taylor1{_S} + tmp4753 = __ralloc.v0[32]::Taylor1{_S} + tmp4754 = __ralloc.v0[33]::Taylor1{_S} + tmp4755 = __ralloc.v0[34]::Taylor1{_S} + tmp4756 = __ralloc.v0[35]::Taylor1{_S} + tmp4758 = __ralloc.v0[36]::Taylor1{_S} + tmp4759 = __ralloc.v0[37]::Taylor1{_S} + tmp4760 = __ralloc.v0[38]::Taylor1{_S} + tmp4762 = __ralloc.v0[39]::Taylor1{_S} + tmp4763 = __ralloc.v0[40]::Taylor1{_S} + tmp4765 = __ralloc.v0[41]::Taylor1{_S} + tmp4766 = __ralloc.v0[42]::Taylor1{_S} + tmp4769 = __ralloc.v0[43]::Taylor1{_S} + tmp4770 = __ralloc.v0[44]::Taylor1{_S} + tmp4771 = __ralloc.v0[45]::Taylor1{_S} + tmp4772 = __ralloc.v0[46]::Taylor1{_S} + tmp4774 = __ralloc.v0[47]::Taylor1{_S} + tmp4775 = __ralloc.v0[48]::Taylor1{_S} + tmp4776 = __ralloc.v0[49]::Taylor1{_S} + tmp4777 = __ralloc.v0[50]::Taylor1{_S} + tmp4778 = __ralloc.v0[51]::Taylor1{_S} + tmp4780 = __ralloc.v0[52]::Taylor1{_S} + tmp4781 = __ralloc.v0[53]::Taylor1{_S} + tmp4782 = __ralloc.v0[54]::Taylor1{_S} + tmp4783 = __ralloc.v0[55]::Taylor1{_S} + tmp4785 = __ralloc.v0[56]::Taylor1{_S} + tmp4786 = __ralloc.v0[57]::Taylor1{_S} + tmp4787 = __ralloc.v0[58]::Taylor1{_S} + tmp4788 = __ralloc.v0[59]::Taylor1{_S} + tmp4789 = __ralloc.v0[60]::Taylor1{_S} + tmp4791 = __ralloc.v0[61]::Taylor1{_S} + tmp4792 = __ralloc.v0[62]::Taylor1{_S} + tmp4793 = __ralloc.v0[63]::Taylor1{_S} + tmp4794 = __ralloc.v0[64]::Taylor1{_S} + tmp4796 = __ralloc.v0[65]::Taylor1{_S} + tmp4797 = __ralloc.v0[66]::Taylor1{_S} + tmp4798 = __ralloc.v0[67]::Taylor1{_S} + tmp4799 = __ralloc.v0[68]::Taylor1{_S} + tmp4800 = __ralloc.v0[69]::Taylor1{_S} + tmp4802 = __ralloc.v0[70]::Taylor1{_S} + tmp4803 = __ralloc.v0[71]::Taylor1{_S} + tmp4804 = __ralloc.v0[72]::Taylor1{_S} + tmp4805 = __ralloc.v0[73]::Taylor1{_S} + tmp4807 = __ralloc.v0[74]::Taylor1{_S} + tmp4808 = __ralloc.v0[75]::Taylor1{_S} + tmp4809 = __ralloc.v0[76]::Taylor1{_S} + tmp4810 = __ralloc.v0[77]::Taylor1{_S} + tmp4812 = __ralloc.v0[78]::Taylor1{_S} + tmp4813 = __ralloc.v0[79]::Taylor1{_S} + tmp4814 = __ralloc.v0[80]::Taylor1{_S} + tmp4815 = __ralloc.v0[81]::Taylor1{_S} + tmp4887 = __ralloc.v0[82]::Taylor1{_S} + tmp4889 = __ralloc.v0[83]::Taylor1{_S} + tmp4890 = __ralloc.v0[84]::Taylor1{_S} + tmp4892 = __ralloc.v0[85]::Taylor1{_S} + tmp4893 = __ralloc.v0[86]::Taylor1{_S} + tmp4896 = __ralloc.v0[87]::Taylor1{_S} + tmp4898 = __ralloc.v0[88]::Taylor1{_S} + tmp4900 = __ralloc.v0[89]::Taylor1{_S} + tmp4901 = __ralloc.v0[90]::Taylor1{_S} + tmp5182 = __ralloc.v0[91]::Taylor1{_S} + tmp5184 = __ralloc.v0[92]::Taylor1{_S} + tmp5194 = __ralloc.v0[93]::Taylor1{_S} + tmp5196 = __ralloc.v0[94]::Taylor1{_S} + tmp5206 = __ralloc.v0[95]::Taylor1{_S} + tmp5208 = __ralloc.v0[96]::Taylor1{_S} + tmp5210 = __ralloc.v0[97]::Taylor1{_S} + tmp5212 = __ralloc.v0[98]::Taylor1{_S} + tmp5213 = __ralloc.v0[99]::Taylor1{_S} + tmp5214 = __ralloc.v0[100]::Taylor1{_S} + tmp5215 = __ralloc.v0[101]::Taylor1{_S} + tmp5216 = __ralloc.v0[102]::Taylor1{_S} + tmp5219 = __ralloc.v0[103]::Taylor1{_S} + tmp5221 = __ralloc.v0[104]::Taylor1{_S} + tmp5223 = __ralloc.v0[105]::Taylor1{_S} + tmp5225 = __ralloc.v0[106]::Taylor1{_S} + tmp5226 = __ralloc.v0[107]::Taylor1{_S} + tmp5227 = __ralloc.v0[108]::Taylor1{_S} + tmp5228 = __ralloc.v0[109]::Taylor1{_S} + tmp5229 = __ralloc.v0[110]::Taylor1{_S} + tmp5233 = __ralloc.v0[111]::Taylor1{_S} + tmp5234 = __ralloc.v0[112]::Taylor1{_S} + tmp5236 = __ralloc.v0[113]::Taylor1{_S} + tmp5237 = __ralloc.v0[114]::Taylor1{_S} + tmp5240 = __ralloc.v0[115]::Taylor1{_S} + tmp5241 = __ralloc.v0[116]::Taylor1{_S} + tmp5242 = __ralloc.v0[117]::Taylor1{_S} + tmp5244 = __ralloc.v0[118]::Taylor1{_S} + tmp5245 = __ralloc.v0[119]::Taylor1{_S} + tmp5247 = __ralloc.v0[120]::Taylor1{_S} + tmp5248 = __ralloc.v0[121]::Taylor1{_S} + tmp5251 = __ralloc.v0[122]::Taylor1{_S} + tmp5252 = __ralloc.v0[123]::Taylor1{_S} + tmp5253 = __ralloc.v0[124]::Taylor1{_S} + tmp5256 = __ralloc.v0[125]::Taylor1{_S} + tmp5258 = __ralloc.v0[126]::Taylor1{_S} + tmp5268 = __ralloc.v0[127]::Taylor1{_S} + tmp5270 = __ralloc.v0[128]::Taylor1{_S} + tmp5279 = __ralloc.v0[129]::Taylor1{_S} + tmp5280 = __ralloc.v0[130]::Taylor1{_S} + tmp5282 = __ralloc.v0[131]::Taylor1{_S} + tmp5283 = __ralloc.v0[132]::Taylor1{_S} + tmp5288 = __ralloc.v0[133]::Taylor1{_S} + tmp5289 = __ralloc.v0[134]::Taylor1{_S} + tmp5292 = __ralloc.v0[135]::Taylor1{_S} + tmp5293 = __ralloc.v0[136]::Taylor1{_S} + tmp5298 = __ralloc.v0[137]::Taylor1{_S} + tmp5299 = __ralloc.v0[138]::Taylor1{_S} + tmp5300 = __ralloc.v0[139]::Taylor1{_S} + tmp5301 = __ralloc.v0[140]::Taylor1{_S} + tmp5304 = __ralloc.v0[141]::Taylor1{_S} + tmp5305 = __ralloc.v0[142]::Taylor1{_S} + tmp5306 = __ralloc.v0[143]::Taylor1{_S} + tmp5307 = __ralloc.v0[144]::Taylor1{_S} + tmp5310 = __ralloc.v0[145]::Taylor1{_S} + tmp5311 = __ralloc.v0[146]::Taylor1{_S} + tmp5312 = __ralloc.v0[147]::Taylor1{_S} + tmp5313 = __ralloc.v0[148]::Taylor1{_S} + tmp5316 = __ralloc.v0[149]::Taylor1{_S} + tmp5317 = __ralloc.v0[150]::Taylor1{_S} + tmp5318 = __ralloc.v0[151]::Taylor1{_S} + tmp5319 = __ralloc.v0[152]::Taylor1{_S} + tmp5322 = __ralloc.v0[153]::Taylor1{_S} + tmp5323 = __ralloc.v0[154]::Taylor1{_S} + tmp5324 = __ralloc.v0[155]::Taylor1{_S} + tmp5325 = __ralloc.v0[156]::Taylor1{_S} + tmp5328 = __ralloc.v0[157]::Taylor1{_S} + tmp5329 = __ralloc.v0[158]::Taylor1{_S} + tmp5330 = __ralloc.v0[159]::Taylor1{_S} + tmp5331 = __ralloc.v0[160]::Taylor1{_S} + tmp5334 = __ralloc.v0[161]::Taylor1{_S} + tmp5336 = __ralloc.v0[162]::Taylor1{_S} + tmp5346 = __ralloc.v0[163]::Taylor1{_S} + tmp5348 = __ralloc.v0[164]::Taylor1{_S} + tmp5357 = __ralloc.v0[165]::Taylor1{_S} + tmp5358 = __ralloc.v0[166]::Taylor1{_S} + tmp5360 = __ralloc.v0[167]::Taylor1{_S} + tmp5361 = __ralloc.v0[168]::Taylor1{_S} + tmp5365 = __ralloc.v0[169]::Taylor1{_S} + tmp5368 = __ralloc.v0[170]::Taylor1{_S} + tmp5369 = __ralloc.v0[171]::Taylor1{_S} + tmp5370 = __ralloc.v0[172]::Taylor1{_S} + tmp5371 = __ralloc.v0[173]::Taylor1{_S} + tmp5372 = __ralloc.v0[174]::Taylor1{_S} + tmp5376 = __ralloc.v0[175]::Taylor1{_S} + tmp5379 = __ralloc.v0[176]::Taylor1{_S} + tmp5380 = __ralloc.v0[177]::Taylor1{_S} + tmp5381 = __ralloc.v0[178]::Taylor1{_S} + tmp5382 = __ralloc.v0[179]::Taylor1{_S} + tmp5383 = __ralloc.v0[180]::Taylor1{_S} + tmp5388 = __ralloc.v0[181]::Taylor1{_S} + tmp5389 = __ralloc.v0[182]::Taylor1{_S} + tmp5390 = __ralloc.v0[183]::Taylor1{_S} + tmp5391 = __ralloc.v0[184]::Taylor1{_S} + tmp5392 = __ralloc.v0[185]::Taylor1{_S} + tmp5395 = __ralloc.v0[186]::Taylor1{_S} + tmp5396 = __ralloc.v0[187]::Taylor1{_S} + tmp5397 = __ralloc.v0[188]::Taylor1{_S} + tmp5398 = __ralloc.v0[189]::Taylor1{_S} + tmp5399 = __ralloc.v0[190]::Taylor1{_S} + tmp5401 = __ralloc.v0[191]::Taylor1{_S} + tmp5402 = __ralloc.v0[192]::Taylor1{_S} + tmp5405 = __ralloc.v0[193]::Taylor1{_S} + tmp5406 = __ralloc.v0[194]::Taylor1{_S} + tmp5407 = __ralloc.v0[195]::Taylor1{_S} + tmp5408 = __ralloc.v0[196]::Taylor1{_S} + tmp5409 = __ralloc.v0[197]::Taylor1{_S} + tmp5412 = __ralloc.v0[198]::Taylor1{_S} + tmp5413 = __ralloc.v0[199]::Taylor1{_S} + tmp5414 = __ralloc.v0[200]::Taylor1{_S} + tmp5415 = __ralloc.v0[201]::Taylor1{_S} + tmp5416 = __ralloc.v0[202]::Taylor1{_S} + tmp5418 = __ralloc.v0[203]::Taylor1{_S} + tmp5419 = __ralloc.v0[204]::Taylor1{_S} + tmp5421 = __ralloc.v0[205]::Taylor1{_S} + tmp5427 = __ralloc.v0[206]::Taylor1{_S} + tmp5428 = __ralloc.v0[207]::Taylor1{_S} + tmp5429 = __ralloc.v0[208]::Taylor1{_S} + tmp5430 = __ralloc.v0[209]::Taylor1{_S} + tmp5431 = __ralloc.v0[210]::Taylor1{_S} + tmp5432 = __ralloc.v0[211]::Taylor1{_S} + tmp5434 = __ralloc.v0[212]::Taylor1{_S} + tmp5435 = __ralloc.v0[213]::Taylor1{_S} + tmp5436 = __ralloc.v0[214]::Taylor1{_S} + tmp5437 = __ralloc.v0[215]::Taylor1{_S} + tmp5438 = __ralloc.v0[216]::Taylor1{_S} + tmp5439 = __ralloc.v0[217]::Taylor1{_S} + tmp5441 = __ralloc.v0[218]::Taylor1{_S} + tmp5442 = __ralloc.v0[219]::Taylor1{_S} + tmp5443 = __ralloc.v0[220]::Taylor1{_S} + tmp5444 = __ralloc.v0[221]::Taylor1{_S} + tmp5445 = __ralloc.v0[222]::Taylor1{_S} + tmp5446 = __ralloc.v0[223]::Taylor1{_S} + tmp5448 = __ralloc.v0[224]::Taylor1{_S} + tmp5449 = __ralloc.v0[225]::Taylor1{_S} + tmp5450 = __ralloc.v0[226]::Taylor1{_S} + tmp5451 = __ralloc.v0[227]::Taylor1{_S} + tmp5453 = __ralloc.v0[228]::Taylor1{_S} + tmp5454 = __ralloc.v0[229]::Taylor1{_S} + tmp5455 = __ralloc.v0[230]::Taylor1{_S} + tmp5456 = __ralloc.v0[231]::Taylor1{_S} + tmp5458 = __ralloc.v0[232]::Taylor1{_S} + tmp5459 = __ralloc.v0[233]::Taylor1{_S} + tmp5460 = __ralloc.v0[234]::Taylor1{_S} + tmp5461 = __ralloc.v0[235]::Taylor1{_S} + tmp5469 = __ralloc.v0[236]::Taylor1{_S} + tmp5470 = __ralloc.v0[237]::Taylor1{_S} + tmp5471 = __ralloc.v0[238]::Taylor1{_S} + tmp5472 = __ralloc.v0[239]::Taylor1{_S} + tmp5474 = __ralloc.v0[240]::Taylor1{_S} + tmp5475 = __ralloc.v0[241]::Taylor1{_S} + tmp5476 = __ralloc.v0[242]::Taylor1{_S} + tmp5477 = __ralloc.v0[243]::Taylor1{_S} + tmp5479 = __ralloc.v0[244]::Taylor1{_S} + tmp5480 = __ralloc.v0[245]::Taylor1{_S} + tmp5481 = __ralloc.v0[246]::Taylor1{_S} + tmp5482 = __ralloc.v0[247]::Taylor1{_S} + tmp5484 = __ralloc.v0[248]::Taylor1{_S} + tmp5485 = __ralloc.v0[249]::Taylor1{_S} + tmp5487 = __ralloc.v0[250]::Taylor1{_S} + tmp5488 = __ralloc.v0[251]::Taylor1{_S} + tmp5490 = __ralloc.v0[252]::Taylor1{_S} + tmp5491 = __ralloc.v0[253]::Taylor1{_S} + tmp5493 = __ralloc.v0[254]::Taylor1{_S} + tmp5494 = __ralloc.v0[255]::Taylor1{_S} + tmp5495 = __ralloc.v0[256]::Taylor1{_S} + tmp5496 = __ralloc.v0[257]::Taylor1{_S} + tmp5498 = __ralloc.v0[258]::Taylor1{_S} + tmp5499 = __ralloc.v0[259]::Taylor1{_S} + tmp5500 = __ralloc.v0[260]::Taylor1{_S} + tmp5501 = __ralloc.v0[261]::Taylor1{_S} + tmp5503 = __ralloc.v0[262]::Taylor1{_S} + tmp5504 = __ralloc.v0[263]::Taylor1{_S} + tmp5505 = __ralloc.v0[264]::Taylor1{_S} + tmp5506 = __ralloc.v0[265]::Taylor1{_S} + tmp5511 = __ralloc.v0[266]::Taylor1{_S} + tmp5512 = __ralloc.v0[267]::Taylor1{_S} + tmp5513 = __ralloc.v0[268]::Taylor1{_S} + tmp5514 = __ralloc.v0[269]::Taylor1{_S} + tmp5516 = __ralloc.v0[270]::Taylor1{_S} + tmp5517 = __ralloc.v0[271]::Taylor1{_S} + tmp5518 = __ralloc.v0[272]::Taylor1{_S} + tmp5519 = __ralloc.v0[273]::Taylor1{_S} + tmp5521 = __ralloc.v0[274]::Taylor1{_S} + tmp5522 = __ralloc.v0[275]::Taylor1{_S} + tmp5523 = __ralloc.v0[276]::Taylor1{_S} + tmp5524 = __ralloc.v0[277]::Taylor1{_S} + tmp5526 = __ralloc.v0[278]::Taylor1{_S} + tmp5527 = __ralloc.v0[279]::Taylor1{_S} + tmp5528 = __ralloc.v0[280]::Taylor1{_S} + tmp5529 = __ralloc.v0[281]::Taylor1{_S} + tmp5531 = __ralloc.v0[282]::Taylor1{_S} + tmp5532 = __ralloc.v0[283]::Taylor1{_S} + tmp5533 = __ralloc.v0[284]::Taylor1{_S} + tmp5534 = __ralloc.v0[285]::Taylor1{_S} + tmp5536 = __ralloc.v0[286]::Taylor1{_S} + tmp5537 = __ralloc.v0[287]::Taylor1{_S} + tmp5538 = __ralloc.v0[288]::Taylor1{_S} + tmp5539 = __ralloc.v0[289]::Taylor1{_S} + tmp5541 = __ralloc.v0[290]::Taylor1{_S} + tmp5542 = __ralloc.v0[291]::Taylor1{_S} + tmp5543 = __ralloc.v0[292]::Taylor1{_S} + tmp5544 = __ralloc.v0[293]::Taylor1{_S} + tmp5546 = __ralloc.v0[294]::Taylor1{_S} + tmp5547 = __ralloc.v0[295]::Taylor1{_S} + tmp5548 = __ralloc.v0[296]::Taylor1{_S} + tmp5549 = __ralloc.v0[297]::Taylor1{_S} + tmp5551 = __ralloc.v0[298]::Taylor1{_S} + tmp5552 = __ralloc.v0[299]::Taylor1{_S} + tmp5553 = __ralloc.v0[300]::Taylor1{_S} + tmp5554 = __ralloc.v0[301]::Taylor1{_S} + tmp5556 = __ralloc.v0[302]::Taylor1{_S} + tmp5557 = __ralloc.v0[303]::Taylor1{_S} + tmp5558 = __ralloc.v0[304]::Taylor1{_S} + tmp5559 = __ralloc.v0[305]::Taylor1{_S} + tmp5561 = __ralloc.v0[306]::Taylor1{_S} + tmp5562 = __ralloc.v0[307]::Taylor1{_S} + tmp5563 = __ralloc.v0[308]::Taylor1{_S} + tmp5564 = __ralloc.v0[309]::Taylor1{_S} + tmp5566 = __ralloc.v0[310]::Taylor1{_S} + tmp5567 = __ralloc.v0[311]::Taylor1{_S} + tmp5568 = __ralloc.v0[312]::Taylor1{_S} + tmp5569 = __ralloc.v0[313]::Taylor1{_S} + tmp5571 = __ralloc.v0[314]::Taylor1{_S} + tmp5572 = __ralloc.v0[315]::Taylor1{_S} + tmp5574 = __ralloc.v0[316]::Taylor1{_S} + tmp5575 = __ralloc.v0[317]::Taylor1{_S} + tmp5577 = __ralloc.v0[318]::Taylor1{_S} + tmp5578 = __ralloc.v0[319]::Taylor1{_S} + tmp5580 = __ralloc.v0[320]::Taylor1{_S} + tmp5581 = __ralloc.v0[321]::Taylor1{_S} + tmp5583 = __ralloc.v0[322]::Taylor1{_S} + tmp5584 = __ralloc.v0[323]::Taylor1{_S} + tmp5586 = __ralloc.v0[324]::Taylor1{_S} + tmp5587 = __ralloc.v0[325]::Taylor1{_S} + tmp5589 = __ralloc.v0[326]::Taylor1{_S} + tmp5590 = __ralloc.v0[327]::Taylor1{_S} + tmp5592 = __ralloc.v0[328]::Taylor1{_S} + tmp5593 = __ralloc.v0[329]::Taylor1{_S} + tmp5595 = __ralloc.v0[330]::Taylor1{_S} + tmp5596 = __ralloc.v0[331]::Taylor1{_S} + tmp5598 = __ralloc.v0[332]::Taylor1{_S} + tmp5599 = __ralloc.v0[333]::Taylor1{_S} + tmp5601 = __ralloc.v0[334]::Taylor1{_S} + tmp5602 = __ralloc.v0[335]::Taylor1{_S} + tmp5604 = __ralloc.v0[336]::Taylor1{_S} + tmp5605 = __ralloc.v0[337]::Taylor1{_S} + tmp5609 = __ralloc.v0[338]::Taylor1{_S} + tmp5610 = __ralloc.v0[339]::Taylor1{_S} + tmp5615 = __ralloc.v0[340]::Taylor1{_S} + tmp5617 = __ralloc.v0[341]::Taylor1{_S} + tmp5618 = __ralloc.v0[342]::Taylor1{_S} + tmp5619 = __ralloc.v0[343]::Taylor1{_S} + tmp5620 = __ralloc.v0[344]::Taylor1{_S} + tmp5622 = __ralloc.v0[345]::Taylor1{_S} + tmp5623 = __ralloc.v0[346]::Taylor1{_S} + tmp5625 = __ralloc.v0[347]::Taylor1{_S} + tmp5626 = __ralloc.v0[348]::Taylor1{_S} + tmp5627 = __ralloc.v0[349]::Taylor1{_S} + tmp5628 = __ralloc.v0[350]::Taylor1{_S} + tmp5630 = __ralloc.v0[351]::Taylor1{_S} + tmp5631 = __ralloc.v0[352]::Taylor1{_S} + tmp5633 = __ralloc.v0[353]::Taylor1{_S} + tmp5634 = __ralloc.v0[354]::Taylor1{_S} + tmp5635 = __ralloc.v0[355]::Taylor1{_S} + tmp5636 = __ralloc.v0[356]::Taylor1{_S} + tmp5638 = __ralloc.v0[357]::Taylor1{_S} + tmp5639 = __ralloc.v0[358]::Taylor1{_S} + tmp5641 = __ralloc.v0[359]::Taylor1{_S} + tmp5642 = __ralloc.v0[360]::Taylor1{_S} + tmp5643 = __ralloc.v0[361]::Taylor1{_S} + tmp5644 = __ralloc.v0[362]::Taylor1{_S} + tmp5646 = __ralloc.v0[363]::Taylor1{_S} + tmp5647 = __ralloc.v0[364]::Taylor1{_S} + tmp5648 = __ralloc.v0[365]::Taylor1{_S} + tmp5649 = __ralloc.v0[366]::Taylor1{_S} + tmp5651 = __ralloc.v0[367]::Taylor1{_S} + tmp5652 = __ralloc.v0[368]::Taylor1{_S} + tmp5653 = __ralloc.v0[369]::Taylor1{_S} + tmp5654 = __ralloc.v0[370]::Taylor1{_S} + tmp5656 = __ralloc.v0[371]::Taylor1{_S} + tmp5657 = __ralloc.v0[372]::Taylor1{_S} + tmp5658 = __ralloc.v0[373]::Taylor1{_S} + tmp5659 = __ralloc.v0[374]::Taylor1{_S} + tmp5661 = __ralloc.v0[375]::Taylor1{_S} + tmp5662 = __ralloc.v0[376]::Taylor1{_S} + tmp5663 = __ralloc.v0[377]::Taylor1{_S} + tmp5664 = __ralloc.v0[378]::Taylor1{_S} + tmp5666 = __ralloc.v0[379]::Taylor1{_S} + tmp5668 = __ralloc.v0[380]::Taylor1{_S} + tmp5669 = __ralloc.v0[381]::Taylor1{_S} + tmp5670 = __ralloc.v0[382]::Taylor1{_S} + tmp5671 = __ralloc.v0[383]::Taylor1{_S} + tmp5673 = __ralloc.v0[384]::Taylor1{_S} + tmp5674 = __ralloc.v0[385]::Taylor1{_S} + tmp5675 = __ralloc.v0[386]::Taylor1{_S} + tmp5676 = __ralloc.v0[387]::Taylor1{_S} + tmp5678 = __ralloc.v0[388]::Taylor1{_S} + tmp5679 = __ralloc.v0[389]::Taylor1{_S} + tmp5680 = __ralloc.v0[390]::Taylor1{_S} + tmp5681 = __ralloc.v0[391]::Taylor1{_S} + tmp5686 = __ralloc.v0[392]::Taylor1{_S} + tmp5687 = __ralloc.v0[393]::Taylor1{_S} + tmp5689 = __ralloc.v0[394]::Taylor1{_S} + tmp5690 = __ralloc.v0[395]::Taylor1{_S} + tmp5692 = __ralloc.v0[396]::Taylor1{_S} + tmp5693 = __ralloc.v0[397]::Taylor1{_S} + tmp5698 = __ralloc.v0[398]::Taylor1{_S} + tmp5699 = __ralloc.v0[399]::Taylor1{_S} + tmp5700 = __ralloc.v0[400]::Taylor1{_S} + tmp5701 = __ralloc.v0[401]::Taylor1{_S} + tmp5702 = __ralloc.v0[402]::Taylor1{_S} + tmp5703 = __ralloc.v0[403]::Taylor1{_S} + tmp5705 = __ralloc.v0[404]::Taylor1{_S} + tmp5706 = __ralloc.v0[405]::Taylor1{_S} + tmp5707 = __ralloc.v0[406]::Taylor1{_S} + tmp5708 = __ralloc.v0[407]::Taylor1{_S} + tmp5710 = __ralloc.v0[408]::Taylor1{_S} + tmp5711 = __ralloc.v0[409]::Taylor1{_S} + tmp5713 = __ralloc.v0[410]::Taylor1{_S} + tmp5714 = __ralloc.v0[411]::Taylor1{_S} + tmp5715 = __ralloc.v0[412]::Taylor1{_S} + tmp5716 = __ralloc.v0[413]::Taylor1{_S} + tmp5718 = __ralloc.v0[414]::Taylor1{_S} + tmp5719 = __ralloc.v0[415]::Taylor1{_S} + tmp5720 = __ralloc.v0[416]::Taylor1{_S} + tmp5721 = __ralloc.v0[417]::Taylor1{_S} + tmp5723 = __ralloc.v0[418]::Taylor1{_S} + tmp5724 = __ralloc.v0[419]::Taylor1{_S} + tmp5725 = __ralloc.v0[420]::Taylor1{_S} + tmp5726 = __ralloc.v0[421]::Taylor1{_S} + tmp5728 = __ralloc.v0[422]::Taylor1{_S} + tmp5729 = __ralloc.v0[423]::Taylor1{_S} + tmp5731 = __ralloc.v0[424]::Taylor1{_S} + tmp5732 = __ralloc.v0[425]::Taylor1{_S} + ϕ_m = __ralloc.v0[426]::Taylor1{_S} + θ_m = __ralloc.v0[427]::Taylor1{_S} + ψ_m = __ralloc.v0[428]::Taylor1{_S} + tmp5737 = __ralloc.v0[429]::Taylor1{_S} + tmp5738 = __ralloc.v0[430]::Taylor1{_S} + tmp5739 = __ralloc.v0[431]::Taylor1{_S} + tmp5740 = __ralloc.v0[432]::Taylor1{_S} + tmp5741 = __ralloc.v0[433]::Taylor1{_S} + tmp5742 = __ralloc.v0[434]::Taylor1{_S} + tmp5743 = __ralloc.v0[435]::Taylor1{_S} + tmp5744 = __ralloc.v0[436]::Taylor1{_S} + tmp5745 = __ralloc.v0[437]::Taylor1{_S} + tmp5746 = __ralloc.v0[438]::Taylor1{_S} + tmp5747 = __ralloc.v0[439]::Taylor1{_S} + tmp5748 = __ralloc.v0[440]::Taylor1{_S} + tmp5749 = __ralloc.v0[441]::Taylor1{_S} + tmp5750 = __ralloc.v0[442]::Taylor1{_S} + tmp5751 = __ralloc.v0[443]::Taylor1{_S} + tmp5752 = __ralloc.v0[444]::Taylor1{_S} + tmp5753 = __ralloc.v0[445]::Taylor1{_S} + tmp5754 = __ralloc.v0[446]::Taylor1{_S} + tmp5755 = __ralloc.v0[447]::Taylor1{_S} + tmp5756 = __ralloc.v0[448]::Taylor1{_S} + tmp5757 = __ralloc.v0[449]::Taylor1{_S} + tmp5758 = __ralloc.v0[450]::Taylor1{_S} + tmp5759 = __ralloc.v0[451]::Taylor1{_S} + tmp5760 = __ralloc.v0[452]::Taylor1{_S} + tmp5761 = __ralloc.v0[453]::Taylor1{_S} + tmp5762 = __ralloc.v0[454]::Taylor1{_S} + tmp5763 = __ralloc.v0[455]::Taylor1{_S} + tmp5764 = __ralloc.v0[456]::Taylor1{_S} + tmp5765 = __ralloc.v0[457]::Taylor1{_S} + ϕ_c = __ralloc.v0[458]::Taylor1{_S} + tmp5766 = __ralloc.v0[459]::Taylor1{_S} + tmp5767 = __ralloc.v0[460]::Taylor1{_S} + tmp5768 = __ralloc.v0[461]::Taylor1{_S} + tmp5769 = __ralloc.v0[462]::Taylor1{_S} + tmp5770 = __ralloc.v0[463]::Taylor1{_S} + tmp5771 = __ralloc.v0[464]::Taylor1{_S} + tmp5772 = __ralloc.v0[465]::Taylor1{_S} + tmp5773 = __ralloc.v0[466]::Taylor1{_S} + tmp5774 = __ralloc.v0[467]::Taylor1{_S} + tmp5775 = __ralloc.v0[468]::Taylor1{_S} + tmp5776 = __ralloc.v0[469]::Taylor1{_S} + tmp5777 = __ralloc.v0[470]::Taylor1{_S} + ω_c_CE_1 = __ralloc.v0[471]::Taylor1{_S} + ω_c_CE_2 = __ralloc.v0[472]::Taylor1{_S} + ω_c_CE_3 = __ralloc.v0[473]::Taylor1{_S} + J2M_t = __ralloc.v0[474]::Taylor1{_S} + C22M_t = __ralloc.v0[475]::Taylor1{_S} + C21M_t = __ralloc.v0[476]::Taylor1{_S} + S21M_t = __ralloc.v0[477]::Taylor1{_S} + S22M_t = __ralloc.v0[478]::Taylor1{_S} + x0s_M = __ralloc.v0[479]::Taylor1{_S} + y0s_M = __ralloc.v0[480]::Taylor1{_S} + z0s_M = __ralloc.v0[481]::Taylor1{_S} + ρ0s2_M = __ralloc.v0[482]::Taylor1{_S} + ρ0s_M = __ralloc.v0[483]::Taylor1{_S} + z0s2_M = __ralloc.v0[484]::Taylor1{_S} + r0s2_M = __ralloc.v0[485]::Taylor1{_S} + r0s_M = __ralloc.v0[486]::Taylor1{_S} + r0s5_M = __ralloc.v0[487]::Taylor1{_S} + x0s_S = __ralloc.v0[488]::Taylor1{_S} + y0s_S = __ralloc.v0[489]::Taylor1{_S} + z0s_S = __ralloc.v0[490]::Taylor1{_S} + ρ0s2_S = __ralloc.v0[491]::Taylor1{_S} + ρ0s_S = __ralloc.v0[492]::Taylor1{_S} + z0s2_S = __ralloc.v0[493]::Taylor1{_S} + r0s2_S = __ralloc.v0[494]::Taylor1{_S} + r0s_S = __ralloc.v0[495]::Taylor1{_S} + r0s5_S = __ralloc.v0[496]::Taylor1{_S} + coeff0_M = __ralloc.v0[497]::Taylor1{_S} + coeff0_S = __ralloc.v0[498]::Taylor1{_S} + k_20E_div_r0s5_M = __ralloc.v0[499]::Taylor1{_S} + k_20E_div_r0s5_S = __ralloc.v0[500]::Taylor1{_S} + a_tid_0_M_x = __ralloc.v0[501]::Taylor1{_S} + a_tid_0_M_y = __ralloc.v0[502]::Taylor1{_S} + a_tid_0_M_z = __ralloc.v0[503]::Taylor1{_S} + a_tid_0_S_x = __ralloc.v0[504]::Taylor1{_S} + a_tid_0_S_y = __ralloc.v0[505]::Taylor1{_S} + a_tid_0_S_z = __ralloc.v0[506]::Taylor1{_S} + x1s_M = __ralloc.v0[507]::Taylor1{_S} + y1s_M = __ralloc.v0[508]::Taylor1{_S} + z1s_M = __ralloc.v0[509]::Taylor1{_S} + ρ1s2_M = __ralloc.v0[510]::Taylor1{_S} + ρ1s_M = __ralloc.v0[511]::Taylor1{_S} + z1s2_M = __ralloc.v0[512]::Taylor1{_S} + r1s2_M = __ralloc.v0[513]::Taylor1{_S} + r1s_M = __ralloc.v0[514]::Taylor1{_S} + r1s5_M = __ralloc.v0[515]::Taylor1{_S} + x1s_S = __ralloc.v0[516]::Taylor1{_S} + y1s_S = __ralloc.v0[517]::Taylor1{_S} + z1s_S = __ralloc.v0[518]::Taylor1{_S} + ρ1s2_S = __ralloc.v0[519]::Taylor1{_S} + ρ1s_S = __ralloc.v0[520]::Taylor1{_S} + z1s2_S = __ralloc.v0[521]::Taylor1{_S} + r1s2_S = __ralloc.v0[522]::Taylor1{_S} + r1s_S = __ralloc.v0[523]::Taylor1{_S} + r1s5_S = __ralloc.v0[524]::Taylor1{_S} + coeff1_1_M = __ralloc.v0[525]::Taylor1{_S} + coeff1_1_S = __ralloc.v0[526]::Taylor1{_S} + coeff2_1_M = __ralloc.v0[527]::Taylor1{_S} + coeff2_1_S = __ralloc.v0[528]::Taylor1{_S} + coeff3_1_M = __ralloc.v0[529]::Taylor1{_S} + coeff3_1_S = __ralloc.v0[530]::Taylor1{_S} + k_21E_div_r1s5_M = __ralloc.v0[531]::Taylor1{_S} + k_21E_div_r1s5_S = __ralloc.v0[532]::Taylor1{_S} + a_tid_1_M_x = __ralloc.v0[533]::Taylor1{_S} + a_tid_1_M_y = __ralloc.v0[534]::Taylor1{_S} + a_tid_1_M_z = __ralloc.v0[535]::Taylor1{_S} + a_tid_1_S_x = __ralloc.v0[536]::Taylor1{_S} + a_tid_1_S_y = __ralloc.v0[537]::Taylor1{_S} + a_tid_1_S_z = __ralloc.v0[538]::Taylor1{_S} + x2s_M = __ralloc.v0[539]::Taylor1{_S} + y2s_M = __ralloc.v0[540]::Taylor1{_S} + z2s_M = __ralloc.v0[541]::Taylor1{_S} + ρ2s2_M = __ralloc.v0[542]::Taylor1{_S} + ρ2s_M = __ralloc.v0[543]::Taylor1{_S} + z2s2_M = __ralloc.v0[544]::Taylor1{_S} + r2s2_M = __ralloc.v0[545]::Taylor1{_S} + r2s_M = __ralloc.v0[546]::Taylor1{_S} + r2s5_M = __ralloc.v0[547]::Taylor1{_S} + x2s_S = __ralloc.v0[548]::Taylor1{_S} + y2s_S = __ralloc.v0[549]::Taylor1{_S} + z2s_S = __ralloc.v0[550]::Taylor1{_S} + ρ2s2_S = __ralloc.v0[551]::Taylor1{_S} + ρ2s_S = __ralloc.v0[552]::Taylor1{_S} + z2s2_S = __ralloc.v0[553]::Taylor1{_S} + r2s2_S = __ralloc.v0[554]::Taylor1{_S} + r2s_S = __ralloc.v0[555]::Taylor1{_S} + r2s5_S = __ralloc.v0[556]::Taylor1{_S} + coeff1_2_M = __ralloc.v0[557]::Taylor1{_S} + coeff1_2_S = __ralloc.v0[558]::Taylor1{_S} + coeff3_2_M = __ralloc.v0[559]::Taylor1{_S} + coeff3_2_S = __ralloc.v0[560]::Taylor1{_S} + k_22E_div_r2s5_M = __ralloc.v0[561]::Taylor1{_S} + k_22E_div_r2s5_S = __ralloc.v0[562]::Taylor1{_S} + a_tid_2_M_x = __ralloc.v0[563]::Taylor1{_S} + a_tid_2_M_y = __ralloc.v0[564]::Taylor1{_S} + a_tid_2_M_z = __ralloc.v0[565]::Taylor1{_S} + a_tid_2_S_x = __ralloc.v0[566]::Taylor1{_S} + a_tid_2_S_y = __ralloc.v0[567]::Taylor1{_S} + a_tid_2_S_z = __ralloc.v0[568]::Taylor1{_S} + RE_div_r_p5 = __ralloc.v0[569]::Taylor1{_S} + aux_tidacc = __ralloc.v0[570]::Taylor1{_S} + a_tidal_coeff_M = __ralloc.v0[571]::Taylor1{_S} + a_tidal_coeff_S = __ralloc.v0[572]::Taylor1{_S} + a_tidal_tod_x = __ralloc.v0[573]::Taylor1{_S} + a_tidal_tod_y = __ralloc.v0[574]::Taylor1{_S} + a_tidal_tod_z = __ralloc.v0[575]::Taylor1{_S} + a_tidal_x = __ralloc.v0[576]::Taylor1{_S} + a_tidal_y = __ralloc.v0[577]::Taylor1{_S} + a_tidal_z = __ralloc.v0[578]::Taylor1{_S} + accX_mo_tides = __ralloc.v0[579]::Taylor1{_S} + accY_mo_tides = __ralloc.v0[580]::Taylor1{_S} + accZ_mo_tides = __ralloc.v0[581]::Taylor1{_S} + Iω_x = __ralloc.v0[582]::Taylor1{_S} + Iω_y = __ralloc.v0[583]::Taylor1{_S} + Iω_z = __ralloc.v0[584]::Taylor1{_S} + ωxIω_x = __ralloc.v0[585]::Taylor1{_S} + ωxIω_y = __ralloc.v0[586]::Taylor1{_S} + ωxIω_z = __ralloc.v0[587]::Taylor1{_S} + dIω_x = __ralloc.v0[588]::Taylor1{_S} + dIω_y = __ralloc.v0[589]::Taylor1{_S} + dIω_z = __ralloc.v0[590]::Taylor1{_S} + er_EM_I_1 = __ralloc.v0[591]::Taylor1{_S} + er_EM_I_2 = __ralloc.v0[592]::Taylor1{_S} + er_EM_I_3 = __ralloc.v0[593]::Taylor1{_S} + p_E_I_1 = __ralloc.v0[594]::Taylor1{_S} + p_E_I_2 = __ralloc.v0[595]::Taylor1{_S} + p_E_I_3 = __ralloc.v0[596]::Taylor1{_S} + er_EM_1 = __ralloc.v0[597]::Taylor1{_S} + er_EM_2 = __ralloc.v0[598]::Taylor1{_S} + er_EM_3 = __ralloc.v0[599]::Taylor1{_S} + p_E_1 = __ralloc.v0[600]::Taylor1{_S} + p_E_2 = __ralloc.v0[601]::Taylor1{_S} + p_E_3 = __ralloc.v0[602]::Taylor1{_S} + I_er_EM_1 = __ralloc.v0[603]::Taylor1{_S} + I_er_EM_2 = __ralloc.v0[604]::Taylor1{_S} + I_er_EM_3 = __ralloc.v0[605]::Taylor1{_S} + I_p_E_1 = __ralloc.v0[606]::Taylor1{_S} + I_p_E_2 = __ralloc.v0[607]::Taylor1{_S} + I_p_E_3 = __ralloc.v0[608]::Taylor1{_S} + er_EM_cross_I_er_EM_1 = __ralloc.v0[609]::Taylor1{_S} + er_EM_cross_I_er_EM_2 = __ralloc.v0[610]::Taylor1{_S} + er_EM_cross_I_er_EM_3 = __ralloc.v0[611]::Taylor1{_S} + er_EM_cross_I_p_E_1 = __ralloc.v0[612]::Taylor1{_S} + er_EM_cross_I_p_E_2 = __ralloc.v0[613]::Taylor1{_S} + er_EM_cross_I_p_E_3 = __ralloc.v0[614]::Taylor1{_S} + p_E_cross_I_er_EM_1 = __ralloc.v0[615]::Taylor1{_S} + p_E_cross_I_er_EM_2 = __ralloc.v0[616]::Taylor1{_S} + p_E_cross_I_er_EM_3 = __ralloc.v0[617]::Taylor1{_S} + p_E_cross_I_p_E_1 = __ralloc.v0[618]::Taylor1{_S} + p_E_cross_I_p_E_2 = __ralloc.v0[619]::Taylor1{_S} + p_E_cross_I_p_E_3 = __ralloc.v0[620]::Taylor1{_S} + one_minus_7sin2ϕEM = __ralloc.v0[621]::Taylor1{_S} + two_sinϕEM = __ralloc.v0[622]::Taylor1{_S} + N_MfigM_figE_factor_div_rEMp5 = __ralloc.v0[623]::Taylor1{_S} + N_MfigM_figE_1 = __ralloc.v0[624]::Taylor1{_S} + N_MfigM_figE_2 = __ralloc.v0[625]::Taylor1{_S} + N_MfigM_figE_3 = __ralloc.v0[626]::Taylor1{_S} + N_1_LMF = __ralloc.v0[627]::Taylor1{_S} + N_2_LMF = __ralloc.v0[628]::Taylor1{_S} + N_3_LMF = __ralloc.v0[629]::Taylor1{_S} + N_cmb_1 = __ralloc.v0[630]::Taylor1{_S} + N_cmb_2 = __ralloc.v0[631]::Taylor1{_S} + N_cmb_3 = __ralloc.v0[632]::Taylor1{_S} + I_dω_1 = __ralloc.v0[633]::Taylor1{_S} + I_dω_2 = __ralloc.v0[634]::Taylor1{_S} + I_dω_3 = __ralloc.v0[635]::Taylor1{_S} + Ic_ωc_1 = __ralloc.v0[636]::Taylor1{_S} + Ic_ωc_2 = __ralloc.v0[637]::Taylor1{_S} + Ic_ωc_3 = __ralloc.v0[638]::Taylor1{_S} + m_ωm_x_Icωc_1 = __ralloc.v0[639]::Taylor1{_S} + m_ωm_x_Icωc_2 = __ralloc.v0[640]::Taylor1{_S} + m_ωm_x_Icωc_3 = __ralloc.v0[641]::Taylor1{_S} + Ic_dωc_1 = __ralloc.v0[642]::Taylor1{_S} + Ic_dωc_2 = __ralloc.v0[643]::Taylor1{_S} + Ic_dωc_3 = __ralloc.v0[644]::Taylor1{_S} + tmp5778 = __ralloc.v0[645]::Taylor1{_S} + tmp5779 = __ralloc.v0[646]::Taylor1{_S} + tmp5780 = __ralloc.v0[647]::Taylor1{_S} + tmp5781 = __ralloc.v0[648]::Taylor1{_S} + tmp5782 = __ralloc.v0[649]::Taylor1{_S} + tmp5783 = __ralloc.v0[650]::Taylor1{_S} + tmp5784 = __ralloc.v0[651]::Taylor1{_S} + tmp5785 = __ralloc.v0[652]::Taylor1{_S} + newtonX = __ralloc.v1[1]::Vector{Taylor1{_S}} + newtonY = __ralloc.v1[2]::Vector{Taylor1{_S}} + newtonZ = __ralloc.v1[3]::Vector{Taylor1{_S}} + newtonianNb_Potential = __ralloc.v1[4]::Vector{Taylor1{_S}} + v2 = __ralloc.v1[5]::Vector{Taylor1{_S}} + pntempX = __ralloc.v1[6]::Vector{Taylor1{_S}} + pntempY = __ralloc.v1[7]::Vector{Taylor1{_S}} + pntempZ = __ralloc.v1[8]::Vector{Taylor1{_S}} + postNewtonX = __ralloc.v1[9]::Vector{Taylor1{_S}} + postNewtonY = __ralloc.v1[10]::Vector{Taylor1{_S}} + postNewtonZ = __ralloc.v1[11]::Vector{Taylor1{_S}} + accX = __ralloc.v1[12]::Vector{Taylor1{_S}} + accY = __ralloc.v1[13]::Vector{Taylor1{_S}} + accZ = __ralloc.v1[14]::Vector{Taylor1{_S}} + N_MfigM_pmA_x = __ralloc.v1[15]::Vector{Taylor1{_S}} + N_MfigM_pmA_y = __ralloc.v1[16]::Vector{Taylor1{_S}} + N_MfigM_pmA_z = __ralloc.v1[17]::Vector{Taylor1{_S}} + temp_N_M_x = __ralloc.v1[18]::Vector{Taylor1{_S}} + temp_N_M_y = __ralloc.v1[19]::Vector{Taylor1{_S}} + temp_N_M_z = __ralloc.v1[20]::Vector{Taylor1{_S}} + N_MfigM = __ralloc.v1[21]::Vector{Taylor1{_S}} + J2_t = __ralloc.v1[22]::Vector{Taylor1{_S}} + tmp4824 = __ralloc.v1[23]::Vector{Taylor1{_S}} + tmp4826 = __ralloc.v1[24]::Vector{Taylor1{_S}} + tmp4829 = __ralloc.v1[25]::Vector{Taylor1{_S}} + tmp4831 = __ralloc.v1[26]::Vector{Taylor1{_S}} + tmp4834 = __ralloc.v1[27]::Vector{Taylor1{_S}} + tmp4836 = __ralloc.v1[28]::Vector{Taylor1{_S}} + tmp4880 = __ralloc.v1[29]::Vector{Taylor1{_S}} + tmp4882 = __ralloc.v1[30]::Vector{Taylor1{_S}} + tmp4883 = __ralloc.v1[31]::Vector{Taylor1{_S}} + tmp4885 = __ralloc.v1[32]::Vector{Taylor1{_S}} + X = __ralloc.v2[1]::Array{Taylor1{_S}, 2} + Y = __ralloc.v2[2]::Array{Taylor1{_S}, 2} + Z = __ralloc.v2[3]::Array{Taylor1{_S}, 2} + r_p2 = __ralloc.v2[4]::Array{Taylor1{_S}, 2} + r_p1d2 = __ralloc.v2[5]::Array{Taylor1{_S}, 2} + r_p3d2 = __ralloc.v2[6]::Array{Taylor1{_S}, 2} + r_p7d2 = __ralloc.v2[7]::Array{Taylor1{_S}, 2} + newtonianCoeff = __ralloc.v2[8]::Array{Taylor1{_S}, 2} + U = __ralloc.v2[9]::Array{Taylor1{_S}, 2} + V = __ralloc.v2[10]::Array{Taylor1{_S}, 2} + W = __ralloc.v2[11]::Array{Taylor1{_S}, 2} + _4U_m_3X = __ralloc.v2[12]::Array{Taylor1{_S}, 2} + _4V_m_3Y = __ralloc.v2[13]::Array{Taylor1{_S}, 2} + _4W_m_3Z = __ralloc.v2[14]::Array{Taylor1{_S}, 2} + UU = __ralloc.v2[15]::Array{Taylor1{_S}, 2} + VV = __ralloc.v2[16]::Array{Taylor1{_S}, 2} + WW = __ralloc.v2[17]::Array{Taylor1{_S}, 2} + newtonian1b_Potential = __ralloc.v2[18]::Array{Taylor1{_S}, 2} + newton_acc_X = __ralloc.v2[19]::Array{Taylor1{_S}, 2} + newton_acc_Y = __ralloc.v2[20]::Array{Taylor1{_S}, 2} + newton_acc_Z = __ralloc.v2[21]::Array{Taylor1{_S}, 2} + _2v2 = __ralloc.v2[22]::Array{Taylor1{_S}, 2} + vi_dot_vj = __ralloc.v2[23]::Array{Taylor1{_S}, 2} + pn2 = __ralloc.v2[24]::Array{Taylor1{_S}, 2} + U_t_pn2 = __ralloc.v2[25]::Array{Taylor1{_S}, 2} + V_t_pn2 = __ralloc.v2[26]::Array{Taylor1{_S}, 2} + W_t_pn2 = __ralloc.v2[27]::Array{Taylor1{_S}, 2} + pn3 = __ralloc.v2[28]::Array{Taylor1{_S}, 2} + pNX_t_pn3 = __ralloc.v2[29]::Array{Taylor1{_S}, 2} + pNY_t_pn3 = __ralloc.v2[30]::Array{Taylor1{_S}, 2} + pNZ_t_pn3 = __ralloc.v2[31]::Array{Taylor1{_S}, 2} + _4ϕj = __ralloc.v2[32]::Array{Taylor1{_S}, 2} + ϕi_plus_4ϕj = __ralloc.v2[33]::Array{Taylor1{_S}, 2} + sj2_plus_2si2 = __ralloc.v2[34]::Array{Taylor1{_S}, 2} + sj2_plus_2si2_minus_4vivj = __ralloc.v2[35]::Array{Taylor1{_S}, 2} + ϕs_and_vs = __ralloc.v2[36]::Array{Taylor1{_S}, 2} + pn1t1_7 = __ralloc.v2[37]::Array{Taylor1{_S}, 2} + pNX_t_X = __ralloc.v2[38]::Array{Taylor1{_S}, 2} + pNY_t_Y = __ralloc.v2[39]::Array{Taylor1{_S}, 2} + pNZ_t_Z = __ralloc.v2[40]::Array{Taylor1{_S}, 2} + pn1 = __ralloc.v2[41]::Array{Taylor1{_S}, 2} + X_t_pn1 = __ralloc.v2[42]::Array{Taylor1{_S}, 2} + Y_t_pn1 = __ralloc.v2[43]::Array{Taylor1{_S}, 2} + Z_t_pn1 = __ralloc.v2[44]::Array{Taylor1{_S}, 2} + X_bf_1 = __ralloc.v2[45]::Array{Taylor1{_S}, 2} + Y_bf_1 = __ralloc.v2[46]::Array{Taylor1{_S}, 2} + Z_bf_1 = __ralloc.v2[47]::Array{Taylor1{_S}, 2} + X_bf_2 = __ralloc.v2[48]::Array{Taylor1{_S}, 2} + Y_bf_2 = __ralloc.v2[49]::Array{Taylor1{_S}, 2} + Z_bf_2 = __ralloc.v2[50]::Array{Taylor1{_S}, 2} + X_bf_3 = __ralloc.v2[51]::Array{Taylor1{_S}, 2} + Y_bf_3 = __ralloc.v2[52]::Array{Taylor1{_S}, 2} + Z_bf_3 = __ralloc.v2[53]::Array{Taylor1{_S}, 2} + X_bf = __ralloc.v2[54]::Array{Taylor1{_S}, 2} + Y_bf = __ralloc.v2[55]::Array{Taylor1{_S}, 2} + Z_bf = __ralloc.v2[56]::Array{Taylor1{_S}, 2} + F_JCS_x = __ralloc.v2[57]::Array{Taylor1{_S}, 2} + F_JCS_y = __ralloc.v2[58]::Array{Taylor1{_S}, 2} + F_JCS_z = __ralloc.v2[59]::Array{Taylor1{_S}, 2} + temp_accX_j = __ralloc.v2[60]::Array{Taylor1{_S}, 2} + temp_accY_j = __ralloc.v2[61]::Array{Taylor1{_S}, 2} + temp_accZ_j = __ralloc.v2[62]::Array{Taylor1{_S}, 2} + temp_accX_i = __ralloc.v2[63]::Array{Taylor1{_S}, 2} + temp_accY_i = __ralloc.v2[64]::Array{Taylor1{_S}, 2} + temp_accZ_i = __ralloc.v2[65]::Array{Taylor1{_S}, 2} + sin_ϕ = __ralloc.v2[66]::Array{Taylor1{_S}, 2} + cos_ϕ = __ralloc.v2[67]::Array{Taylor1{_S}, 2} + sin_λ = __ralloc.v2[68]::Array{Taylor1{_S}, 2} + cos_λ = __ralloc.v2[69]::Array{Taylor1{_S}, 2} + r_xy = __ralloc.v2[70]::Array{Taylor1{_S}, 2} + r_p4 = __ralloc.v2[71]::Array{Taylor1{_S}, 2} + F_CS_ξ_36 = __ralloc.v2[72]::Array{Taylor1{_S}, 2} + F_CS_η_36 = __ralloc.v2[73]::Array{Taylor1{_S}, 2} + F_CS_ζ_36 = __ralloc.v2[74]::Array{Taylor1{_S}, 2} + F_J_ξ_36 = __ralloc.v2[75]::Array{Taylor1{_S}, 2} + F_J_ζ_36 = __ralloc.v2[76]::Array{Taylor1{_S}, 2} + F_J_ξ = __ralloc.v2[77]::Array{Taylor1{_S}, 2} + F_J_ζ = __ralloc.v2[78]::Array{Taylor1{_S}, 2} + F_CS_ξ = __ralloc.v2[79]::Array{Taylor1{_S}, 2} + F_CS_η = __ralloc.v2[80]::Array{Taylor1{_S}, 2} + F_CS_ζ = __ralloc.v2[81]::Array{Taylor1{_S}, 2} + F_JCS_ξ = __ralloc.v2[82]::Array{Taylor1{_S}, 2} + F_JCS_η = __ralloc.v2[83]::Array{Taylor1{_S}, 2} + F_JCS_ζ = __ralloc.v2[84]::Array{Taylor1{_S}, 2} + mantlef2coref = __ralloc.v2[85]::Array{Taylor1{_S}, 2} + pn2x = __ralloc.v2[86]::Array{Taylor1{_S}, 2} + pn2y = __ralloc.v2[87]::Array{Taylor1{_S}, 2} + pn2z = __ralloc.v2[88]::Array{Taylor1{_S}, 2} + tmp4844 = __ralloc.v2[89]::Array{Taylor1{_S}, 2} + tmp4847 = __ralloc.v2[90]::Array{Taylor1{_S}, 2} + tmp4849 = __ralloc.v2[91]::Array{Taylor1{_S}, 2} + tmp4850 = __ralloc.v2[92]::Array{Taylor1{_S}, 2} + tmp4852 = __ralloc.v2[93]::Array{Taylor1{_S}, 2} + tmp4860 = __ralloc.v2[94]::Array{Taylor1{_S}, 2} + tmp4861 = __ralloc.v2[95]::Array{Taylor1{_S}, 2} + tmp4872 = __ralloc.v2[96]::Array{Taylor1{_S}, 2} + temp_001 = __ralloc.v2[97]::Array{Taylor1{_S}, 2} + tmp4874 = __ralloc.v2[98]::Array{Taylor1{_S}, 2} + temp_002 = __ralloc.v2[99]::Array{Taylor1{_S}, 2} + tmp4876 = __ralloc.v2[100]::Array{Taylor1{_S}, 2} + temp_003 = __ralloc.v2[101]::Array{Taylor1{_S}, 2} + temp_004 = __ralloc.v2[102]::Array{Taylor1{_S}, 2} + tmp4913 = __ralloc.v2[103]::Array{Taylor1{_S}, 2} + tmp4915 = __ralloc.v2[104]::Array{Taylor1{_S}, 2} + tmp4917 = __ralloc.v2[105]::Array{Taylor1{_S}, 2} + tmp4921 = __ralloc.v2[106]::Array{Taylor1{_S}, 2} + tmp4923 = __ralloc.v2[107]::Array{Taylor1{_S}, 2} + tmp4924 = __ralloc.v2[108]::Array{Taylor1{_S}, 2} + tmp5030 = __ralloc.v2[109]::Array{Taylor1{_S}, 2} + tmp5031 = __ralloc.v2[110]::Array{Taylor1{_S}, 2} + tmp5034 = __ralloc.v2[111]::Array{Taylor1{_S}, 2} + tmp5035 = __ralloc.v2[112]::Array{Taylor1{_S}, 2} + tmp5041 = __ralloc.v2[113]::Array{Taylor1{_S}, 2} + tmp5044 = __ralloc.v2[114]::Array{Taylor1{_S}, 2} + tmp5106 = __ralloc.v2[115]::Array{Taylor1{_S}, 2} + tmp5108 = __ralloc.v2[116]::Array{Taylor1{_S}, 2} + tmp5110 = __ralloc.v2[117]::Array{Taylor1{_S}, 2} + tmp5112 = __ralloc.v2[118]::Array{Taylor1{_S}, 2} + tmp5114 = __ralloc.v2[119]::Array{Taylor1{_S}, 2} + tmp5116 = __ralloc.v2[120]::Array{Taylor1{_S}, 2} + tmp5118 = __ralloc.v2[121]::Array{Taylor1{_S}, 2} + tmp5119 = __ralloc.v2[122]::Array{Taylor1{_S}, 2} + tmp5120 = __ralloc.v2[123]::Array{Taylor1{_S}, 2} + tmp5122 = __ralloc.v2[124]::Array{Taylor1{_S}, 2} + tmp5123 = __ralloc.v2[125]::Array{Taylor1{_S}, 2} + tmp5124 = __ralloc.v2[126]::Array{Taylor1{_S}, 2} + tmp5126 = __ralloc.v2[127]::Array{Taylor1{_S}, 2} + tmp5127 = __ralloc.v2[128]::Array{Taylor1{_S}, 2} + tmp5128 = __ralloc.v2[129]::Array{Taylor1{_S}, 2} + tmp5140 = __ralloc.v2[130]::Array{Taylor1{_S}, 2} + Xij_t_Ui = __ralloc.v2[131]::Array{Taylor1{_S}, 2} + Yij_t_Vi = __ralloc.v2[132]::Array{Taylor1{_S}, 2} + Zij_t_Wi = __ralloc.v2[133]::Array{Taylor1{_S}, 2} + tmp5146 = __ralloc.v2[134]::Array{Taylor1{_S}, 2} + Rij_dot_Vi = __ralloc.v2[135]::Array{Taylor1{_S}, 2} + tmp5149 = __ralloc.v2[136]::Array{Taylor1{_S}, 2} + pn1t7 = __ralloc.v2[137]::Array{Taylor1{_S}, 2} + tmp5152 = __ralloc.v2[138]::Array{Taylor1{_S}, 2} + pn1t2_7 = __ralloc.v2[139]::Array{Taylor1{_S}, 2} + tmp5159 = __ralloc.v2[140]::Array{Taylor1{_S}, 2} + tmp5160 = __ralloc.v2[141]::Array{Taylor1{_S}, 2} + tmp5161 = __ralloc.v2[142]::Array{Taylor1{_S}, 2} + tmp5169 = __ralloc.v2[143]::Array{Taylor1{_S}, 2} + termpnx = __ralloc.v2[144]::Array{Taylor1{_S}, 2} + sumpnx = __ralloc.v2[145]::Array{Taylor1{_S}, 2} + tmp5172 = __ralloc.v2[146]::Array{Taylor1{_S}, 2} + termpny = __ralloc.v2[147]::Array{Taylor1{_S}, 2} + sumpny = __ralloc.v2[148]::Array{Taylor1{_S}, 2} + tmp5175 = __ralloc.v2[149]::Array{Taylor1{_S}, 2} + termpnz = __ralloc.v2[150]::Array{Taylor1{_S}, 2} + sumpnz = __ralloc.v2[151]::Array{Taylor1{_S}, 2} + P_n = __ralloc.v3[1]::Array{Taylor1{_S}, 3} + dP_n = __ralloc.v3[2]::Array{Taylor1{_S}, 3} + temp_fjξ = __ralloc.v3[3]::Array{Taylor1{_S}, 3} + temp_fjζ = __ralloc.v3[4]::Array{Taylor1{_S}, 3} + temp_rn = __ralloc.v3[5]::Array{Taylor1{_S}, 3} + sin_mλ = __ralloc.v3[6]::Array{Taylor1{_S}, 3} + cos_mλ = __ralloc.v3[7]::Array{Taylor1{_S}, 3} + RotM = __ralloc.v3[8]::Array{Taylor1{_S}, 3} + tmp4929 = __ralloc.v3[9]::Array{Taylor1{_S}, 3} + tmp4930 = __ralloc.v3[10]::Array{Taylor1{_S}, 3} + tmp4931 = __ralloc.v3[11]::Array{Taylor1{_S}, 3} + tmp4933 = __ralloc.v3[12]::Array{Taylor1{_S}, 3} + tmp4934 = __ralloc.v3[13]::Array{Taylor1{_S}, 3} + tmp4939 = __ralloc.v3[14]::Array{Taylor1{_S}, 3} + tmp4940 = __ralloc.v3[15]::Array{Taylor1{_S}, 3} + tmp4942 = __ralloc.v3[16]::Array{Taylor1{_S}, 3} + tmp4943 = __ralloc.v3[17]::Array{Taylor1{_S}, 3} + tmp4944 = __ralloc.v3[18]::Array{Taylor1{_S}, 3} + tmp4946 = __ralloc.v3[19]::Array{Taylor1{_S}, 3} + tmp4947 = __ralloc.v3[20]::Array{Taylor1{_S}, 3} + tmp4948 = __ralloc.v3[21]::Array{Taylor1{_S}, 3} + tmp4950 = __ralloc.v3[22]::Array{Taylor1{_S}, 3} + tmp4951 = __ralloc.v3[23]::Array{Taylor1{_S}, 3} + tmp4952 = __ralloc.v3[24]::Array{Taylor1{_S}, 3} + tmp4953 = __ralloc.v3[25]::Array{Taylor1{_S}, 3} + tmp4956 = __ralloc.v3[26]::Array{Taylor1{_S}, 3} + tmp4957 = __ralloc.v3[27]::Array{Taylor1{_S}, 3} + tmp4959 = __ralloc.v3[28]::Array{Taylor1{_S}, 3} + tmp4960 = __ralloc.v3[29]::Array{Taylor1{_S}, 3} + tmp4979 = __ralloc.v3[30]::Array{Taylor1{_S}, 3} + tmp4980 = __ralloc.v3[31]::Array{Taylor1{_S}, 3} + tmp4981 = __ralloc.v3[32]::Array{Taylor1{_S}, 3} + tmp4984 = __ralloc.v3[33]::Array{Taylor1{_S}, 3} + tmp4985 = __ralloc.v3[34]::Array{Taylor1{_S}, 3} + tmp4986 = __ralloc.v3[35]::Array{Taylor1{_S}, 3} + tmp4991 = __ralloc.v3[36]::Array{Taylor1{_S}, 3} + tmp4992 = __ralloc.v3[37]::Array{Taylor1{_S}, 3} + tmp4993 = __ralloc.v3[38]::Array{Taylor1{_S}, 3} + tmp4996 = __ralloc.v3[39]::Array{Taylor1{_S}, 3} + tmp4997 = __ralloc.v3[40]::Array{Taylor1{_S}, 3} + tmp4998 = __ralloc.v3[41]::Array{Taylor1{_S}, 3} + tmp5002 = __ralloc.v3[42]::Array{Taylor1{_S}, 3} + tmp5003 = __ralloc.v3[43]::Array{Taylor1{_S}, 3} + tmp5004 = __ralloc.v3[44]::Array{Taylor1{_S}, 3} + tmp5006 = __ralloc.v3[45]::Array{Taylor1{_S}, 3} + tmp5007 = __ralloc.v3[46]::Array{Taylor1{_S}, 3} + tmp5008 = __ralloc.v3[47]::Array{Taylor1{_S}, 3} + temp_CS_ξ = __ralloc.v4[1]::Array{Taylor1{_S}, 4} + temp_CS_η = __ralloc.v4[2]::Array{Taylor1{_S}, 4} + temp_CS_ζ = __ralloc.v4[3]::Array{Taylor1{_S}, 4} + Cnm_cosmλ = __ralloc.v4[4]::Array{Taylor1{_S}, 4} + Cnm_sinmλ = __ralloc.v4[5]::Array{Taylor1{_S}, 4} + Snm_cosmλ = __ralloc.v4[6]::Array{Taylor1{_S}, 4} + Snm_sinmλ = __ralloc.v4[7]::Array{Taylor1{_S}, 4} + secϕ_P_nm = __ralloc.v4[8]::Array{Taylor1{_S}, 4} + P_nm = __ralloc.v4[9]::Array{Taylor1{_S}, 4} + cosϕ_dP_nm = __ralloc.v4[10]::Array{Taylor1{_S}, 4} + Rb2p = __ralloc.v4[11]::Array{Taylor1{_S}, 4} + Gc2p = __ralloc.v4[12]::Array{Taylor1{_S}, 4} + tmp4962 = __ralloc.v4[13]::Array{Taylor1{_S}, 4} + tmp4965 = __ralloc.v4[14]::Array{Taylor1{_S}, 4} + tmp4967 = __ralloc.v4[15]::Array{Taylor1{_S}, 4} + tmp4969 = __ralloc.v4[16]::Array{Taylor1{_S}, 4} + tmp4970 = __ralloc.v4[17]::Array{Taylor1{_S}, 4} + tmp4971 = __ralloc.v4[18]::Array{Taylor1{_S}, 4} + tmp4974 = __ralloc.v4[19]::Array{Taylor1{_S}, 4} + tmp4975 = __ralloc.v4[20]::Array{Taylor1{_S}, 4} + tmp4976 = __ralloc.v4[21]::Array{Taylor1{_S}, 4} + tmp4978 = __ralloc.v4[22]::Array{Taylor1{_S}, 4} + tmp4982 = __ralloc.v4[23]::Array{Taylor1{_S}, 4} + tmp4983 = __ralloc.v4[24]::Array{Taylor1{_S}, 4} + tmp4987 = __ralloc.v4[25]::Array{Taylor1{_S}, 4} + tmp4988 = __ralloc.v4[26]::Array{Taylor1{_S}, 4} + tmp4990 = __ralloc.v4[27]::Array{Taylor1{_S}, 4} + tmp4994 = __ralloc.v4[28]::Array{Taylor1{_S}, 4} + tmp4995 = __ralloc.v4[29]::Array{Taylor1{_S}, 4} + tmp4999 = __ralloc.v4[30]::Array{Taylor1{_S}, 4} + tmp5000 = __ralloc.v4[31]::Array{Taylor1{_S}, 4} + tmp5005 = __ralloc.v4[32]::Array{Taylor1{_S}, 4} + tmp5009 = __ralloc.v4[33]::Array{Taylor1{_S}, 4} + tmp5010 = __ralloc.v4[34]::Array{Taylor1{_S}, 4} + tmp5016 = __ralloc.v4[35]::Array{Taylor1{_S}, 4} + tmp5017 = __ralloc.v4[36]::Array{Taylor1{_S}, 4} + tmp5018 = __ralloc.v4[37]::Array{Taylor1{_S}, 4} + tmp5019 = __ralloc.v4[38]::Array{Taylor1{_S}, 4} + tmp5021 = __ralloc.v4[39]::Array{Taylor1{_S}, 4} + tmp5022 = __ralloc.v4[40]::Array{Taylor1{_S}, 4} + tmp5023 = __ralloc.v4[41]::Array{Taylor1{_S}, 4} + tmp5024 = __ralloc.v4[42]::Array{Taylor1{_S}, 4} + tmp5026 = __ralloc.v4[43]::Array{Taylor1{_S}, 4} + tmp5027 = __ralloc.v4[44]::Array{Taylor1{_S}, 4} + tmp5028 = __ralloc.v4[45]::Array{Taylor1{_S}, 4} + tmp5046 = __ralloc.v4[46]::Array{Taylor1{_S}, 4} + tmp5047 = __ralloc.v4[47]::Array{Taylor1{_S}, 4} + tmp5048 = __ralloc.v4[48]::Array{Taylor1{_S}, 4} + tmp5049 = __ralloc.v4[49]::Array{Taylor1{_S}, 4} + tmp5051 = __ralloc.v4[50]::Array{Taylor1{_S}, 4} + tmp5052 = __ralloc.v4[51]::Array{Taylor1{_S}, 4} + tmp5053 = __ralloc.v4[52]::Array{Taylor1{_S}, 4} + tmp5054 = __ralloc.v4[53]::Array{Taylor1{_S}, 4} + tmp5056 = __ralloc.v4[54]::Array{Taylor1{_S}, 4} + tmp5057 = __ralloc.v4[55]::Array{Taylor1{_S}, 4} + tmp5058 = __ralloc.v4[56]::Array{Taylor1{_S}, 4} + tmp5059 = __ralloc.v4[57]::Array{Taylor1{_S}, 4} + tmp5061 = __ralloc.v4[58]::Array{Taylor1{_S}, 4} + tmp5062 = __ralloc.v4[59]::Array{Taylor1{_S}, 4} + tmp5063 = __ralloc.v4[60]::Array{Taylor1{_S}, 4} + tmp5064 = __ralloc.v4[61]::Array{Taylor1{_S}, 4} + tmp5066 = __ralloc.v4[62]::Array{Taylor1{_S}, 4} + tmp5067 = __ralloc.v4[63]::Array{Taylor1{_S}, 4} + tmp5068 = __ralloc.v4[64]::Array{Taylor1{_S}, 4} + tmp5069 = __ralloc.v4[65]::Array{Taylor1{_S}, 4} + tmp5071 = __ralloc.v4[66]::Array{Taylor1{_S}, 4} + tmp5072 = __ralloc.v4[67]::Array{Taylor1{_S}, 4} + tmp5073 = __ralloc.v4[68]::Array{Taylor1{_S}, 4} + tmp5074 = __ralloc.v4[69]::Array{Taylor1{_S}, 4} + tmp5076 = __ralloc.v4[70]::Array{Taylor1{_S}, 4} + tmp5077 = __ralloc.v4[71]::Array{Taylor1{_S}, 4} + tmp5078 = __ralloc.v4[72]::Array{Taylor1{_S}, 4} + tmp5079 = __ralloc.v4[73]::Array{Taylor1{_S}, 4} + tmp5081 = __ralloc.v4[74]::Array{Taylor1{_S}, 4} + tmp5082 = __ralloc.v4[75]::Array{Taylor1{_S}, 4} + tmp5083 = __ralloc.v4[76]::Array{Taylor1{_S}, 4} + tmp5084 = __ralloc.v4[77]::Array{Taylor1{_S}, 4} + tmp5086 = __ralloc.v4[78]::Array{Taylor1{_S}, 4} + tmp5087 = __ralloc.v4[79]::Array{Taylor1{_S}, 4} + tmp5088 = __ralloc.v4[80]::Array{Taylor1{_S}, 4} + tmp5089 = __ralloc.v4[81]::Array{Taylor1{_S}, 4} + tmp5091 = __ralloc.v4[82]::Array{Taylor1{_S}, 4} + tmp5092 = __ralloc.v4[83]::Array{Taylor1{_S}, 4} + tmp5093 = __ralloc.v4[84]::Array{Taylor1{_S}, 4} + tmp5094 = __ralloc.v4[85]::Array{Taylor1{_S}, 4} + tmp5096 = __ralloc.v4[86]::Array{Taylor1{_S}, 4} + tmp5097 = __ralloc.v4[87]::Array{Taylor1{_S}, 4} + tmp5098 = __ralloc.v4[88]::Array{Taylor1{_S}, 4} + tmp5099 = __ralloc.v4[89]::Array{Taylor1{_S}, 4} + tmp5101 = __ralloc.v4[90]::Array{Taylor1{_S}, 4} + tmp5102 = __ralloc.v4[91]::Array{Taylor1{_S}, 4} + tmp5103 = __ralloc.v4[92]::Array{Taylor1{_S}, 4} + tmp5104 = __ralloc.v4[93]::Array{Taylor1{_S}, 4} + local (N, jd0) = params + local S = eltype(q) + local params_bwd = (N_bwd, jd0) + local qq_bwd = Taylor1.(constant_term.(q[union(nbodyind(N, 1:N_bwd), 6N + 1:6N + 13)]), t.order)::Vector{S} + local dqq_bwd = similar(qq_bwd) + local xaux_bwd = similar(qq_bwd) + local jc = TaylorIntegration.jetcoeffs!(NBP_pN_A_J23E_J23M_J2S_threads!, t, qq_bwd, dqq_bwd, xaux_bwd, params_bwd) + local __t = Taylor1(t.order) + local q_del_τ_M = special_eval(qq_bwd, __t - τ_M) + local q_del_τ_0 = special_eval(qq_bwd, __t - τ_0p) + local q_del_τ_1 = special_eval(qq_bwd, __t - τ_1p) + local q_del_τ_2 = special_eval(qq_bwd, __t - τ_2p) + local eulang_del_τ_M = q_del_τ_M[6N_bwd + 1:6N_bwd + 3]::Vector{S} + local ω_m_del_τ_M = q_del_τ_M[6N_bwd + 4:6N_bwd + 6]::Vector{S} + local zero_q_1 = zero(q[1]) + local one_t = one(t) + local dsj2k = t + (jd0 - J2000) + local I_m_t = ITM(q_del_τ_M, eulang_del_τ_M, ω_m_del_τ_M)::Matrix{S} + local dI_m_t = ordpres_differentiate.(I_m_t) + local inv_I_m_t = inv(I_m_t) + local I_c_t = I_c .* one_t + local inv_I_c_t = inv(I_c_t) + local I_M_t = I_m_t + I_c_t + (N_MfigM[1]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + (N_MfigM[2]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + (N_MfigM[3]).coeffs[1] = identity(constant_term(zero_q_1)) + (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) + local αs = deg2rad(α_p_sun * one_t) + local δs = deg2rad(δ_p_sun * one_t) + local RotM[:, :, ea] = c2t_jpl_de430(dsj2k) + local RotM[:, :, su] = pole_rotation(αs, δs) + ϕ_m.coeffs[1] = identity(constant_term(q[6N + 1])) + ϕ_m.coeffs[2:order + 1] .= zero(ϕ_m.coeffs[1]) + θ_m.coeffs[1] = identity(constant_term(q[6N + 2])) + θ_m.coeffs[2:order + 1] .= zero(θ_m.coeffs[1]) + ψ_m.coeffs[1] = identity(constant_term(q[6N + 3])) + ψ_m.coeffs[2:order + 1] .= zero(ψ_m.coeffs[1]) + tmp4718.coeffs[1] = cos(constant_term(ϕ_m)) + tmp4718.coeffs[2:order + 1] .= zero(tmp4718.coeffs[1]) + tmp5737.coeffs[1] = sin(constant_term(ϕ_m)) + tmp5737.coeffs[2:order + 1] .= zero(tmp5737.coeffs[1]) + tmp4719.coeffs[1] = cos(constant_term(ψ_m)) + tmp4719.coeffs[2:order + 1] .= zero(tmp4719.coeffs[1]) + tmp5738.coeffs[1] = sin(constant_term(ψ_m)) + tmp5738.coeffs[2:order + 1] .= zero(tmp5738.coeffs[1]) + tmp4720.coeffs[1] = constant_term(tmp4718) * constant_term(tmp4719) + tmp4720.coeffs[2:order + 1] .= zero(tmp4720.coeffs[1]) + tmp4721.coeffs[1] = cos(constant_term(θ_m)) + tmp4721.coeffs[2:order + 1] .= zero(tmp4721.coeffs[1]) + tmp5739.coeffs[1] = sin(constant_term(θ_m)) + tmp5739.coeffs[2:order + 1] .= zero(tmp5739.coeffs[1]) + tmp4722.coeffs[1] = sin(constant_term(ϕ_m)) + tmp4722.coeffs[2:order + 1] .= zero(tmp4722.coeffs[1]) + tmp5740.coeffs[1] = cos(constant_term(ϕ_m)) + tmp5740.coeffs[2:order + 1] .= zero(tmp5740.coeffs[1]) + tmp4723.coeffs[1] = constant_term(tmp4721) * constant_term(tmp4722) + tmp4723.coeffs[2:order + 1] .= zero(tmp4723.coeffs[1]) + tmp4724.coeffs[1] = sin(constant_term(ψ_m)) + tmp4724.coeffs[2:order + 1] .= zero(tmp4724.coeffs[1]) + tmp5741.coeffs[1] = cos(constant_term(ψ_m)) + tmp5741.coeffs[2:order + 1] .= zero(tmp5741.coeffs[1]) + tmp4725.coeffs[1] = constant_term(tmp4723) * constant_term(tmp4724) + tmp4725.coeffs[2:order + 1] .= zero(tmp4725.coeffs[1]) + (RotM[1, 1, mo]).coeffs[1] = constant_term(tmp4720) - constant_term(tmp4725) + (RotM[1, 1, mo]).coeffs[2:order + 1] .= zero((RotM[1, 1, mo]).coeffs[1]) + tmp4727.coeffs[1] = cos(constant_term(θ_m)) + tmp4727.coeffs[2:order + 1] .= zero(tmp4727.coeffs[1]) + tmp5742.coeffs[1] = sin(constant_term(θ_m)) + tmp5742.coeffs[2:order + 1] .= zero(tmp5742.coeffs[1]) + tmp4728.coeffs[1] = -(constant_term(tmp4727)) + tmp4728.coeffs[2:order + 1] .= zero(tmp4728.coeffs[1]) + tmp4729.coeffs[1] = cos(constant_term(ψ_m)) + tmp4729.coeffs[2:order + 1] .= zero(tmp4729.coeffs[1]) + tmp5743.coeffs[1] = sin(constant_term(ψ_m)) + tmp5743.coeffs[2:order + 1] .= zero(tmp5743.coeffs[1]) + tmp4730.coeffs[1] = constant_term(tmp4728) * constant_term(tmp4729) + tmp4730.coeffs[2:order + 1] .= zero(tmp4730.coeffs[1]) + tmp4731.coeffs[1] = sin(constant_term(ϕ_m)) + tmp4731.coeffs[2:order + 1] .= zero(tmp4731.coeffs[1]) + tmp5744.coeffs[1] = cos(constant_term(ϕ_m)) + tmp5744.coeffs[2:order + 1] .= zero(tmp5744.coeffs[1]) + tmp4732.coeffs[1] = constant_term(tmp4730) * constant_term(tmp4731) + tmp4732.coeffs[2:order + 1] .= zero(tmp4732.coeffs[1]) + tmp4733.coeffs[1] = cos(constant_term(ϕ_m)) + tmp4733.coeffs[2:order + 1] .= zero(tmp4733.coeffs[1]) + tmp5745.coeffs[1] = sin(constant_term(ϕ_m)) + tmp5745.coeffs[2:order + 1] .= zero(tmp5745.coeffs[1]) + tmp4734.coeffs[1] = sin(constant_term(ψ_m)) + tmp4734.coeffs[2:order + 1] .= zero(tmp4734.coeffs[1]) + tmp5746.coeffs[1] = cos(constant_term(ψ_m)) + tmp5746.coeffs[2:order + 1] .= zero(tmp5746.coeffs[1]) + tmp4735.coeffs[1] = constant_term(tmp4733) * constant_term(tmp4734) + tmp4735.coeffs[2:order + 1] .= zero(tmp4735.coeffs[1]) + (RotM[2, 1, mo]).coeffs[1] = constant_term(tmp4732) - constant_term(tmp4735) + (RotM[2, 1, mo]).coeffs[2:order + 1] .= zero((RotM[2, 1, mo]).coeffs[1]) + tmp4737.coeffs[1] = sin(constant_term(θ_m)) + tmp4737.coeffs[2:order + 1] .= zero(tmp4737.coeffs[1]) + tmp5747.coeffs[1] = cos(constant_term(θ_m)) + tmp5747.coeffs[2:order + 1] .= zero(tmp5747.coeffs[1]) + tmp4738.coeffs[1] = sin(constant_term(ϕ_m)) + tmp4738.coeffs[2:order + 1] .= zero(tmp4738.coeffs[1]) + tmp5748.coeffs[1] = cos(constant_term(ϕ_m)) + tmp5748.coeffs[2:order + 1] .= zero(tmp5748.coeffs[1]) + (RotM[3, 1, mo]).coeffs[1] = constant_term(tmp4737) * constant_term(tmp4738) + (RotM[3, 1, mo]).coeffs[2:order + 1] .= zero((RotM[3, 1, mo]).coeffs[1]) + tmp4740.coeffs[1] = cos(constant_term(ψ_m)) + tmp4740.coeffs[2:order + 1] .= zero(tmp4740.coeffs[1]) + tmp5749.coeffs[1] = sin(constant_term(ψ_m)) + tmp5749.coeffs[2:order + 1] .= zero(tmp5749.coeffs[1]) + tmp4741.coeffs[1] = sin(constant_term(ϕ_m)) + tmp4741.coeffs[2:order + 1] .= zero(tmp4741.coeffs[1]) + tmp5750.coeffs[1] = cos(constant_term(ϕ_m)) + tmp5750.coeffs[2:order + 1] .= zero(tmp5750.coeffs[1]) + tmp4742.coeffs[1] = constant_term(tmp4740) * constant_term(tmp4741) + tmp4742.coeffs[2:order + 1] .= zero(tmp4742.coeffs[1]) + tmp4743.coeffs[1] = cos(constant_term(θ_m)) + tmp4743.coeffs[2:order + 1] .= zero(tmp4743.coeffs[1]) + tmp5751.coeffs[1] = sin(constant_term(θ_m)) + tmp5751.coeffs[2:order + 1] .= zero(tmp5751.coeffs[1]) + tmp4744.coeffs[1] = cos(constant_term(ϕ_m)) + tmp4744.coeffs[2:order + 1] .= zero(tmp4744.coeffs[1]) + tmp5752.coeffs[1] = sin(constant_term(ϕ_m)) + tmp5752.coeffs[2:order + 1] .= zero(tmp5752.coeffs[1]) + tmp4745.coeffs[1] = constant_term(tmp4743) * constant_term(tmp4744) + tmp4745.coeffs[2:order + 1] .= zero(tmp4745.coeffs[1]) + tmp4746.coeffs[1] = sin(constant_term(ψ_m)) + tmp4746.coeffs[2:order + 1] .= zero(tmp4746.coeffs[1]) + tmp5753.coeffs[1] = cos(constant_term(ψ_m)) + tmp5753.coeffs[2:order + 1] .= zero(tmp5753.coeffs[1]) + tmp4747.coeffs[1] = constant_term(tmp4745) * constant_term(tmp4746) + tmp4747.coeffs[2:order + 1] .= zero(tmp4747.coeffs[1]) + (RotM[1, 2, mo]).coeffs[1] = constant_term(tmp4742) + constant_term(tmp4747) + (RotM[1, 2, mo]).coeffs[2:order + 1] .= zero((RotM[1, 2, mo]).coeffs[1]) + tmp4749.coeffs[1] = cos(constant_term(θ_m)) + tmp4749.coeffs[2:order + 1] .= zero(tmp4749.coeffs[1]) + tmp5754.coeffs[1] = sin(constant_term(θ_m)) + tmp5754.coeffs[2:order + 1] .= zero(tmp5754.coeffs[1]) + tmp4750.coeffs[1] = cos(constant_term(ϕ_m)) + tmp4750.coeffs[2:order + 1] .= zero(tmp4750.coeffs[1]) + tmp5755.coeffs[1] = sin(constant_term(ϕ_m)) + tmp5755.coeffs[2:order + 1] .= zero(tmp5755.coeffs[1]) + tmp4751.coeffs[1] = constant_term(tmp4749) * constant_term(tmp4750) + tmp4751.coeffs[2:order + 1] .= zero(tmp4751.coeffs[1]) + tmp4752.coeffs[1] = cos(constant_term(ψ_m)) + tmp4752.coeffs[2:order + 1] .= zero(tmp4752.coeffs[1]) + tmp5756.coeffs[1] = sin(constant_term(ψ_m)) + tmp5756.coeffs[2:order + 1] .= zero(tmp5756.coeffs[1]) + tmp4753.coeffs[1] = constant_term(tmp4751) * constant_term(tmp4752) + tmp4753.coeffs[2:order + 1] .= zero(tmp4753.coeffs[1]) + tmp4754.coeffs[1] = sin(constant_term(ϕ_m)) + tmp4754.coeffs[2:order + 1] .= zero(tmp4754.coeffs[1]) + tmp5757.coeffs[1] = cos(constant_term(ϕ_m)) + tmp5757.coeffs[2:order + 1] .= zero(tmp5757.coeffs[1]) + tmp4755.coeffs[1] = sin(constant_term(ψ_m)) + tmp4755.coeffs[2:order + 1] .= zero(tmp4755.coeffs[1]) + tmp5758.coeffs[1] = cos(constant_term(ψ_m)) + tmp5758.coeffs[2:order + 1] .= zero(tmp5758.coeffs[1]) + tmp4756.coeffs[1] = constant_term(tmp4754) * constant_term(tmp4755) + tmp4756.coeffs[2:order + 1] .= zero(tmp4756.coeffs[1]) + (RotM[2, 2, mo]).coeffs[1] = constant_term(tmp4753) - constant_term(tmp4756) + (RotM[2, 2, mo]).coeffs[2:order + 1] .= zero((RotM[2, 2, mo]).coeffs[1]) + tmp4758.coeffs[1] = cos(constant_term(ϕ_m)) + tmp4758.coeffs[2:order + 1] .= zero(tmp4758.coeffs[1]) + tmp5759.coeffs[1] = sin(constant_term(ϕ_m)) + tmp5759.coeffs[2:order + 1] .= zero(tmp5759.coeffs[1]) + tmp4759.coeffs[1] = -(constant_term(tmp4758)) + tmp4759.coeffs[2:order + 1] .= zero(tmp4759.coeffs[1]) + tmp4760.coeffs[1] = sin(constant_term(θ_m)) + tmp4760.coeffs[2:order + 1] .= zero(tmp4760.coeffs[1]) + tmp5760.coeffs[1] = cos(constant_term(θ_m)) + tmp5760.coeffs[2:order + 1] .= zero(tmp5760.coeffs[1]) + (RotM[3, 2, mo]).coeffs[1] = constant_term(tmp4759) * constant_term(tmp4760) + (RotM[3, 2, mo]).coeffs[2:order + 1] .= zero((RotM[3, 2, mo]).coeffs[1]) + tmp4762.coeffs[1] = sin(constant_term(θ_m)) + tmp4762.coeffs[2:order + 1] .= zero(tmp4762.coeffs[1]) + tmp5761.coeffs[1] = cos(constant_term(θ_m)) + tmp5761.coeffs[2:order + 1] .= zero(tmp5761.coeffs[1]) + tmp4763.coeffs[1] = sin(constant_term(ψ_m)) + tmp4763.coeffs[2:order + 1] .= zero(tmp4763.coeffs[1]) + tmp5762.coeffs[1] = cos(constant_term(ψ_m)) + tmp5762.coeffs[2:order + 1] .= zero(tmp5762.coeffs[1]) + (RotM[1, 3, mo]).coeffs[1] = constant_term(tmp4762) * constant_term(tmp4763) + (RotM[1, 3, mo]).coeffs[2:order + 1] .= zero((RotM[1, 3, mo]).coeffs[1]) + tmp4765.coeffs[1] = cos(constant_term(ψ_m)) + tmp4765.coeffs[2:order + 1] .= zero(tmp4765.coeffs[1]) + tmp5763.coeffs[1] = sin(constant_term(ψ_m)) + tmp5763.coeffs[2:order + 1] .= zero(tmp5763.coeffs[1]) + tmp4766.coeffs[1] = sin(constant_term(θ_m)) + tmp4766.coeffs[2:order + 1] .= zero(tmp4766.coeffs[1]) + tmp5764.coeffs[1] = cos(constant_term(θ_m)) + tmp5764.coeffs[2:order + 1] .= zero(tmp5764.coeffs[1]) + (RotM[2, 3, mo]).coeffs[1] = constant_term(tmp4765) * constant_term(tmp4766) + (RotM[2, 3, mo]).coeffs[2:order + 1] .= zero((RotM[2, 3, mo]).coeffs[1]) + (RotM[3, 3, mo]).coeffs[1] = cos(constant_term(θ_m)) + (RotM[3, 3, mo]).coeffs[2:order + 1] .= zero((RotM[3, 3, mo]).coeffs[1]) + tmp5765.coeffs[1] = sin(constant_term(θ_m)) + tmp5765.coeffs[2:order + 1] .= zero(tmp5765.coeffs[1]) + ϕ_c.coeffs[1] = identity(constant_term(q[6N + 7])) + ϕ_c.coeffs[2:order + 1] .= zero(ϕ_c.coeffs[1]) + tmp4769.coeffs[1] = cos(constant_term(ϕ_c)) + tmp4769.coeffs[2:order + 1] .= zero(tmp4769.coeffs[1]) + tmp5766.coeffs[1] = sin(constant_term(ϕ_c)) + tmp5766.coeffs[2:order + 1] .= zero(tmp5766.coeffs[1]) + tmp4770.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(tmp4769) + tmp4770.coeffs[2:order + 1] .= zero(tmp4770.coeffs[1]) + tmp4771.coeffs[1] = sin(constant_term(ϕ_c)) + tmp4771.coeffs[2:order + 1] .= zero(tmp4771.coeffs[1]) + tmp5767.coeffs[1] = cos(constant_term(ϕ_c)) + tmp5767.coeffs[2:order + 1] .= zero(tmp5767.coeffs[1]) + tmp4772.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp4771) + tmp4772.coeffs[2:order + 1] .= zero(tmp4772.coeffs[1]) + (mantlef2coref[1, 1]).coeffs[1] = constant_term(tmp4770) + constant_term(tmp4772) + (mantlef2coref[1, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 1]).coeffs[1]) + tmp4774.coeffs[1] = -(constant_term(RotM[1, 1, mo])) + tmp4774.coeffs[2:order + 1] .= zero(tmp4774.coeffs[1]) + tmp4775.coeffs[1] = sin(constant_term(ϕ_c)) + tmp4775.coeffs[2:order + 1] .= zero(tmp4775.coeffs[1]) + tmp5768.coeffs[1] = cos(constant_term(ϕ_c)) + tmp5768.coeffs[2:order + 1] .= zero(tmp5768.coeffs[1]) + tmp4776.coeffs[1] = constant_term(tmp4774) * constant_term(tmp4775) + tmp4776.coeffs[2:order + 1] .= zero(tmp4776.coeffs[1]) + tmp4777.coeffs[1] = cos(constant_term(ϕ_c)) + tmp4777.coeffs[2:order + 1] .= zero(tmp4777.coeffs[1]) + tmp5769.coeffs[1] = sin(constant_term(ϕ_c)) + tmp5769.coeffs[2:order + 1] .= zero(tmp5769.coeffs[1]) + tmp4778.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(tmp4777) + tmp4778.coeffs[2:order + 1] .= zero(tmp4778.coeffs[1]) + (mantlef2coref[2, 1]).coeffs[1] = constant_term(tmp4776) + constant_term(tmp4778) + (mantlef2coref[2, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 1]).coeffs[1]) + (mantlef2coref[3, 1]).coeffs[1] = identity(constant_term(RotM[1, 3, mo])) + (mantlef2coref[3, 1]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 1]).coeffs[1]) + tmp4780.coeffs[1] = cos(constant_term(ϕ_c)) + tmp4780.coeffs[2:order + 1] .= zero(tmp4780.coeffs[1]) + tmp5770.coeffs[1] = sin(constant_term(ϕ_c)) + tmp5770.coeffs[2:order + 1] .= zero(tmp5770.coeffs[1]) + tmp4781.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(tmp4780) + tmp4781.coeffs[2:order + 1] .= zero(tmp4781.coeffs[1]) + tmp4782.coeffs[1] = sin(constant_term(ϕ_c)) + tmp4782.coeffs[2:order + 1] .= zero(tmp4782.coeffs[1]) + tmp5771.coeffs[1] = cos(constant_term(ϕ_c)) + tmp5771.coeffs[2:order + 1] .= zero(tmp5771.coeffs[1]) + tmp4783.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp4782) + tmp4783.coeffs[2:order + 1] .= zero(tmp4783.coeffs[1]) + (mantlef2coref[1, 2]).coeffs[1] = constant_term(tmp4781) + constant_term(tmp4783) + (mantlef2coref[1, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 2]).coeffs[1]) + tmp4785.coeffs[1] = -(constant_term(RotM[2, 1, mo])) + tmp4785.coeffs[2:order + 1] .= zero(tmp4785.coeffs[1]) + tmp4786.coeffs[1] = sin(constant_term(ϕ_c)) + tmp4786.coeffs[2:order + 1] .= zero(tmp4786.coeffs[1]) + tmp5772.coeffs[1] = cos(constant_term(ϕ_c)) + tmp5772.coeffs[2:order + 1] .= zero(tmp5772.coeffs[1]) + tmp4787.coeffs[1] = constant_term(tmp4785) * constant_term(tmp4786) + tmp4787.coeffs[2:order + 1] .= zero(tmp4787.coeffs[1]) + tmp4788.coeffs[1] = cos(constant_term(ϕ_c)) + tmp4788.coeffs[2:order + 1] .= zero(tmp4788.coeffs[1]) + tmp5773.coeffs[1] = sin(constant_term(ϕ_c)) + tmp5773.coeffs[2:order + 1] .= zero(tmp5773.coeffs[1]) + tmp4789.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(tmp4788) + tmp4789.coeffs[2:order + 1] .= zero(tmp4789.coeffs[1]) + (mantlef2coref[2, 2]).coeffs[1] = constant_term(tmp4787) + constant_term(tmp4789) + (mantlef2coref[2, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 2]).coeffs[1]) + (mantlef2coref[3, 2]).coeffs[1] = identity(constant_term(RotM[2, 3, mo])) + (mantlef2coref[3, 2]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 2]).coeffs[1]) + tmp4791.coeffs[1] = cos(constant_term(ϕ_c)) + tmp4791.coeffs[2:order + 1] .= zero(tmp4791.coeffs[1]) + tmp5774.coeffs[1] = sin(constant_term(ϕ_c)) + tmp5774.coeffs[2:order + 1] .= zero(tmp5774.coeffs[1]) + tmp4792.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(tmp4791) + tmp4792.coeffs[2:order + 1] .= zero(tmp4792.coeffs[1]) + tmp4793.coeffs[1] = sin(constant_term(ϕ_c)) + tmp4793.coeffs[2:order + 1] .= zero(tmp4793.coeffs[1]) + tmp5775.coeffs[1] = cos(constant_term(ϕ_c)) + tmp5775.coeffs[2:order + 1] .= zero(tmp5775.coeffs[1]) + tmp4794.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp4793) + tmp4794.coeffs[2:order + 1] .= zero(tmp4794.coeffs[1]) + (mantlef2coref[1, 3]).coeffs[1] = constant_term(tmp4792) + constant_term(tmp4794) + (mantlef2coref[1, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[1, 3]).coeffs[1]) + tmp4796.coeffs[1] = -(constant_term(RotM[3, 1, mo])) + tmp4796.coeffs[2:order + 1] .= zero(tmp4796.coeffs[1]) + tmp4797.coeffs[1] = sin(constant_term(ϕ_c)) + tmp4797.coeffs[2:order + 1] .= zero(tmp4797.coeffs[1]) + tmp5776.coeffs[1] = cos(constant_term(ϕ_c)) + tmp5776.coeffs[2:order + 1] .= zero(tmp5776.coeffs[1]) + tmp4798.coeffs[1] = constant_term(tmp4796) * constant_term(tmp4797) + tmp4798.coeffs[2:order + 1] .= zero(tmp4798.coeffs[1]) + tmp4799.coeffs[1] = cos(constant_term(ϕ_c)) + tmp4799.coeffs[2:order + 1] .= zero(tmp4799.coeffs[1]) + tmp5777.coeffs[1] = sin(constant_term(ϕ_c)) + tmp5777.coeffs[2:order + 1] .= zero(tmp5777.coeffs[1]) + tmp4800.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(tmp4799) + tmp4800.coeffs[2:order + 1] .= zero(tmp4800.coeffs[1]) + (mantlef2coref[2, 3]).coeffs[1] = constant_term(tmp4798) + constant_term(tmp4800) + (mantlef2coref[2, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[2, 3]).coeffs[1]) + (mantlef2coref[3, 3]).coeffs[1] = identity(constant_term(RotM[3, 3, mo])) + (mantlef2coref[3, 3]).coeffs[2:order + 1] .= zero((mantlef2coref[3, 3]).coeffs[1]) + tmp4802.coeffs[1] = constant_term(mantlef2coref[1, 1]) * constant_term(q[6N + 10]) + tmp4802.coeffs[2:order + 1] .= zero(tmp4802.coeffs[1]) + tmp4803.coeffs[1] = constant_term(mantlef2coref[1, 2]) * constant_term(q[6N + 11]) + tmp4803.coeffs[2:order + 1] .= zero(tmp4803.coeffs[1]) + tmp4804.coeffs[1] = constant_term(mantlef2coref[1, 3]) * constant_term(q[6N + 12]) + tmp4804.coeffs[2:order + 1] .= zero(tmp4804.coeffs[1]) + tmp4805.coeffs[1] = constant_term(tmp4803) + constant_term(tmp4804) + tmp4805.coeffs[2:order + 1] .= zero(tmp4805.coeffs[1]) + ω_c_CE_1.coeffs[1] = constant_term(tmp4802) + constant_term(tmp4805) + ω_c_CE_1.coeffs[2:order + 1] .= zero(ω_c_CE_1.coeffs[1]) + tmp4807.coeffs[1] = constant_term(mantlef2coref[2, 1]) * constant_term(q[6N + 10]) + tmp4807.coeffs[2:order + 1] .= zero(tmp4807.coeffs[1]) + tmp4808.coeffs[1] = constant_term(mantlef2coref[2, 2]) * constant_term(q[6N + 11]) + tmp4808.coeffs[2:order + 1] .= zero(tmp4808.coeffs[1]) + tmp4809.coeffs[1] = constant_term(mantlef2coref[2, 3]) * constant_term(q[6N + 12]) + tmp4809.coeffs[2:order + 1] .= zero(tmp4809.coeffs[1]) + tmp4810.coeffs[1] = constant_term(tmp4808) + constant_term(tmp4809) + tmp4810.coeffs[2:order + 1] .= zero(tmp4810.coeffs[1]) + ω_c_CE_2.coeffs[1] = constant_term(tmp4807) + constant_term(tmp4810) + ω_c_CE_2.coeffs[2:order + 1] .= zero(ω_c_CE_2.coeffs[1]) + tmp4812.coeffs[1] = constant_term(mantlef2coref[3, 1]) * constant_term(q[6N + 10]) + tmp4812.coeffs[2:order + 1] .= zero(tmp4812.coeffs[1]) + tmp4813.coeffs[1] = constant_term(mantlef2coref[3, 2]) * constant_term(q[6N + 11]) + tmp4813.coeffs[2:order + 1] .= zero(tmp4813.coeffs[1]) + tmp4814.coeffs[1] = constant_term(mantlef2coref[3, 3]) * constant_term(q[6N + 12]) + tmp4814.coeffs[2:order + 1] .= zero(tmp4814.coeffs[1]) + tmp4815.coeffs[1] = constant_term(tmp4813) + constant_term(tmp4814) + tmp4815.coeffs[2:order + 1] .= zero(tmp4815.coeffs[1]) + ω_c_CE_3.coeffs[1] = constant_term(tmp4812) + constant_term(tmp4815) + ω_c_CE_3.coeffs[2:order + 1] .= zero(ω_c_CE_3.coeffs[1]) + local J2E_t = (J2E + J2EDOT * (dsj2k / yr)) * RE_au ^ 2 + local J2S_t = JSEM[su, 2] * one_t + (J2_t[su]).coeffs[1] = identity(constant_term(J2S_t)) + (J2_t[su]).coeffs[2:order + 1] .= zero((J2_t[su]).coeffs[1]) + (J2_t[ea]).coeffs[1] = identity(constant_term(J2E_t)) + (J2_t[ea]).coeffs[2:order + 1] .= zero((J2_t[ea]).coeffs[1]) + local N_MfigM_figE_factor = 7.5 * μ[ea] * J2E_t + local q_ME_τ_0 = q_del_τ_0[3mo - 2:3mo] .- q_del_τ_0[3 * ea - 2:3 * ea] + local q_ME_τ_1 = q_del_τ_1[3mo - 2:3mo] .- q_del_τ_1[3 * ea - 2:3 * ea] + local q_ME_τ_2 = q_del_τ_2[3mo - 2:3mo] .- q_del_τ_2[3 * ea - 2:3 * ea] + local q_SE_τ_0 = q_del_τ_0[3su - 2:3su] .- q_del_τ_0[3 * ea - 2:3 * ea] + local q_SE_τ_1 = q_del_τ_1[3su - 2:3su] .- q_del_τ_1[3 * ea - 2:3 * ea] + local q_SE_τ_2 = q_del_τ_2[3su - 2:3su] .- q_del_τ_2[3 * ea - 2:3 * ea] + local R30 = RotM[:, :, ea] + local R31 = Rz(-ω_E * τ_1) * RotM[:, :, ea] + local R32 = Rz(-ω_E * τ_2) * RotM[:, :, ea] + local r_star_M_0 = R30 * q_ME_τ_0 + local r_star_M_1 = R31 * q_ME_τ_1 + local r_star_M_2 = R32 * q_ME_τ_2 + local r_star_S_0 = R30 * q_SE_τ_0 + local r_star_S_1 = R31 * q_SE_τ_1 + local r_star_S_2 = R32 * q_SE_τ_2 + for j = 1:N + (newtonX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + (newtonY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + (newtonZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + (dq[3j - 2]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 2])) + (dq[3j - 2]).coeffs[2:order + 1] .= zero((dq[3j - 2]).coeffs[1]) + (dq[3j - 1]).coeffs[1] = identity(constant_term(q[3 * (N + j) - 1])) + (dq[3j - 1]).coeffs[2:order + 1] .= zero((dq[3j - 1]).coeffs[1]) + (dq[3j]).coeffs[1] = identity(constant_term(q[3 * (N + j)])) + (dq[3j]).coeffs[2:order + 1] .= zero((dq[3j]).coeffs[1]) + end + for j = 1:N_ext + (accX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + (accY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + (accZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:373 =# Threads.@threads for j = 1:N + for i = 1:N + if i == j + continue + else + (X[i, j]).coeffs[1] = constant_term(q[3i - 2]) - constant_term(q[3j - 2]) + (X[i, j]).coeffs[2:order + 1] .= zero((X[i, j]).coeffs[1]) + (Y[i, j]).coeffs[1] = constant_term(q[3i - 1]) - constant_term(q[3j - 1]) + (Y[i, j]).coeffs[2:order + 1] .= zero((Y[i, j]).coeffs[1]) + (Z[i, j]).coeffs[1] = constant_term(q[3i]) - constant_term(q[3j]) + (Z[i, j]).coeffs[2:order + 1] .= zero((Z[i, j]).coeffs[1]) + (U[i, j]).coeffs[1] = constant_term(dq[3i - 2]) - constant_term(dq[3j - 2]) + (U[i, j]).coeffs[2:order + 1] .= zero((U[i, j]).coeffs[1]) + (V[i, j]).coeffs[1] = constant_term(dq[3i - 1]) - constant_term(dq[3j - 1]) + (V[i, j]).coeffs[2:order + 1] .= zero((V[i, j]).coeffs[1]) + (W[i, j]).coeffs[1] = constant_term(dq[3i]) - constant_term(dq[3j]) + (W[i, j]).coeffs[2:order + 1] .= zero((W[i, j]).coeffs[1]) + (tmp4824[3j - 2]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 2]) + (tmp4824[3j - 2]).coeffs[2:order + 1] .= zero((tmp4824[3j - 2]).coeffs[1]) + (tmp4826[3i - 2]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 2]) + (tmp4826[3i - 2]).coeffs[2:order + 1] .= zero((tmp4826[3i - 2]).coeffs[1]) + (_4U_m_3X[i, j]).coeffs[1] = constant_term(tmp4824[3j - 2]) - constant_term(tmp4826[3i - 2]) + (_4U_m_3X[i, j]).coeffs[2:order + 1] .= zero((_4U_m_3X[i, j]).coeffs[1]) + (tmp4829[3j - 1]).coeffs[1] = constant_term(4) * constant_term(dq[3j - 1]) + (tmp4829[3j - 1]).coeffs[2:order + 1] .= zero((tmp4829[3j - 1]).coeffs[1]) + (tmp4831[3i - 1]).coeffs[1] = constant_term(3) * constant_term(dq[3i - 1]) + (tmp4831[3i - 1]).coeffs[2:order + 1] .= zero((tmp4831[3i - 1]).coeffs[1]) + (_4V_m_3Y[i, j]).coeffs[1] = constant_term(tmp4829[3j - 1]) - constant_term(tmp4831[3i - 1]) + (_4V_m_3Y[i, j]).coeffs[2:order + 1] .= zero((_4V_m_3Y[i, j]).coeffs[1]) + (tmp4834[3j]).coeffs[1] = constant_term(4) * constant_term(dq[3j]) + (tmp4834[3j]).coeffs[2:order + 1] .= zero((tmp4834[3j]).coeffs[1]) + (tmp4836[3i]).coeffs[1] = constant_term(3) * constant_term(dq[3i]) + (tmp4836[3i]).coeffs[2:order + 1] .= zero((tmp4836[3i]).coeffs[1]) + (_4W_m_3Z[i, j]).coeffs[1] = constant_term(tmp4834[3j]) - constant_term(tmp4836[3i]) + (_4W_m_3Z[i, j]).coeffs[2:order + 1] .= zero((_4W_m_3Z[i, j]).coeffs[1]) + (pn2x[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(_4U_m_3X[i, j]) + (pn2x[i, j]).coeffs[2:order + 1] .= zero((pn2x[i, j]).coeffs[1]) + (pn2y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(_4V_m_3Y[i, j]) + (pn2y[i, j]).coeffs[2:order + 1] .= zero((pn2y[i, j]).coeffs[1]) + (pn2z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(_4W_m_3Z[i, j]) + (pn2z[i, j]).coeffs[2:order + 1] .= zero((pn2z[i, j]).coeffs[1]) + (UU[i, j]).coeffs[1] = constant_term(dq[3i - 2]) * constant_term(dq[3j - 2]) + (UU[i, j]).coeffs[2:order + 1] .= zero((UU[i, j]).coeffs[1]) + (VV[i, j]).coeffs[1] = constant_term(dq[3i - 1]) * constant_term(dq[3j - 1]) + (VV[i, j]).coeffs[2:order + 1] .= zero((VV[i, j]).coeffs[1]) + (WW[i, j]).coeffs[1] = constant_term(dq[3i]) * constant_term(dq[3j]) + (WW[i, j]).coeffs[2:order + 1] .= zero((WW[i, j]).coeffs[1]) + (tmp4844[i, j]).coeffs[1] = constant_term(UU[i, j]) + constant_term(VV[i, j]) + (tmp4844[i, j]).coeffs[2:order + 1] .= zero((tmp4844[i, j]).coeffs[1]) + (vi_dot_vj[i, j]).coeffs[1] = constant_term(tmp4844[i, j]) + constant_term(WW[i, j]) + (vi_dot_vj[i, j]).coeffs[2:order + 1] .= zero((vi_dot_vj[i, j]).coeffs[1]) + (tmp4847[i, j]).coeffs[1] = constant_term(X[i, j]) ^ float(constant_term(2)) + (tmp4847[i, j]).coeffs[2:order + 1] .= zero((tmp4847[i, j]).coeffs[1]) + (tmp4849[i, j]).coeffs[1] = constant_term(Y[i, j]) ^ float(constant_term(2)) + (tmp4849[i, j]).coeffs[2:order + 1] .= zero((tmp4849[i, j]).coeffs[1]) + (tmp4850[i, j]).coeffs[1] = constant_term(tmp4847[i, j]) + constant_term(tmp4849[i, j]) + (tmp4850[i, j]).coeffs[2:order + 1] .= zero((tmp4850[i, j]).coeffs[1]) + (tmp4852[i, j]).coeffs[1] = constant_term(Z[i, j]) ^ float(constant_term(2)) + (tmp4852[i, j]).coeffs[2:order + 1] .= zero((tmp4852[i, j]).coeffs[1]) + (r_p2[i, j]).coeffs[1] = constant_term(tmp4850[i, j]) + constant_term(tmp4852[i, j]) + (r_p2[i, j]).coeffs[2:order + 1] .= zero((r_p2[i, j]).coeffs[1]) + (r_p1d2[i, j]).coeffs[1] = sqrt(constant_term(r_p2[i, j])) + (r_p1d2[i, j]).coeffs[2:order + 1] .= zero((r_p1d2[i, j]).coeffs[1]) + (r_p3d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(1.5)) + (r_p3d2[i, j]).coeffs[2:order + 1] .= zero((r_p3d2[i, j]).coeffs[1]) + (r_p7d2[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(3.5)) + (r_p7d2[i, j]).coeffs[2:order + 1] .= zero((r_p7d2[i, j]).coeffs[1]) + (newtonianCoeff[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p3d2[i, j]) + (newtonianCoeff[i, j]).coeffs[2:order + 1] .= zero((newtonianCoeff[i, j]).coeffs[1]) + (tmp4860[i, j]).coeffs[1] = constant_term(pn2x[i, j]) + constant_term(pn2y[i, j]) + (tmp4860[i, j]).coeffs[2:order + 1] .= zero((tmp4860[i, j]).coeffs[1]) + (tmp4861[i, j]).coeffs[1] = constant_term(tmp4860[i, j]) + constant_term(pn2z[i, j]) + (tmp4861[i, j]).coeffs[2:order + 1] .= zero((tmp4861[i, j]).coeffs[1]) + (pn2[i, j]).coeffs[1] = constant_term(newtonianCoeff[i, j]) * constant_term(tmp4861[i, j]) + (pn2[i, j]).coeffs[2:order + 1] .= zero((pn2[i, j]).coeffs[1]) + (newton_acc_X[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_X[i, j]).coeffs[2:order + 1] .= zero((newton_acc_X[i, j]).coeffs[1]) + (newton_acc_Y[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_Y[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Y[i, j]).coeffs[1]) + (newton_acc_Z[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + (newton_acc_Z[i, j]).coeffs[2:order + 1] .= zero((newton_acc_Z[i, j]).coeffs[1]) + (newtonian1b_Potential[i, j]).coeffs[1] = constant_term(μ[i]) / constant_term(r_p1d2[i, j]) + (newtonian1b_Potential[i, j]).coeffs[2:order + 1] .= zero((newtonian1b_Potential[i, j]).coeffs[1]) + (pn3[i, j]).coeffs[1] = constant_term(3.5) * constant_term(newtonian1b_Potential[i, j]) + (pn3[i, j]).coeffs[2:order + 1] .= zero((pn3[i, j]).coeffs[1]) + (U_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(U[i, j]) + (U_t_pn2[i, j]).coeffs[2:order + 1] .= zero((U_t_pn2[i, j]).coeffs[1]) + (V_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(V[i, j]) + (V_t_pn2[i, j]).coeffs[2:order + 1] .= zero((V_t_pn2[i, j]).coeffs[1]) + (W_t_pn2[i, j]).coeffs[1] = constant_term(pn2[i, j]) * constant_term(W[i, j]) + (W_t_pn2[i, j]).coeffs[2:order + 1] .= zero((W_t_pn2[i, j]).coeffs[1]) + (tmp4872[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp4872[i, j]).coeffs[2:order + 1] .= zero((tmp4872[i, j]).coeffs[1]) + (temp_001[i, j]).coeffs[1] = constant_term(newtonX[j]) + constant_term(tmp4872[i, j]) + (temp_001[i, j]).coeffs[2:order + 1] .= zero((temp_001[i, j]).coeffs[1]) + (newtonX[j]).coeffs[1] = identity(constant_term(temp_001[i, j])) + (newtonX[j]).coeffs[2:order + 1] .= zero((newtonX[j]).coeffs[1]) + (tmp4874[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp4874[i, j]).coeffs[2:order + 1] .= zero((tmp4874[i, j]).coeffs[1]) + (temp_002[i, j]).coeffs[1] = constant_term(newtonY[j]) + constant_term(tmp4874[i, j]) + (temp_002[i, j]).coeffs[2:order + 1] .= zero((temp_002[i, j]).coeffs[1]) + (newtonY[j]).coeffs[1] = identity(constant_term(temp_002[i, j])) + (newtonY[j]).coeffs[2:order + 1] .= zero((newtonY[j]).coeffs[1]) + (tmp4876[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(newtonianCoeff[i, j]) + (tmp4876[i, j]).coeffs[2:order + 1] .= zero((tmp4876[i, j]).coeffs[1]) + (temp_003[i, j]).coeffs[1] = constant_term(newtonZ[j]) + constant_term(tmp4876[i, j]) + (temp_003[i, j]).coeffs[2:order + 1] .= zero((temp_003[i, j]).coeffs[1]) + (newtonZ[j]).coeffs[1] = identity(constant_term(temp_003[i, j])) + (newtonZ[j]).coeffs[2:order + 1] .= zero((newtonZ[j]).coeffs[1]) + (temp_004[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[j]) + constant_term(newtonian1b_Potential[i, j]) + (temp_004[i, j]).coeffs[2:order + 1] .= zero((temp_004[i, j]).coeffs[1]) + (newtonianNb_Potential[j]).coeffs[1] = identity(constant_term(temp_004[i, j])) + (newtonianNb_Potential[j]).coeffs[2:order + 1] .= zero((newtonianNb_Potential[j]).coeffs[1]) + end + end + (tmp4880[3j - 2]).coeffs[1] = constant_term(dq[3j - 2]) ^ float(constant_term(2)) + (tmp4880[3j - 2]).coeffs[2:order + 1] .= zero((tmp4880[3j - 2]).coeffs[1]) + (tmp4882[3j - 1]).coeffs[1] = constant_term(dq[3j - 1]) ^ float(constant_term(2)) + (tmp4882[3j - 1]).coeffs[2:order + 1] .= zero((tmp4882[3j - 1]).coeffs[1]) + (tmp4883[3j - 2]).coeffs[1] = constant_term(tmp4880[3j - 2]) + constant_term(tmp4882[3j - 1]) + (tmp4883[3j - 2]).coeffs[2:order + 1] .= zero((tmp4883[3j - 2]).coeffs[1]) + (tmp4885[3j]).coeffs[1] = constant_term(dq[3j]) ^ float(constant_term(2)) + (tmp4885[3j]).coeffs[2:order + 1] .= zero((tmp4885[3j]).coeffs[1]) + (v2[j]).coeffs[1] = constant_term(tmp4883[3j - 2]) + constant_term(tmp4885[3j]) + (v2[j]).coeffs[2:order + 1] .= zero((v2[j]).coeffs[1]) + end + tmp4887.coeffs[1] = constant_term(I_M_t[1, 1]) + constant_term(I_M_t[2, 2]) + tmp4887.coeffs[2:order + 1] .= zero(tmp4887.coeffs[1]) + tmp4889.coeffs[1] = constant_term(tmp4887) / constant_term(2) + tmp4889.coeffs[2:order + 1] .= zero(tmp4889.coeffs[1]) + tmp4890.coeffs[1] = constant_term(I_M_t[3, 3]) - constant_term(tmp4889) + tmp4890.coeffs[2:order + 1] .= zero(tmp4890.coeffs[1]) + J2M_t.coeffs[1] = constant_term(tmp4890) / constant_term(μ[mo]) + J2M_t.coeffs[2:order + 1] .= zero(J2M_t.coeffs[1]) + tmp4892.coeffs[1] = constant_term(I_M_t[2, 2]) - constant_term(I_M_t[1, 1]) + tmp4892.coeffs[2:order + 1] .= zero(tmp4892.coeffs[1]) + tmp4893.coeffs[1] = constant_term(tmp4892) / constant_term(μ[mo]) + tmp4893.coeffs[2:order + 1] .= zero(tmp4893.coeffs[1]) + C22M_t.coeffs[1] = constant_term(tmp4893) / constant_term(4) + C22M_t.coeffs[2:order + 1] .= zero(C22M_t.coeffs[1]) + tmp4896.coeffs[1] = -(constant_term(I_M_t[1, 3])) + tmp4896.coeffs[2:order + 1] .= zero(tmp4896.coeffs[1]) + C21M_t.coeffs[1] = constant_term(tmp4896) / constant_term(μ[mo]) + C21M_t.coeffs[2:order + 1] .= zero(C21M_t.coeffs[1]) + tmp4898.coeffs[1] = -(constant_term(I_M_t[3, 2])) + tmp4898.coeffs[2:order + 1] .= zero(tmp4898.coeffs[1]) + S21M_t.coeffs[1] = constant_term(tmp4898) / constant_term(μ[mo]) + S21M_t.coeffs[2:order + 1] .= zero(S21M_t.coeffs[1]) + tmp4900.coeffs[1] = -(constant_term(I_M_t[2, 1])) + tmp4900.coeffs[2:order + 1] .= zero(tmp4900.coeffs[1]) + tmp4901.coeffs[1] = constant_term(tmp4900) / constant_term(μ[mo]) + tmp4901.coeffs[2:order + 1] .= zero(tmp4901.coeffs[1]) + S22M_t.coeffs[1] = constant_term(tmp4901) / constant_term(2) + S22M_t.coeffs[2:order + 1] .= zero(S22M_t.coeffs[1]) + (J2_t[mo]).coeffs[1] = identity(constant_term(J2M_t)) + (J2_t[mo]).coeffs[2:order + 1] .= zero((J2_t[mo]).coeffs[1]) + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:467 =# Threads.@threads for j = 1:N_ext + for i = 1:N_ext + if i == j + continue + else + if UJ_interaction[i, j] + (X_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[1, 1, j]) + (X_bf_1[i, j]).coeffs[2:order + 1] .= zero((X_bf_1[i, j]).coeffs[1]) + (X_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[1, 2, j]) + (X_bf_2[i, j]).coeffs[2:order + 1] .= zero((X_bf_2[i, j]).coeffs[1]) + (X_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[1, 3, j]) + (X_bf_3[i, j]).coeffs[2:order + 1] .= zero((X_bf_3[i, j]).coeffs[1]) + (Y_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[2, 1, j]) + (Y_bf_1[i, j]).coeffs[2:order + 1] .= zero((Y_bf_1[i, j]).coeffs[1]) + (Y_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[2, 2, j]) + (Y_bf_2[i, j]).coeffs[2:order + 1] .= zero((Y_bf_2[i, j]).coeffs[1]) + (Y_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[2, 3, j]) + (Y_bf_3[i, j]).coeffs[2:order + 1] .= zero((Y_bf_3[i, j]).coeffs[1]) + (Z_bf_1[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(RotM[3, 1, j]) + (Z_bf_1[i, j]).coeffs[2:order + 1] .= zero((Z_bf_1[i, j]).coeffs[1]) + (Z_bf_2[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(RotM[3, 2, j]) + (Z_bf_2[i, j]).coeffs[2:order + 1] .= zero((Z_bf_2[i, j]).coeffs[1]) + (Z_bf_3[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(RotM[3, 3, j]) + (Z_bf_3[i, j]).coeffs[2:order + 1] .= zero((Z_bf_3[i, j]).coeffs[1]) + (tmp4913[i, j]).coeffs[1] = constant_term(X_bf_1[i, j]) + constant_term(X_bf_2[i, j]) + (tmp4913[i, j]).coeffs[2:order + 1] .= zero((tmp4913[i, j]).coeffs[1]) + (X_bf[i, j]).coeffs[1] = constant_term(tmp4913[i, j]) + constant_term(X_bf_3[i, j]) + (X_bf[i, j]).coeffs[2:order + 1] .= zero((X_bf[i, j]).coeffs[1]) + (tmp4915[i, j]).coeffs[1] = constant_term(Y_bf_1[i, j]) + constant_term(Y_bf_2[i, j]) + (tmp4915[i, j]).coeffs[2:order + 1] .= zero((tmp4915[i, j]).coeffs[1]) + (Y_bf[i, j]).coeffs[1] = constant_term(tmp4915[i, j]) + constant_term(Y_bf_3[i, j]) + (Y_bf[i, j]).coeffs[2:order + 1] .= zero((Y_bf[i, j]).coeffs[1]) + (tmp4917[i, j]).coeffs[1] = constant_term(Z_bf_1[i, j]) + constant_term(Z_bf_2[i, j]) + (tmp4917[i, j]).coeffs[2:order + 1] .= zero((tmp4917[i, j]).coeffs[1]) + (Z_bf[i, j]).coeffs[1] = constant_term(tmp4917[i, j]) + constant_term(Z_bf_3[i, j]) + (Z_bf[i, j]).coeffs[2:order + 1] .= zero((Z_bf[i, j]).coeffs[1]) + (sin_ϕ[i, j]).coeffs[1] = constant_term(Z_bf[i, j]) / constant_term(r_p1d2[i, j]) + (sin_ϕ[i, j]).coeffs[2:order + 1] .= zero((sin_ϕ[i, j]).coeffs[1]) + (tmp4921[i, j]).coeffs[1] = constant_term(X_bf[i, j]) ^ float(constant_term(2)) + (tmp4921[i, j]).coeffs[2:order + 1] .= zero((tmp4921[i, j]).coeffs[1]) + (tmp4923[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) ^ float(constant_term(2)) + (tmp4923[i, j]).coeffs[2:order + 1] .= zero((tmp4923[i, j]).coeffs[1]) + (tmp4924[i, j]).coeffs[1] = constant_term(tmp4921[i, j]) + constant_term(tmp4923[i, j]) + (tmp4924[i, j]).coeffs[2:order + 1] .= zero((tmp4924[i, j]).coeffs[1]) + (r_xy[i, j]).coeffs[1] = sqrt(constant_term(tmp4924[i, j])) + (r_xy[i, j]).coeffs[2:order + 1] .= zero((r_xy[i, j]).coeffs[1]) + (cos_ϕ[i, j]).coeffs[1] = constant_term(r_xy[i, j]) / constant_term(r_p1d2[i, j]) + (cos_ϕ[i, j]).coeffs[2:order + 1] .= zero((cos_ϕ[i, j]).coeffs[1]) + (sin_λ[i, j]).coeffs[1] = constant_term(Y_bf[i, j]) / constant_term(r_xy[i, j]) + (sin_λ[i, j]).coeffs[2:order + 1] .= zero((sin_λ[i, j]).coeffs[1]) + (cos_λ[i, j]).coeffs[1] = constant_term(X_bf[i, j]) / constant_term(r_xy[i, j]) + (cos_λ[i, j]).coeffs[2:order + 1] .= zero((cos_λ[i, j]).coeffs[1]) + (P_n[i, j, 1]).coeffs[1] = identity(constant_term(one_t)) + (P_n[i, j, 1]).coeffs[2:order + 1] .= zero((P_n[i, j, 1]).coeffs[1]) + (P_n[i, j, 2]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) + (P_n[i, j, 2]).coeffs[2:order + 1] .= zero((P_n[i, j, 2]).coeffs[1]) + (dP_n[i, j, 1]).coeffs[1] = identity(constant_term(zero_q_1)) + (dP_n[i, j, 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, 1]).coeffs[1]) + (dP_n[i, j, 2]).coeffs[1] = identity(constant_term(one_t)) + (dP_n[i, j, 2]).coeffs[2:order + 1] .= zero((dP_n[i, j, 2]).coeffs[1]) + for n = 2:n1SEM[j] + (tmp4929[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + (tmp4929[i, j, n]).coeffs[2:order + 1] .= zero((tmp4929[i, j, n]).coeffs[1]) + (tmp4930[i, j, n]).coeffs[1] = constant_term(tmp4929[i, j, n]) * constant_term(fact1_jsem[n]) + (tmp4930[i, j, n]).coeffs[2:order + 1] .= zero((tmp4930[i, j, n]).coeffs[1]) + (tmp4931[i, j, n - 1]).coeffs[1] = constant_term(P_n[i, j, n - 1]) * constant_term(fact2_jsem[n]) + (tmp4931[i, j, n - 1]).coeffs[2:order + 1] .= zero((tmp4931[i, j, n - 1]).coeffs[1]) + (P_n[i, j, n + 1]).coeffs[1] = constant_term(tmp4930[i, j, n]) - constant_term(tmp4931[i, j, n - 1]) + (P_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((P_n[i, j, n + 1]).coeffs[1]) + (tmp4933[i, j, n]).coeffs[1] = constant_term(dP_n[i, j, n]) * constant_term(sin_ϕ[i, j]) + (tmp4933[i, j, n]).coeffs[2:order + 1] .= zero((tmp4933[i, j, n]).coeffs[1]) + (tmp4934[i, j, n]).coeffs[1] = constant_term(P_n[i, j, n]) * constant_term(fact3_jsem[n]) + (tmp4934[i, j, n]).coeffs[2:order + 1] .= zero((tmp4934[i, j, n]).coeffs[1]) + (dP_n[i, j, n + 1]).coeffs[1] = constant_term(tmp4933[i, j, n]) + constant_term(tmp4934[i, j, n]) + (dP_n[i, j, n + 1]).coeffs[2:order + 1] .= zero((dP_n[i, j, n + 1]).coeffs[1]) + (temp_rn[i, j, n]).coeffs[1] = constant_term(r_p1d2[i, j]) ^ float(constant_term(fact5_jsem[n])) + (temp_rn[i, j, n]).coeffs[2:order + 1] .= zero((temp_rn[i, j, n]).coeffs[1]) + end + (r_p4[i, j]).coeffs[1] = constant_term(r_p2[i, j]) ^ float(constant_term(2)) + (r_p4[i, j]).coeffs[2:order + 1] .= zero((r_p4[i, j]).coeffs[1]) + (tmp4939[i, j, 3]).coeffs[1] = constant_term(P_n[i, j, 3]) * constant_term(fact4_jsem[2]) + (tmp4939[i, j, 3]).coeffs[2:order + 1] .= zero((tmp4939[i, j, 3]).coeffs[1]) + (tmp4940[i, j, 3]).coeffs[1] = constant_term(tmp4939[i, j, 3]) * constant_term(J2_t[j]) + (tmp4940[i, j, 3]).coeffs[2:order + 1] .= zero((tmp4940[i, j, 3]).coeffs[1]) + (F_J_ξ[i, j]).coeffs[1] = constant_term(tmp4940[i, j, 3]) / constant_term(r_p4[i, j]) + (F_J_ξ[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ[i, j]).coeffs[1]) + (tmp4942[i, j, 3]).coeffs[1] = -(constant_term(dP_n[i, j, 3])) + (tmp4942[i, j, 3]).coeffs[2:order + 1] .= zero((tmp4942[i, j, 3]).coeffs[1]) + (tmp4943[i, j, 3]).coeffs[1] = constant_term(tmp4942[i, j, 3]) * constant_term(cos_ϕ[i, j]) + (tmp4943[i, j, 3]).coeffs[2:order + 1] .= zero((tmp4943[i, j, 3]).coeffs[1]) + (tmp4944[i, j, 3]).coeffs[1] = constant_term(tmp4943[i, j, 3]) * constant_term(J2_t[j]) + (tmp4944[i, j, 3]).coeffs[2:order + 1] .= zero((tmp4944[i, j, 3]).coeffs[1]) + (F_J_ζ[i, j]).coeffs[1] = constant_term(tmp4944[i, j, 3]) / constant_term(r_p4[i, j]) + (F_J_ζ[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ[i, j]).coeffs[1]) + (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) + for n = 3:n1SEM[j] + (tmp4946[i, j, n + 1]).coeffs[1] = constant_term(P_n[i, j, n + 1]) * constant_term(fact4_jsem[n]) + (tmp4946[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4946[i, j, n + 1]).coeffs[1]) + (tmp4947[i, j, n + 1]).coeffs[1] = constant_term(tmp4946[i, j, n + 1]) * constant_term(JSEM[j, n]) + (tmp4947[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4947[i, j, n + 1]).coeffs[1]) + (tmp4948[i, j, n + 1]).coeffs[1] = constant_term(tmp4947[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + (tmp4948[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4948[i, j, n + 1]).coeffs[1]) + (temp_fjξ[i, j, n]).coeffs[1] = constant_term(tmp4948[i, j, n + 1]) + constant_term(F_J_ξ_36[i, j]) + (temp_fjξ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjξ[i, j, n]).coeffs[1]) + (tmp4950[i, j, n + 1]).coeffs[1] = -(constant_term(dP_n[i, j, n + 1])) + (tmp4950[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4950[i, j, n + 1]).coeffs[1]) + (tmp4951[i, j, n + 1]).coeffs[1] = constant_term(tmp4950[i, j, n + 1]) * constant_term(cos_ϕ[i, j]) + (tmp4951[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4951[i, j, n + 1]).coeffs[1]) + (tmp4952[i, j, n + 1]).coeffs[1] = constant_term(tmp4951[i, j, n + 1]) * constant_term(JSEM[j, n]) + (tmp4952[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4952[i, j, n + 1]).coeffs[1]) + (tmp4953[i, j, n + 1]).coeffs[1] = constant_term(tmp4952[i, j, n + 1]) / constant_term(temp_rn[i, j, n]) + (tmp4953[i, j, n + 1]).coeffs[2:order + 1] .= zero((tmp4953[i, j, n + 1]).coeffs[1]) + (temp_fjζ[i, j, n]).coeffs[1] = constant_term(tmp4953[i, j, n + 1]) + constant_term(F_J_ζ_36[i, j]) + (temp_fjζ[i, j, n]).coeffs[2:order + 1] .= zero((temp_fjζ[i, j, n]).coeffs[1]) + (F_J_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjξ[i, j, n])) + (F_J_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ξ_36[i, j]).coeffs[1]) + (F_J_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_fjζ[i, j, n])) + (F_J_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_J_ζ_36[i, j]).coeffs[1]) + end + if j == mo + for m = 1:n1SEM[mo] + if m == 1 + (sin_mλ[i, j, 1]).coeffs[1] = identity(constant_term(sin_λ[i, j])) + (sin_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, 1]).coeffs[1]) + (cos_mλ[i, j, 1]).coeffs[1] = identity(constant_term(cos_λ[i, j])) + (cos_mλ[i, j, 1]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, 1]).coeffs[1]) + (secϕ_P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(one_t)) + (secϕ_P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, 1, 1]).coeffs[1]) + (P_nm[i, j, 1, 1]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) + (P_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((P_nm[i, j, 1, 1]).coeffs[1]) + (cosϕ_dP_nm[i, j, 1, 1]).coeffs[1] = constant_term(sin_ϕ[i, j]) * constant_term(lnm3[1]) + (cosϕ_dP_nm[i, j, 1, 1]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, 1, 1]).coeffs[1]) + else + (tmp4956[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + (tmp4956[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp4956[i, j, m - 1]).coeffs[1]) + (tmp4957[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + (tmp4957[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp4957[i, j, m - 1]).coeffs[1]) + (sin_mλ[i, j, m]).coeffs[1] = constant_term(tmp4956[i, j, m - 1]) + constant_term(tmp4957[i, j, m - 1]) + (sin_mλ[i, j, m]).coeffs[2:order + 1] .= zero((sin_mλ[i, j, m]).coeffs[1]) + (tmp4959[i, j, m - 1]).coeffs[1] = constant_term(cos_mλ[i, j, m - 1]) * constant_term(cos_mλ[i, j, 1]) + (tmp4959[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp4959[i, j, m - 1]).coeffs[1]) + (tmp4960[i, j, m - 1]).coeffs[1] = constant_term(sin_mλ[i, j, m - 1]) * constant_term(sin_mλ[i, j, 1]) + (tmp4960[i, j, m - 1]).coeffs[2:order + 1] .= zero((tmp4960[i, j, m - 1]).coeffs[1]) + (cos_mλ[i, j, m]).coeffs[1] = constant_term(tmp4959[i, j, m - 1]) - constant_term(tmp4960[i, j, m - 1]) + (cos_mλ[i, j, m]).coeffs[2:order + 1] .= zero((cos_mλ[i, j, m]).coeffs[1]) + (tmp4962[i, j, m - 1, m - 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m - 1, m - 1]) * constant_term(cos_ϕ[i, j]) + (tmp4962[i, j, m - 1, m - 1]).coeffs[2:order + 1] .= zero((tmp4962[i, j, m - 1, m - 1]).coeffs[1]) + (secϕ_P_nm[i, j, m, m]).coeffs[1] = constant_term(tmp4962[i, j, m - 1, m - 1]) * constant_term(lnm5[m]) + (secϕ_P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, m, m]).coeffs[1]) + (P_nm[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(cos_ϕ[i, j]) + (P_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, m, m]).coeffs[1]) + (tmp4965[i, j, m, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, m, m]) * constant_term(sin_ϕ[i, j]) + (tmp4965[i, j, m, m]).coeffs[2:order + 1] .= zero((tmp4965[i, j, m, m]).coeffs[1]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[1] = constant_term(tmp4965[i, j, m, m]) * constant_term(lnm3[m]) + (cosϕ_dP_nm[i, j, m, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, m, m]).coeffs[1]) + end + for n = m + 1:n1SEM[mo] + if n == m + 1 + (tmp4967[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + (tmp4967[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp4967[i, j, n - 1, m]).coeffs[1]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp4967[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + else + (tmp4969[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(sin_ϕ[i, j]) + (tmp4969[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp4969[i, j, n - 1, m]).coeffs[1]) + (tmp4970[i, j, n - 1, m]).coeffs[1] = constant_term(tmp4969[i, j, n - 1, m]) * constant_term(lnm1[n, m]) + (tmp4970[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp4970[i, j, n - 1, m]).coeffs[1]) + (tmp4971[i, j, n - 2, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 2, m]) * constant_term(lnm2[n, m]) + (tmp4971[i, j, n - 2, m]).coeffs[2:order + 1] .= zero((tmp4971[i, j, n - 2, m]).coeffs[1]) + (secϕ_P_nm[i, j, n, m]).coeffs[1] = constant_term(tmp4970[i, j, n - 1, m]) + constant_term(tmp4971[i, j, n - 2, m]) + (secϕ_P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((secϕ_P_nm[i, j, n, m]).coeffs[1]) + end + (P_nm[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(cos_ϕ[i, j]) + (P_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((P_nm[i, j, n, m]).coeffs[1]) + (tmp4974[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(sin_ϕ[i, j]) + (tmp4974[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp4974[i, j, n, m]).coeffs[1]) + (tmp4975[i, j, n, m]).coeffs[1] = constant_term(tmp4974[i, j, n, m]) * constant_term(lnm3[n]) + (tmp4975[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp4975[i, j, n, m]).coeffs[1]) + (tmp4976[i, j, n - 1, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n - 1, m]) * constant_term(lnm4[n, m]) + (tmp4976[i, j, n - 1, m]).coeffs[2:order + 1] .= zero((tmp4976[i, j, n - 1, m]).coeffs[1]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[1] = constant_term(tmp4975[i, j, n, m]) + constant_term(tmp4976[i, j, n - 1, m]) + (cosϕ_dP_nm[i, j, n, m]).coeffs[2:order + 1] .= zero((cosϕ_dP_nm[i, j, n, m]).coeffs[1]) + end + end + (tmp4978[i, j, 2, 1]).coeffs[1] = constant_term(P_nm[i, j, 2, 1]) * constant_term(lnm6[2]) + (tmp4978[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp4978[i, j, 2, 1]).coeffs[1]) + (tmp4979[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp4979[i, j, 1]).coeffs[2:order + 1] .= zero((tmp4979[i, j, 1]).coeffs[1]) + (tmp4980[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp4980[i, j, 1]).coeffs[2:order + 1] .= zero((tmp4980[i, j, 1]).coeffs[1]) + (tmp4981[i, j, 1]).coeffs[1] = constant_term(tmp4979[i, j, 1]) + constant_term(tmp4980[i, j, 1]) + (tmp4981[i, j, 1]).coeffs[2:order + 1] .= zero((tmp4981[i, j, 1]).coeffs[1]) + (tmp4982[i, j, 2, 1]).coeffs[1] = constant_term(tmp4978[i, j, 2, 1]) * constant_term(tmp4981[i, j, 1]) + (tmp4982[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp4982[i, j, 2, 1]).coeffs[1]) + (tmp4983[i, j, 2, 2]).coeffs[1] = constant_term(P_nm[i, j, 2, 2]) * constant_term(lnm6[2]) + (tmp4983[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp4983[i, j, 2, 2]).coeffs[1]) + (tmp4984[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp4984[i, j, 2]).coeffs[2:order + 1] .= zero((tmp4984[i, j, 2]).coeffs[1]) + (tmp4985[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp4985[i, j, 2]).coeffs[2:order + 1] .= zero((tmp4985[i, j, 2]).coeffs[1]) + (tmp4986[i, j, 2]).coeffs[1] = constant_term(tmp4984[i, j, 2]) + constant_term(tmp4985[i, j, 2]) + (tmp4986[i, j, 2]).coeffs[2:order + 1] .= zero((tmp4986[i, j, 2]).coeffs[1]) + (tmp4987[i, j, 2, 2]).coeffs[1] = constant_term(tmp4983[i, j, 2, 2]) * constant_term(tmp4986[i, j, 2]) + (tmp4987[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp4987[i, j, 2, 2]).coeffs[1]) + (tmp4988[i, j, 2, 1]).coeffs[1] = constant_term(tmp4982[i, j, 2, 1]) + constant_term(tmp4987[i, j, 2, 2]) + (tmp4988[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp4988[i, j, 2, 1]).coeffs[1]) + (F_CS_ξ[i, j]).coeffs[1] = constant_term(tmp4988[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ[i, j]).coeffs[1]) + (tmp4990[i, j, 2, 1]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 1]) * constant_term(lnm7[1]) + (tmp4990[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp4990[i, j, 2, 1]).coeffs[1]) + (tmp4991[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp4991[i, j, 1]).coeffs[2:order + 1] .= zero((tmp4991[i, j, 1]).coeffs[1]) + (tmp4992[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp4992[i, j, 1]).coeffs[2:order + 1] .= zero((tmp4992[i, j, 1]).coeffs[1]) + (tmp4993[i, j, 1]).coeffs[1] = constant_term(tmp4991[i, j, 1]) - constant_term(tmp4992[i, j, 1]) + (tmp4993[i, j, 1]).coeffs[2:order + 1] .= zero((tmp4993[i, j, 1]).coeffs[1]) + (tmp4994[i, j, 2, 1]).coeffs[1] = constant_term(tmp4990[i, j, 2, 1]) * constant_term(tmp4993[i, j, 1]) + (tmp4994[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp4994[i, j, 2, 1]).coeffs[1]) + (tmp4995[i, j, 2, 2]).coeffs[1] = constant_term(secϕ_P_nm[i, j, 2, 2]) * constant_term(lnm7[2]) + (tmp4995[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp4995[i, j, 2, 2]).coeffs[1]) + (tmp4996[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp4996[i, j, 2]).coeffs[2:order + 1] .= zero((tmp4996[i, j, 2]).coeffs[1]) + (tmp4997[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp4997[i, j, 2]).coeffs[2:order + 1] .= zero((tmp4997[i, j, 2]).coeffs[1]) + (tmp4998[i, j, 2]).coeffs[1] = constant_term(tmp4996[i, j, 2]) - constant_term(tmp4997[i, j, 2]) + (tmp4998[i, j, 2]).coeffs[2:order + 1] .= zero((tmp4998[i, j, 2]).coeffs[1]) + (tmp4999[i, j, 2, 2]).coeffs[1] = constant_term(tmp4995[i, j, 2, 2]) * constant_term(tmp4998[i, j, 2]) + (tmp4999[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp4999[i, j, 2, 2]).coeffs[1]) + (tmp5000[i, j, 2, 1]).coeffs[1] = constant_term(tmp4994[i, j, 2, 1]) + constant_term(tmp4999[i, j, 2, 2]) + (tmp5000[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5000[i, j, 2, 1]).coeffs[1]) + (F_CS_η[i, j]).coeffs[1] = constant_term(tmp5000[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_η[i, j]).coeffs[2:order + 1] .= zero((F_CS_η[i, j]).coeffs[1]) + (tmp5002[i, j, 1]).coeffs[1] = constant_term(C21M_t) * constant_term(cos_mλ[i, j, 1]) + (tmp5002[i, j, 1]).coeffs[2:order + 1] .= zero((tmp5002[i, j, 1]).coeffs[1]) + (tmp5003[i, j, 1]).coeffs[1] = constant_term(S21M_t) * constant_term(sin_mλ[i, j, 1]) + (tmp5003[i, j, 1]).coeffs[2:order + 1] .= zero((tmp5003[i, j, 1]).coeffs[1]) + (tmp5004[i, j, 1]).coeffs[1] = constant_term(tmp5002[i, j, 1]) + constant_term(tmp5003[i, j, 1]) + (tmp5004[i, j, 1]).coeffs[2:order + 1] .= zero((tmp5004[i, j, 1]).coeffs[1]) + (tmp5005[i, j, 2, 1]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 1]) * constant_term(tmp5004[i, j, 1]) + (tmp5005[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5005[i, j, 2, 1]).coeffs[1]) + (tmp5006[i, j, 2]).coeffs[1] = constant_term(C22M_t) * constant_term(cos_mλ[i, j, 2]) + (tmp5006[i, j, 2]).coeffs[2:order + 1] .= zero((tmp5006[i, j, 2]).coeffs[1]) + (tmp5007[i, j, 2]).coeffs[1] = constant_term(S22M_t) * constant_term(sin_mλ[i, j, 2]) + (tmp5007[i, j, 2]).coeffs[2:order + 1] .= zero((tmp5007[i, j, 2]).coeffs[1]) + (tmp5008[i, j, 2]).coeffs[1] = constant_term(tmp5006[i, j, 2]) + constant_term(tmp5007[i, j, 2]) + (tmp5008[i, j, 2]).coeffs[2:order + 1] .= zero((tmp5008[i, j, 2]).coeffs[1]) + (tmp5009[i, j, 2, 2]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, 2, 2]) * constant_term(tmp5008[i, j, 2]) + (tmp5009[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp5009[i, j, 2, 2]).coeffs[1]) + (tmp5010[i, j, 2, 1]).coeffs[1] = constant_term(tmp5005[i, j, 2, 1]) + constant_term(tmp5009[i, j, 2, 2]) + (tmp5010[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5010[i, j, 2, 1]).coeffs[1]) + (F_CS_ζ[i, j]).coeffs[1] = constant_term(tmp5010[i, j, 2, 1]) / constant_term(r_p4[i, j]) + (F_CS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ[i, j]).coeffs[1]) + (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) + for n = 3:n2M + for m = 1:n + (Cnm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(cos_mλ[i, j, m]) + (Cnm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_cosmλ[i, j, n, m]).coeffs[1]) + (Cnm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(CM[n, m]) * constant_term(sin_mλ[i, j, m]) + (Cnm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Cnm_sinmλ[i, j, n, m]).coeffs[1]) + (Snm_cosmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(cos_mλ[i, j, m]) + (Snm_cosmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_cosmλ[i, j, n, m]).coeffs[1]) + (Snm_sinmλ[i, j, n, m]).coeffs[1] = constant_term(SM[n, m]) * constant_term(sin_mλ[i, j, m]) + (Snm_sinmλ[i, j, n, m]).coeffs[2:order + 1] .= zero((Snm_sinmλ[i, j, n, m]).coeffs[1]) + (tmp5016[i, j, n, m]).coeffs[1] = constant_term(P_nm[i, j, n, m]) * constant_term(lnm6[n]) + (tmp5016[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5016[i, j, n, m]).coeffs[1]) + (tmp5017[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + (tmp5017[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5017[i, j, n, m]).coeffs[1]) + (tmp5018[i, j, n, m]).coeffs[1] = constant_term(tmp5016[i, j, n, m]) * constant_term(tmp5017[i, j, n, m]) + (tmp5018[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5018[i, j, n, m]).coeffs[1]) + (tmp5019[i, j, n, m]).coeffs[1] = constant_term(tmp5018[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp5019[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5019[i, j, n, m]).coeffs[1]) + (temp_CS_ξ[i, j, n, m]).coeffs[1] = constant_term(tmp5019[i, j, n, m]) + constant_term(F_CS_ξ_36[i, j]) + (temp_CS_ξ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ξ[i, j, n, m]).coeffs[1]) + (tmp5021[i, j, n, m]).coeffs[1] = constant_term(secϕ_P_nm[i, j, n, m]) * constant_term(lnm7[m]) + (tmp5021[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5021[i, j, n, m]).coeffs[1]) + (tmp5022[i, j, n, m]).coeffs[1] = constant_term(Snm_cosmλ[i, j, n, m]) - constant_term(Cnm_sinmλ[i, j, n, m]) + (tmp5022[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5022[i, j, n, m]).coeffs[1]) + (tmp5023[i, j, n, m]).coeffs[1] = constant_term(tmp5021[i, j, n, m]) * constant_term(tmp5022[i, j, n, m]) + (tmp5023[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5023[i, j, n, m]).coeffs[1]) + (tmp5024[i, j, n, m]).coeffs[1] = constant_term(tmp5023[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp5024[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5024[i, j, n, m]).coeffs[1]) + (temp_CS_η[i, j, n, m]).coeffs[1] = constant_term(tmp5024[i, j, n, m]) + constant_term(F_CS_η_36[i, j]) + (temp_CS_η[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_η[i, j, n, m]).coeffs[1]) + (tmp5026[i, j, n, m]).coeffs[1] = constant_term(Cnm_cosmλ[i, j, n, m]) + constant_term(Snm_sinmλ[i, j, n, m]) + (tmp5026[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5026[i, j, n, m]).coeffs[1]) + (tmp5027[i, j, n, m]).coeffs[1] = constant_term(cosϕ_dP_nm[i, j, n, m]) * constant_term(tmp5026[i, j, n, m]) + (tmp5027[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5027[i, j, n, m]).coeffs[1]) + (tmp5028[i, j, n, m]).coeffs[1] = constant_term(tmp5027[i, j, n, m]) / constant_term(temp_rn[i, j, n]) + (tmp5028[i, j, n, m]).coeffs[2:order + 1] .= zero((tmp5028[i, j, n, m]).coeffs[1]) + (temp_CS_ζ[i, j, n, m]).coeffs[1] = constant_term(tmp5028[i, j, n, m]) + constant_term(F_CS_ζ_36[i, j]) + (temp_CS_ζ[i, j, n, m]).coeffs[2:order + 1] .= zero((temp_CS_ζ[i, j, n, m]).coeffs[1]) + (F_CS_ξ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ξ[i, j, n, m])) + (F_CS_ξ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ξ_36[i, j]).coeffs[1]) + (F_CS_η_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_η[i, j, n, m])) + (F_CS_η_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_η_36[i, j]).coeffs[1]) + (F_CS_ζ_36[i, j]).coeffs[1] = identity(constant_term(temp_CS_ζ[i, j, n, m])) + (F_CS_ζ_36[i, j]).coeffs[2:order + 1] .= zero((F_CS_ζ_36[i, j]).coeffs[1]) + end + end + (tmp5030[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + (tmp5030[i, j]).coeffs[2:order + 1] .= zero((tmp5030[i, j]).coeffs[1]) + (tmp5031[i, j]).coeffs[1] = constant_term(F_CS_ξ[i, j]) + constant_term(F_CS_ξ_36[i, j]) + (tmp5031[i, j]).coeffs[2:order + 1] .= zero((tmp5031[i, j]).coeffs[1]) + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(tmp5030[i, j]) + constant_term(tmp5031[i, j]) + (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + (F_JCS_η[i, j]).coeffs[1] = constant_term(F_CS_η[i, j]) + constant_term(F_CS_η_36[i, j]) + (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + (tmp5034[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + (tmp5034[i, j]).coeffs[2:order + 1] .= zero((tmp5034[i, j]).coeffs[1]) + (tmp5035[i, j]).coeffs[1] = constant_term(F_CS_ζ[i, j]) + constant_term(F_CS_ζ_36[i, j]) + (tmp5035[i, j]).coeffs[2:order + 1] .= zero((tmp5035[i, j]).coeffs[1]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(tmp5034[i, j]) + constant_term(tmp5035[i, j]) + (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + else + (F_JCS_ξ[i, j]).coeffs[1] = constant_term(F_J_ξ[i, j]) + constant_term(F_J_ξ_36[i, j]) + (F_JCS_ξ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ξ[i, j]).coeffs[1]) + (F_JCS_η[i, j]).coeffs[1] = identity(constant_term(zero_q_1)) + (F_JCS_η[i, j]).coeffs[2:order + 1] .= zero((F_JCS_η[i, j]).coeffs[1]) + (F_JCS_ζ[i, j]).coeffs[1] = constant_term(F_J_ζ[i, j]) + constant_term(F_J_ζ_36[i, j]) + (F_JCS_ζ[i, j]).coeffs[2:order + 1] .= zero((F_JCS_ζ[i, j]).coeffs[1]) + end + (Rb2p[i, j, 1, 1]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(cos_λ[i, j]) + (Rb2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 1]).coeffs[1]) + (Rb2p[i, j, 2, 1]).coeffs[1] = -(constant_term(sin_λ[i, j])) + (Rb2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 1]).coeffs[1]) + (tmp5041[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + (tmp5041[i, j]).coeffs[2:order + 1] .= zero((tmp5041[i, j]).coeffs[1]) + (Rb2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp5041[i, j]) * constant_term(cos_λ[i, j]) + (Rb2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 1]).coeffs[1]) + (Rb2p[i, j, 1, 2]).coeffs[1] = constant_term(cos_ϕ[i, j]) * constant_term(sin_λ[i, j]) + (Rb2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 2]).coeffs[1]) + (Rb2p[i, j, 2, 2]).coeffs[1] = identity(constant_term(cos_λ[i, j])) + (Rb2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 2]).coeffs[1]) + (tmp5044[i, j]).coeffs[1] = -(constant_term(sin_ϕ[i, j])) + (tmp5044[i, j]).coeffs[2:order + 1] .= zero((tmp5044[i, j]).coeffs[1]) + (Rb2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp5044[i, j]) * constant_term(sin_λ[i, j]) + (Rb2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 2]).coeffs[1]) + (Rb2p[i, j, 1, 3]).coeffs[1] = identity(constant_term(sin_ϕ[i, j])) + (Rb2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 1, 3]).coeffs[1]) + (Rb2p[i, j, 2, 3]).coeffs[1] = identity(constant_term(zero_q_1)) + (Rb2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 2, 3]).coeffs[1]) + (Rb2p[i, j, 3, 3]).coeffs[1] = identity(constant_term(cos_ϕ[i, j])) + (Rb2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Rb2p[i, j, 3, 3]).coeffs[1]) + (tmp5046[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 1, j]) + (tmp5046[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5046[i, j, 1, 1]).coeffs[1]) + (tmp5047[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 1, j]) + (tmp5047[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp5047[i, j, 1, 2]).coeffs[1]) + (tmp5048[i, j, 1, 1]).coeffs[1] = constant_term(tmp5046[i, j, 1, 1]) + constant_term(tmp5047[i, j, 1, 2]) + (tmp5048[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5048[i, j, 1, 1]).coeffs[1]) + (tmp5049[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 1, j]) + (tmp5049[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp5049[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 1]).coeffs[1] = constant_term(tmp5048[i, j, 1, 1]) + constant_term(tmp5049[i, j, 1, 3]) + (Gc2p[i, j, 1, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 1]).coeffs[1]) + (tmp5051[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 1, j]) + (tmp5051[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5051[i, j, 2, 1]).coeffs[1]) + (tmp5052[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 1, j]) + (tmp5052[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp5052[i, j, 2, 2]).coeffs[1]) + (tmp5053[i, j, 2, 1]).coeffs[1] = constant_term(tmp5051[i, j, 2, 1]) + constant_term(tmp5052[i, j, 2, 2]) + (tmp5053[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5053[i, j, 2, 1]).coeffs[1]) + (tmp5054[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 1, j]) + (tmp5054[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp5054[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 1]).coeffs[1] = constant_term(tmp5053[i, j, 2, 1]) + constant_term(tmp5054[i, j, 2, 3]) + (Gc2p[i, j, 2, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 1]).coeffs[1]) + (tmp5056[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 1, j]) + (tmp5056[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5056[i, j, 3, 1]).coeffs[1]) + (tmp5057[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 1, j]) + (tmp5057[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp5057[i, j, 3, 2]).coeffs[1]) + (tmp5058[i, j, 3, 1]).coeffs[1] = constant_term(tmp5056[i, j, 3, 1]) + constant_term(tmp5057[i, j, 3, 2]) + (tmp5058[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5058[i, j, 3, 1]).coeffs[1]) + (tmp5059[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 1, j]) + (tmp5059[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp5059[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 1]).coeffs[1] = constant_term(tmp5058[i, j, 3, 1]) + constant_term(tmp5059[i, j, 3, 3]) + (Gc2p[i, j, 3, 1]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 1]).coeffs[1]) + (tmp5061[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 2, j]) + (tmp5061[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5061[i, j, 1, 1]).coeffs[1]) + (tmp5062[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 2, j]) + (tmp5062[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp5062[i, j, 1, 2]).coeffs[1]) + (tmp5063[i, j, 1, 1]).coeffs[1] = constant_term(tmp5061[i, j, 1, 1]) + constant_term(tmp5062[i, j, 1, 2]) + (tmp5063[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5063[i, j, 1, 1]).coeffs[1]) + (tmp5064[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 2, j]) + (tmp5064[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp5064[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 2]).coeffs[1] = constant_term(tmp5063[i, j, 1, 1]) + constant_term(tmp5064[i, j, 1, 3]) + (Gc2p[i, j, 1, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 2]).coeffs[1]) + (tmp5066[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 2, j]) + (tmp5066[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5066[i, j, 2, 1]).coeffs[1]) + (tmp5067[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 2, j]) + (tmp5067[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp5067[i, j, 2, 2]).coeffs[1]) + (tmp5068[i, j, 2, 1]).coeffs[1] = constant_term(tmp5066[i, j, 2, 1]) + constant_term(tmp5067[i, j, 2, 2]) + (tmp5068[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5068[i, j, 2, 1]).coeffs[1]) + (tmp5069[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 2, j]) + (tmp5069[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp5069[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 2]).coeffs[1] = constant_term(tmp5068[i, j, 2, 1]) + constant_term(tmp5069[i, j, 2, 3]) + (Gc2p[i, j, 2, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 2]).coeffs[1]) + (tmp5071[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 2, j]) + (tmp5071[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5071[i, j, 3, 1]).coeffs[1]) + (tmp5072[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 2, j]) + (tmp5072[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp5072[i, j, 3, 2]).coeffs[1]) + (tmp5073[i, j, 3, 1]).coeffs[1] = constant_term(tmp5071[i, j, 3, 1]) + constant_term(tmp5072[i, j, 3, 2]) + (tmp5073[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5073[i, j, 3, 1]).coeffs[1]) + (tmp5074[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 2, j]) + (tmp5074[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp5074[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 2]).coeffs[1] = constant_term(tmp5073[i, j, 3, 1]) + constant_term(tmp5074[i, j, 3, 3]) + (Gc2p[i, j, 3, 2]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 2]).coeffs[1]) + (tmp5076[i, j, 1, 1]).coeffs[1] = constant_term(Rb2p[i, j, 1, 1]) * constant_term(RotM[1, 3, j]) + (tmp5076[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5076[i, j, 1, 1]).coeffs[1]) + (tmp5077[i, j, 1, 2]).coeffs[1] = constant_term(Rb2p[i, j, 1, 2]) * constant_term(RotM[2, 3, j]) + (tmp5077[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp5077[i, j, 1, 2]).coeffs[1]) + (tmp5078[i, j, 1, 1]).coeffs[1] = constant_term(tmp5076[i, j, 1, 1]) + constant_term(tmp5077[i, j, 1, 2]) + (tmp5078[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5078[i, j, 1, 1]).coeffs[1]) + (tmp5079[i, j, 1, 3]).coeffs[1] = constant_term(Rb2p[i, j, 1, 3]) * constant_term(RotM[3, 3, j]) + (tmp5079[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp5079[i, j, 1, 3]).coeffs[1]) + (Gc2p[i, j, 1, 3]).coeffs[1] = constant_term(tmp5078[i, j, 1, 1]) + constant_term(tmp5079[i, j, 1, 3]) + (Gc2p[i, j, 1, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 1, 3]).coeffs[1]) + (tmp5081[i, j, 2, 1]).coeffs[1] = constant_term(Rb2p[i, j, 2, 1]) * constant_term(RotM[1, 3, j]) + (tmp5081[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5081[i, j, 2, 1]).coeffs[1]) + (tmp5082[i, j, 2, 2]).coeffs[1] = constant_term(Rb2p[i, j, 2, 2]) * constant_term(RotM[2, 3, j]) + (tmp5082[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp5082[i, j, 2, 2]).coeffs[1]) + (tmp5083[i, j, 2, 1]).coeffs[1] = constant_term(tmp5081[i, j, 2, 1]) + constant_term(tmp5082[i, j, 2, 2]) + (tmp5083[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5083[i, j, 2, 1]).coeffs[1]) + (tmp5084[i, j, 2, 3]).coeffs[1] = constant_term(Rb2p[i, j, 2, 3]) * constant_term(RotM[3, 3, j]) + (tmp5084[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp5084[i, j, 2, 3]).coeffs[1]) + (Gc2p[i, j, 2, 3]).coeffs[1] = constant_term(tmp5083[i, j, 2, 1]) + constant_term(tmp5084[i, j, 2, 3]) + (Gc2p[i, j, 2, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 2, 3]).coeffs[1]) + (tmp5086[i, j, 3, 1]).coeffs[1] = constant_term(Rb2p[i, j, 3, 1]) * constant_term(RotM[1, 3, j]) + (tmp5086[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5086[i, j, 3, 1]).coeffs[1]) + (tmp5087[i, j, 3, 2]).coeffs[1] = constant_term(Rb2p[i, j, 3, 2]) * constant_term(RotM[2, 3, j]) + (tmp5087[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp5087[i, j, 3, 2]).coeffs[1]) + (tmp5088[i, j, 3, 1]).coeffs[1] = constant_term(tmp5086[i, j, 3, 1]) + constant_term(tmp5087[i, j, 3, 2]) + (tmp5088[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5088[i, j, 3, 1]).coeffs[1]) + (tmp5089[i, j, 3, 3]).coeffs[1] = constant_term(Rb2p[i, j, 3, 3]) * constant_term(RotM[3, 3, j]) + (tmp5089[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp5089[i, j, 3, 3]).coeffs[1]) + (Gc2p[i, j, 3, 3]).coeffs[1] = constant_term(tmp5088[i, j, 3, 1]) + constant_term(tmp5089[i, j, 3, 3]) + (Gc2p[i, j, 3, 3]).coeffs[2:order + 1] .= zero((Gc2p[i, j, 3, 3]).coeffs[1]) + (tmp5091[i, j, 1, 1]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 1]) + (tmp5091[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5091[i, j, 1, 1]).coeffs[1]) + (tmp5092[i, j, 2, 1]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 1]) + (tmp5092[i, j, 2, 1]).coeffs[2:order + 1] .= zero((tmp5092[i, j, 2, 1]).coeffs[1]) + (tmp5093[i, j, 1, 1]).coeffs[1] = constant_term(tmp5091[i, j, 1, 1]) + constant_term(tmp5092[i, j, 2, 1]) + (tmp5093[i, j, 1, 1]).coeffs[2:order + 1] .= zero((tmp5093[i, j, 1, 1]).coeffs[1]) + (tmp5094[i, j, 3, 1]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 1]) + (tmp5094[i, j, 3, 1]).coeffs[2:order + 1] .= zero((tmp5094[i, j, 3, 1]).coeffs[1]) + (F_JCS_x[i, j]).coeffs[1] = constant_term(tmp5093[i, j, 1, 1]) + constant_term(tmp5094[i, j, 3, 1]) + (F_JCS_x[i, j]).coeffs[2:order + 1] .= zero((F_JCS_x[i, j]).coeffs[1]) + (tmp5096[i, j, 1, 2]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 2]) + (tmp5096[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp5096[i, j, 1, 2]).coeffs[1]) + (tmp5097[i, j, 2, 2]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 2]) + (tmp5097[i, j, 2, 2]).coeffs[2:order + 1] .= zero((tmp5097[i, j, 2, 2]).coeffs[1]) + (tmp5098[i, j, 1, 2]).coeffs[1] = constant_term(tmp5096[i, j, 1, 2]) + constant_term(tmp5097[i, j, 2, 2]) + (tmp5098[i, j, 1, 2]).coeffs[2:order + 1] .= zero((tmp5098[i, j, 1, 2]).coeffs[1]) + (tmp5099[i, j, 3, 2]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 2]) + (tmp5099[i, j, 3, 2]).coeffs[2:order + 1] .= zero((tmp5099[i, j, 3, 2]).coeffs[1]) + (F_JCS_y[i, j]).coeffs[1] = constant_term(tmp5098[i, j, 1, 2]) + constant_term(tmp5099[i, j, 3, 2]) + (F_JCS_y[i, j]).coeffs[2:order + 1] .= zero((F_JCS_y[i, j]).coeffs[1]) + (tmp5101[i, j, 1, 3]).coeffs[1] = constant_term(F_JCS_ξ[i, j]) * constant_term(Gc2p[i, j, 1, 3]) + (tmp5101[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp5101[i, j, 1, 3]).coeffs[1]) + (tmp5102[i, j, 2, 3]).coeffs[1] = constant_term(F_JCS_η[i, j]) * constant_term(Gc2p[i, j, 2, 3]) + (tmp5102[i, j, 2, 3]).coeffs[2:order + 1] .= zero((tmp5102[i, j, 2, 3]).coeffs[1]) + (tmp5103[i, j, 1, 3]).coeffs[1] = constant_term(tmp5101[i, j, 1, 3]) + constant_term(tmp5102[i, j, 2, 3]) + (tmp5103[i, j, 1, 3]).coeffs[2:order + 1] .= zero((tmp5103[i, j, 1, 3]).coeffs[1]) + (tmp5104[i, j, 3, 3]).coeffs[1] = constant_term(F_JCS_ζ[i, j]) * constant_term(Gc2p[i, j, 3, 3]) + (tmp5104[i, j, 3, 3]).coeffs[2:order + 1] .= zero((tmp5104[i, j, 3, 3]).coeffs[1]) + (F_JCS_z[i, j]).coeffs[1] = constant_term(tmp5103[i, j, 1, 3]) + constant_term(tmp5104[i, j, 3, 3]) + (F_JCS_z[i, j]).coeffs[2:order + 1] .= zero((F_JCS_z[i, j]).coeffs[1]) + end + end + end + end + for j = 1:N_ext + for i = 1:N_ext + if i == j + continue + else + if UJ_interaction[i, j] + (tmp5106[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_x[i, j]) + (tmp5106[i, j]).coeffs[2:order + 1] .= zero((tmp5106[i, j]).coeffs[1]) + (temp_accX_j[i, j]).coeffs[1] = constant_term(accX[j]) - constant_term(tmp5106[i, j]) + (temp_accX_j[i, j]).coeffs[2:order + 1] .= zero((temp_accX_j[i, j]).coeffs[1]) + (accX[j]).coeffs[1] = identity(constant_term(temp_accX_j[i, j])) + (accX[j]).coeffs[2:order + 1] .= zero((accX[j]).coeffs[1]) + (tmp5108[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_y[i, j]) + (tmp5108[i, j]).coeffs[2:order + 1] .= zero((tmp5108[i, j]).coeffs[1]) + (temp_accY_j[i, j]).coeffs[1] = constant_term(accY[j]) - constant_term(tmp5108[i, j]) + (temp_accY_j[i, j]).coeffs[2:order + 1] .= zero((temp_accY_j[i, j]).coeffs[1]) + (accY[j]).coeffs[1] = identity(constant_term(temp_accY_j[i, j])) + (accY[j]).coeffs[2:order + 1] .= zero((accY[j]).coeffs[1]) + (tmp5110[i, j]).coeffs[1] = constant_term(μ[i]) * constant_term(F_JCS_z[i, j]) + (tmp5110[i, j]).coeffs[2:order + 1] .= zero((tmp5110[i, j]).coeffs[1]) + (temp_accZ_j[i, j]).coeffs[1] = constant_term(accZ[j]) - constant_term(tmp5110[i, j]) + (temp_accZ_j[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_j[i, j]).coeffs[1]) + (accZ[j]).coeffs[1] = identity(constant_term(temp_accZ_j[i, j])) + (accZ[j]).coeffs[2:order + 1] .= zero((accZ[j]).coeffs[1]) + (tmp5112[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_x[i, j]) + (tmp5112[i, j]).coeffs[2:order + 1] .= zero((tmp5112[i, j]).coeffs[1]) + (temp_accX_i[i, j]).coeffs[1] = constant_term(accX[i]) + constant_term(tmp5112[i, j]) + (temp_accX_i[i, j]).coeffs[2:order + 1] .= zero((temp_accX_i[i, j]).coeffs[1]) + (accX[i]).coeffs[1] = identity(constant_term(temp_accX_i[i, j])) + (accX[i]).coeffs[2:order + 1] .= zero((accX[i]).coeffs[1]) + (tmp5114[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_y[i, j]) + (tmp5114[i, j]).coeffs[2:order + 1] .= zero((tmp5114[i, j]).coeffs[1]) + (temp_accY_i[i, j]).coeffs[1] = constant_term(accY[i]) + constant_term(tmp5114[i, j]) + (temp_accY_i[i, j]).coeffs[2:order + 1] .= zero((temp_accY_i[i, j]).coeffs[1]) + (accY[i]).coeffs[1] = identity(constant_term(temp_accY_i[i, j])) + (accY[i]).coeffs[2:order + 1] .= zero((accY[i]).coeffs[1]) + (tmp5116[i, j]).coeffs[1] = constant_term(μ[j]) * constant_term(F_JCS_z[i, j]) + (tmp5116[i, j]).coeffs[2:order + 1] .= zero((tmp5116[i, j]).coeffs[1]) + (temp_accZ_i[i, j]).coeffs[1] = constant_term(accZ[i]) + constant_term(tmp5116[i, j]) + (temp_accZ_i[i, j]).coeffs[2:order + 1] .= zero((temp_accZ_i[i, j]).coeffs[1]) + (accZ[i]).coeffs[1] = identity(constant_term(temp_accZ_i[i, j])) + (accZ[i]).coeffs[2:order + 1] .= zero((accZ[i]).coeffs[1]) + if j == mo + (tmp5118[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_z[i, j]) + (tmp5118[i, j]).coeffs[2:order + 1] .= zero((tmp5118[i, j]).coeffs[1]) + (tmp5119[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_y[i, j]) + (tmp5119[i, j]).coeffs[2:order + 1] .= zero((tmp5119[i, j]).coeffs[1]) + (tmp5120[i, j]).coeffs[1] = constant_term(tmp5118[i, j]) - constant_term(tmp5119[i, j]) + (tmp5120[i, j]).coeffs[2:order + 1] .= zero((tmp5120[i, j]).coeffs[1]) + (N_MfigM_pmA_x[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp5120[i, j]) + (N_MfigM_pmA_x[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_x[i]).coeffs[1]) + (tmp5122[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(F_JCS_x[i, j]) + (tmp5122[i, j]).coeffs[2:order + 1] .= zero((tmp5122[i, j]).coeffs[1]) + (tmp5123[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_z[i, j]) + (tmp5123[i, j]).coeffs[2:order + 1] .= zero((tmp5123[i, j]).coeffs[1]) + (tmp5124[i, j]).coeffs[1] = constant_term(tmp5122[i, j]) - constant_term(tmp5123[i, j]) + (tmp5124[i, j]).coeffs[2:order + 1] .= zero((tmp5124[i, j]).coeffs[1]) + (N_MfigM_pmA_y[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp5124[i, j]) + (N_MfigM_pmA_y[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_y[i]).coeffs[1]) + (tmp5126[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(F_JCS_y[i, j]) + (tmp5126[i, j]).coeffs[2:order + 1] .= zero((tmp5126[i, j]).coeffs[1]) + (tmp5127[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(F_JCS_x[i, j]) + (tmp5127[i, j]).coeffs[2:order + 1] .= zero((tmp5127[i, j]).coeffs[1]) + (tmp5128[i, j]).coeffs[1] = constant_term(tmp5126[i, j]) - constant_term(tmp5127[i, j]) + (tmp5128[i, j]).coeffs[2:order + 1] .= zero((tmp5128[i, j]).coeffs[1]) + (N_MfigM_pmA_z[i]).coeffs[1] = constant_term(μ[i]) * constant_term(tmp5128[i, j]) + (N_MfigM_pmA_z[i]).coeffs[2:order + 1] .= zero((N_MfigM_pmA_z[i]).coeffs[1]) + (temp_N_M_x[i]).coeffs[1] = constant_term(N_MfigM[1]) - constant_term(N_MfigM_pmA_x[i]) + (temp_N_M_x[i]).coeffs[2:order + 1] .= zero((temp_N_M_x[i]).coeffs[1]) + (N_MfigM[1]).coeffs[1] = identity(constant_term(temp_N_M_x[i])) + (N_MfigM[1]).coeffs[2:order + 1] .= zero((N_MfigM[1]).coeffs[1]) + (temp_N_M_y[i]).coeffs[1] = constant_term(N_MfigM[2]) - constant_term(N_MfigM_pmA_y[i]) + (temp_N_M_y[i]).coeffs[2:order + 1] .= zero((temp_N_M_y[i]).coeffs[1]) + (N_MfigM[2]).coeffs[1] = identity(constant_term(temp_N_M_y[i])) + (N_MfigM[2]).coeffs[2:order + 1] .= zero((N_MfigM[2]).coeffs[1]) + (temp_N_M_z[i]).coeffs[1] = constant_term(N_MfigM[3]) - constant_term(N_MfigM_pmA_z[i]) + (temp_N_M_z[i]).coeffs[2:order + 1] .= zero((temp_N_M_z[i]).coeffs[1]) + (N_MfigM[3]).coeffs[1] = identity(constant_term(temp_N_M_z[i])) + (N_MfigM[3]).coeffs[2:order + 1] .= zero((N_MfigM[3]).coeffs[1]) + end + end + end + end + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:706 =# Threads.@threads for j = 1:N + for i = 1:N + if i == j + continue + else + (_4ϕj[i, j]).coeffs[1] = constant_term(4) * constant_term(newtonianNb_Potential[j]) + (_4ϕj[i, j]).coeffs[2:order + 1] .= zero((_4ϕj[i, j]).coeffs[1]) + (ϕi_plus_4ϕj[i, j]).coeffs[1] = constant_term(newtonianNb_Potential[i]) + constant_term(_4ϕj[i, j]) + (ϕi_plus_4ϕj[i, j]).coeffs[2:order + 1] .= zero((ϕi_plus_4ϕj[i, j]).coeffs[1]) + (_2v2[i, j]).coeffs[1] = constant_term(2) * constant_term(v2[i]) + (_2v2[i, j]).coeffs[2:order + 1] .= zero((_2v2[i, j]).coeffs[1]) + (sj2_plus_2si2[i, j]).coeffs[1] = constant_term(v2[j]) + constant_term(_2v2[i, j]) + (sj2_plus_2si2[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2[i, j]).coeffs[1]) + (tmp5140[i, j]).coeffs[1] = constant_term(4) * constant_term(vi_dot_vj[i, j]) + (tmp5140[i, j]).coeffs[2:order + 1] .= zero((tmp5140[i, j]).coeffs[1]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1] = constant_term(sj2_plus_2si2[i, j]) - constant_term(tmp5140[i, j]) + (sj2_plus_2si2_minus_4vivj[i, j]).coeffs[2:order + 1] .= zero((sj2_plus_2si2_minus_4vivj[i, j]).coeffs[1]) + (ϕs_and_vs[i, j]).coeffs[1] = constant_term(sj2_plus_2si2_minus_4vivj[i, j]) - constant_term(ϕi_plus_4ϕj[i, j]) + (ϕs_and_vs[i, j]).coeffs[2:order + 1] .= zero((ϕs_and_vs[i, j]).coeffs[1]) + (Xij_t_Ui[i, j]).coeffs[1] = constant_term(X[i, j]) * constant_term(dq[3i - 2]) + (Xij_t_Ui[i, j]).coeffs[2:order + 1] .= zero((Xij_t_Ui[i, j]).coeffs[1]) + (Yij_t_Vi[i, j]).coeffs[1] = constant_term(Y[i, j]) * constant_term(dq[3i - 1]) + (Yij_t_Vi[i, j]).coeffs[2:order + 1] .= zero((Yij_t_Vi[i, j]).coeffs[1]) + (Zij_t_Wi[i, j]).coeffs[1] = constant_term(Z[i, j]) * constant_term(dq[3i]) + (Zij_t_Wi[i, j]).coeffs[2:order + 1] .= zero((Zij_t_Wi[i, j]).coeffs[1]) + (tmp5146[i, j]).coeffs[1] = constant_term(Xij_t_Ui[i, j]) + constant_term(Yij_t_Vi[i, j]) + (tmp5146[i, j]).coeffs[2:order + 1] .= zero((tmp5146[i, j]).coeffs[1]) + (Rij_dot_Vi[i, j]).coeffs[1] = constant_term(tmp5146[i, j]) + constant_term(Zij_t_Wi[i, j]) + (Rij_dot_Vi[i, j]).coeffs[2:order + 1] .= zero((Rij_dot_Vi[i, j]).coeffs[1]) + (tmp5149[i, j]).coeffs[1] = constant_term(Rij_dot_Vi[i, j]) ^ float(constant_term(2)) + (tmp5149[i, j]).coeffs[2:order + 1] .= zero((tmp5149[i, j]).coeffs[1]) + (pn1t7[i, j]).coeffs[1] = constant_term(tmp5149[i, j]) / constant_term(r_p2[i, j]) + (pn1t7[i, j]).coeffs[2:order + 1] .= zero((pn1t7[i, j]).coeffs[1]) + (tmp5152[i, j]).coeffs[1] = constant_term(1.5) * constant_term(pn1t7[i, j]) + (tmp5152[i, j]).coeffs[2:order + 1] .= zero((tmp5152[i, j]).coeffs[1]) + (pn1t2_7[i, j]).coeffs[1] = constant_term(ϕs_and_vs[i, j]) - constant_term(tmp5152[i, j]) + (pn1t2_7[i, j]).coeffs[2:order + 1] .= zero((pn1t2_7[i, j]).coeffs[1]) + (pn1t1_7[i, j]).coeffs[1] = constant_term(c_p2) + constant_term(pn1t2_7[i, j]) + (pn1t1_7[i, j]).coeffs[2:order + 1] .= zero((pn1t1_7[i, j]).coeffs[1]) + end + end + (pntempX[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + (pntempY[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + (pntempZ[j]).coeffs[1] = identity(constant_term(zero_q_1)) + (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:745 =# Threads.@threads for j = 1:N + for i = 1:N + if i == j + continue + else + (pNX_t_X[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(X[i, j]) + (pNX_t_X[i, j]).coeffs[2:order + 1] .= zero((pNX_t_X[i, j]).coeffs[1]) + (pNY_t_Y[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(Y[i, j]) + (pNY_t_Y[i, j]).coeffs[2:order + 1] .= zero((pNY_t_Y[i, j]).coeffs[1]) + (pNZ_t_Z[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(Z[i, j]) + (pNZ_t_Z[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_Z[i, j]).coeffs[1]) + (tmp5159[i, j]).coeffs[1] = constant_term(pNX_t_X[i, j]) + constant_term(pNY_t_Y[i, j]) + (tmp5159[i, j]).coeffs[2:order + 1] .= zero((tmp5159[i, j]).coeffs[1]) + (tmp5160[i, j]).coeffs[1] = constant_term(tmp5159[i, j]) + constant_term(pNZ_t_Z[i, j]) + (tmp5160[i, j]).coeffs[2:order + 1] .= zero((tmp5160[i, j]).coeffs[1]) + (tmp5161[i, j]).coeffs[1] = constant_term(0.5) * constant_term(tmp5160[i, j]) + (tmp5161[i, j]).coeffs[2:order + 1] .= zero((tmp5161[i, j]).coeffs[1]) + (pn1[i, j]).coeffs[1] = constant_term(pn1t1_7[i, j]) + constant_term(tmp5161[i, j]) + (pn1[i, j]).coeffs[2:order + 1] .= zero((pn1[i, j]).coeffs[1]) + (X_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_X[i, j]) * constant_term(pn1[i, j]) + (X_t_pn1[i, j]).coeffs[2:order + 1] .= zero((X_t_pn1[i, j]).coeffs[1]) + (Y_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Y[i, j]) * constant_term(pn1[i, j]) + (Y_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Y_t_pn1[i, j]).coeffs[1]) + (Z_t_pn1[i, j]).coeffs[1] = constant_term(newton_acc_Z[i, j]) * constant_term(pn1[i, j]) + (Z_t_pn1[i, j]).coeffs[2:order + 1] .= zero((Z_t_pn1[i, j]).coeffs[1]) + (pNX_t_pn3[i, j]).coeffs[1] = constant_term(newtonX[i]) * constant_term(pn3[i, j]) + (pNX_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNX_t_pn3[i, j]).coeffs[1]) + (pNY_t_pn3[i, j]).coeffs[1] = constant_term(newtonY[i]) * constant_term(pn3[i, j]) + (pNY_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNY_t_pn3[i, j]).coeffs[1]) + (pNZ_t_pn3[i, j]).coeffs[1] = constant_term(newtonZ[i]) * constant_term(pn3[i, j]) + (pNZ_t_pn3[i, j]).coeffs[2:order + 1] .= zero((pNZ_t_pn3[i, j]).coeffs[1]) + (tmp5169[i, j]).coeffs[1] = constant_term(U_t_pn2[i, j]) + constant_term(pNX_t_pn3[i, j]) + (tmp5169[i, j]).coeffs[2:order + 1] .= zero((tmp5169[i, j]).coeffs[1]) + (termpnx[i, j]).coeffs[1] = constant_term(X_t_pn1[i, j]) + constant_term(tmp5169[i, j]) + (termpnx[i, j]).coeffs[2:order + 1] .= zero((termpnx[i, j]).coeffs[1]) + (sumpnx[i, j]).coeffs[1] = constant_term(pntempX[j]) + constant_term(termpnx[i, j]) + (sumpnx[i, j]).coeffs[2:order + 1] .= zero((sumpnx[i, j]).coeffs[1]) + (pntempX[j]).coeffs[1] = identity(constant_term(sumpnx[i, j])) + (pntempX[j]).coeffs[2:order + 1] .= zero((pntempX[j]).coeffs[1]) + (tmp5172[i, j]).coeffs[1] = constant_term(V_t_pn2[i, j]) + constant_term(pNY_t_pn3[i, j]) + (tmp5172[i, j]).coeffs[2:order + 1] .= zero((tmp5172[i, j]).coeffs[1]) + (termpny[i, j]).coeffs[1] = constant_term(Y_t_pn1[i, j]) + constant_term(tmp5172[i, j]) + (termpny[i, j]).coeffs[2:order + 1] .= zero((termpny[i, j]).coeffs[1]) + (sumpny[i, j]).coeffs[1] = constant_term(pntempY[j]) + constant_term(termpny[i, j]) + (sumpny[i, j]).coeffs[2:order + 1] .= zero((sumpny[i, j]).coeffs[1]) + (pntempY[j]).coeffs[1] = identity(constant_term(sumpny[i, j])) + (pntempY[j]).coeffs[2:order + 1] .= zero((pntempY[j]).coeffs[1]) + (tmp5175[i, j]).coeffs[1] = constant_term(W_t_pn2[i, j]) + constant_term(pNZ_t_pn3[i, j]) + (tmp5175[i, j]).coeffs[2:order + 1] .= zero((tmp5175[i, j]).coeffs[1]) + (termpnz[i, j]).coeffs[1] = constant_term(Z_t_pn1[i, j]) + constant_term(tmp5175[i, j]) + (termpnz[i, j]).coeffs[2:order + 1] .= zero((termpnz[i, j]).coeffs[1]) + (sumpnz[i, j]).coeffs[1] = constant_term(pntempZ[j]) + constant_term(termpnz[i, j]) + (sumpnz[i, j]).coeffs[2:order + 1] .= zero((sumpnz[i, j]).coeffs[1]) + (pntempZ[j]).coeffs[1] = identity(constant_term(sumpnz[i, j])) + (pntempZ[j]).coeffs[2:order + 1] .= zero((pntempZ[j]).coeffs[1]) + end + end + (postNewtonX[j]).coeffs[1] = constant_term(pntempX[j]) * constant_term(c_m2) + (postNewtonX[j]).coeffs[2:order + 1] .= zero((postNewtonX[j]).coeffs[1]) + (postNewtonY[j]).coeffs[1] = constant_term(pntempY[j]) * constant_term(c_m2) + (postNewtonY[j]).coeffs[2:order + 1] .= zero((postNewtonY[j]).coeffs[1]) + (postNewtonZ[j]).coeffs[1] = constant_term(pntempZ[j]) * constant_term(c_m2) + (postNewtonZ[j]).coeffs[2:order + 1] .= zero((postNewtonZ[j]).coeffs[1]) + end + x0s_M.coeffs[1] = identity(constant_term(r_star_M_0[1])) + x0s_M.coeffs[2:order + 1] .= zero(x0s_M.coeffs[1]) + y0s_M.coeffs[1] = identity(constant_term(r_star_M_0[2])) + y0s_M.coeffs[2:order + 1] .= zero(y0s_M.coeffs[1]) + z0s_M.coeffs[1] = identity(constant_term(r_star_M_0[3])) + z0s_M.coeffs[2:order + 1] .= zero(z0s_M.coeffs[1]) + tmp5182.coeffs[1] = constant_term(x0s_M) ^ float(constant_term(2)) + tmp5182.coeffs[2:order + 1] .= zero(tmp5182.coeffs[1]) + tmp5184.coeffs[1] = constant_term(y0s_M) ^ float(constant_term(2)) + tmp5184.coeffs[2:order + 1] .= zero(tmp5184.coeffs[1]) + ρ0s2_M.coeffs[1] = constant_term(tmp5182) + constant_term(tmp5184) + ρ0s2_M.coeffs[2:order + 1] .= zero(ρ0s2_M.coeffs[1]) + ρ0s_M.coeffs[1] = sqrt(constant_term(ρ0s2_M)) + ρ0s_M.coeffs[2:order + 1] .= zero(ρ0s_M.coeffs[1]) + z0s2_M.coeffs[1] = constant_term(z0s_M) ^ float(constant_term(2)) + z0s2_M.coeffs[2:order + 1] .= zero(z0s2_M.coeffs[1]) + r0s2_M.coeffs[1] = constant_term(ρ0s2_M) + constant_term(z0s2_M) + r0s2_M.coeffs[2:order + 1] .= zero(r0s2_M.coeffs[1]) + r0s_M.coeffs[1] = sqrt(constant_term(r0s2_M)) + r0s_M.coeffs[2:order + 1] .= zero(r0s_M.coeffs[1]) + r0s5_M.coeffs[1] = constant_term(r0s_M) ^ float(constant_term(5)) + r0s5_M.coeffs[2:order + 1] .= zero(r0s5_M.coeffs[1]) + x0s_S.coeffs[1] = identity(constant_term(r_star_S_0[1])) + x0s_S.coeffs[2:order + 1] .= zero(x0s_S.coeffs[1]) + y0s_S.coeffs[1] = identity(constant_term(r_star_S_0[2])) + y0s_S.coeffs[2:order + 1] .= zero(y0s_S.coeffs[1]) + z0s_S.coeffs[1] = identity(constant_term(r_star_S_0[3])) + z0s_S.coeffs[2:order + 1] .= zero(z0s_S.coeffs[1]) + tmp5194.coeffs[1] = constant_term(x0s_S) ^ float(constant_term(2)) + tmp5194.coeffs[2:order + 1] .= zero(tmp5194.coeffs[1]) + tmp5196.coeffs[1] = constant_term(y0s_S) ^ float(constant_term(2)) + tmp5196.coeffs[2:order + 1] .= zero(tmp5196.coeffs[1]) + ρ0s2_S.coeffs[1] = constant_term(tmp5194) + constant_term(tmp5196) + ρ0s2_S.coeffs[2:order + 1] .= zero(ρ0s2_S.coeffs[1]) + ρ0s_S.coeffs[1] = sqrt(constant_term(ρ0s2_S)) + ρ0s_S.coeffs[2:order + 1] .= zero(ρ0s_S.coeffs[1]) + z0s2_S.coeffs[1] = constant_term(z0s_S) ^ float(constant_term(2)) + z0s2_S.coeffs[2:order + 1] .= zero(z0s2_S.coeffs[1]) + r0s2_S.coeffs[1] = constant_term(ρ0s2_S) + constant_term(z0s2_S) + r0s2_S.coeffs[2:order + 1] .= zero(r0s2_S.coeffs[1]) + r0s_S.coeffs[1] = sqrt(constant_term(r0s2_S)) + r0s_S.coeffs[2:order + 1] .= zero(r0s_S.coeffs[1]) + r0s5_S.coeffs[1] = constant_term(r0s_S) ^ float(constant_term(5)) + r0s5_S.coeffs[2:order + 1] .= zero(r0s5_S.coeffs[1]) + tmp5206.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_0[3]) + tmp5206.coeffs[2:order + 1] .= zero(tmp5206.coeffs[1]) + tmp5208.coeffs[1] = constant_term(tmp5206) ^ float(constant_term(2)) + tmp5208.coeffs[2:order + 1] .= zero(tmp5208.coeffs[1]) + tmp5210.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_M) + tmp5210.coeffs[2:order + 1] .= zero(tmp5210.coeffs[1]) + tmp5212.coeffs[1] = constant_term(tmp5210) ^ float(constant_term(2)) + tmp5212.coeffs[2:order + 1] .= zero(tmp5212.coeffs[1]) + tmp5213.coeffs[1] = constant_term(0.5) * constant_term(tmp5212) + tmp5213.coeffs[2:order + 1] .= zero(tmp5213.coeffs[1]) + tmp5214.coeffs[1] = constant_term(tmp5208) + constant_term(tmp5213) + tmp5214.coeffs[2:order + 1] .= zero(tmp5214.coeffs[1]) + tmp5215.coeffs[1] = constant_term(tmp5214) / constant_term(r_p2[mo, ea]) + tmp5215.coeffs[2:order + 1] .= zero(tmp5215.coeffs[1]) + tmp5216.coeffs[1] = constant_term(5) * constant_term(tmp5215) + tmp5216.coeffs[2:order + 1] .= zero(tmp5216.coeffs[1]) + coeff0_M.coeffs[1] = constant_term(r0s2_M) - constant_term(tmp5216) + coeff0_M.coeffs[2:order + 1] .= zero(coeff0_M.coeffs[1]) + tmp5219.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_0[3]) + tmp5219.coeffs[2:order + 1] .= zero(tmp5219.coeffs[1]) + tmp5221.coeffs[1] = constant_term(tmp5219) ^ float(constant_term(2)) + tmp5221.coeffs[2:order + 1] .= zero(tmp5221.coeffs[1]) + tmp5223.coeffs[1] = constant_term(r_xy[mo, ea]) * constant_term(ρ0s_S) + tmp5223.coeffs[2:order + 1] .= zero(tmp5223.coeffs[1]) + tmp5225.coeffs[1] = constant_term(tmp5223) ^ float(constant_term(2)) + tmp5225.coeffs[2:order + 1] .= zero(tmp5225.coeffs[1]) + tmp5226.coeffs[1] = constant_term(0.5) * constant_term(tmp5225) + tmp5226.coeffs[2:order + 1] .= zero(tmp5226.coeffs[1]) + tmp5227.coeffs[1] = constant_term(tmp5221) + constant_term(tmp5226) + tmp5227.coeffs[2:order + 1] .= zero(tmp5227.coeffs[1]) + tmp5228.coeffs[1] = constant_term(tmp5227) / constant_term(r_p2[mo, ea]) + tmp5228.coeffs[2:order + 1] .= zero(tmp5228.coeffs[1]) + tmp5229.coeffs[1] = constant_term(5) * constant_term(tmp5228) + tmp5229.coeffs[2:order + 1] .= zero(tmp5229.coeffs[1]) + coeff0_S.coeffs[1] = constant_term(r0s2_S) - constant_term(tmp5229) + coeff0_S.coeffs[2:order + 1] .= zero(coeff0_S.coeffs[1]) + k_20E_div_r0s5_M.coeffs[1] = constant_term(k_20E) / constant_term(r0s5_M) + k_20E_div_r0s5_M.coeffs[2:order + 1] .= zero(k_20E_div_r0s5_M.coeffs[1]) + k_20E_div_r0s5_S.coeffs[1] = constant_term(k_20E) / constant_term(r0s5_S) + k_20E_div_r0s5_S.coeffs[2:order + 1] .= zero(k_20E_div_r0s5_S.coeffs[1]) + tmp5233.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) + tmp5233.coeffs[2:order + 1] .= zero(tmp5233.coeffs[1]) + tmp5234.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp5233) + tmp5234.coeffs[2:order + 1] .= zero(tmp5234.coeffs[1]) + a_tid_0_M_x.coeffs[1] = constant_term(tmp5234) * constant_term(X_bf[mo, ea]) + a_tid_0_M_x.coeffs[2:order + 1] .= zero(a_tid_0_M_x.coeffs[1]) + tmp5236.coeffs[1] = constant_term(ρ0s2_M) + constant_term(coeff0_M) + tmp5236.coeffs[2:order + 1] .= zero(tmp5236.coeffs[1]) + tmp5237.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp5236) + tmp5237.coeffs[2:order + 1] .= zero(tmp5237.coeffs[1]) + a_tid_0_M_y.coeffs[1] = constant_term(tmp5237) * constant_term(Y_bf[mo, ea]) + a_tid_0_M_y.coeffs[2:order + 1] .= zero(a_tid_0_M_y.coeffs[1]) + tmp5240.coeffs[1] = constant_term(2) * constant_term(z0s2_M) + tmp5240.coeffs[2:order + 1] .= zero(tmp5240.coeffs[1]) + tmp5241.coeffs[1] = constant_term(tmp5240) + constant_term(coeff0_M) + tmp5241.coeffs[2:order + 1] .= zero(tmp5241.coeffs[1]) + tmp5242.coeffs[1] = constant_term(k_20E_div_r0s5_M) * constant_term(tmp5241) + tmp5242.coeffs[2:order + 1] .= zero(tmp5242.coeffs[1]) + a_tid_0_M_z.coeffs[1] = constant_term(tmp5242) * constant_term(Z_bf[mo, ea]) + a_tid_0_M_z.coeffs[2:order + 1] .= zero(a_tid_0_M_z.coeffs[1]) + tmp5244.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) + tmp5244.coeffs[2:order + 1] .= zero(tmp5244.coeffs[1]) + tmp5245.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp5244) + tmp5245.coeffs[2:order + 1] .= zero(tmp5245.coeffs[1]) + a_tid_0_S_x.coeffs[1] = constant_term(tmp5245) * constant_term(X_bf[mo, ea]) + a_tid_0_S_x.coeffs[2:order + 1] .= zero(a_tid_0_S_x.coeffs[1]) + tmp5247.coeffs[1] = constant_term(ρ0s2_S) + constant_term(coeff0_S) + tmp5247.coeffs[2:order + 1] .= zero(tmp5247.coeffs[1]) + tmp5248.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp5247) + tmp5248.coeffs[2:order + 1] .= zero(tmp5248.coeffs[1]) + a_tid_0_S_y.coeffs[1] = constant_term(tmp5248) * constant_term(Y_bf[mo, ea]) + a_tid_0_S_y.coeffs[2:order + 1] .= zero(a_tid_0_S_y.coeffs[1]) + tmp5251.coeffs[1] = constant_term(2) * constant_term(z0s2_S) + tmp5251.coeffs[2:order + 1] .= zero(tmp5251.coeffs[1]) + tmp5252.coeffs[1] = constant_term(tmp5251) + constant_term(coeff0_S) + tmp5252.coeffs[2:order + 1] .= zero(tmp5252.coeffs[1]) + tmp5253.coeffs[1] = constant_term(k_20E_div_r0s5_S) * constant_term(tmp5252) + tmp5253.coeffs[2:order + 1] .= zero(tmp5253.coeffs[1]) + a_tid_0_S_z.coeffs[1] = constant_term(tmp5253) * constant_term(Z_bf[mo, ea]) + a_tid_0_S_z.coeffs[2:order + 1] .= zero(a_tid_0_S_z.coeffs[1]) + x1s_M.coeffs[1] = identity(constant_term(r_star_M_1[1])) + x1s_M.coeffs[2:order + 1] .= zero(x1s_M.coeffs[1]) + y1s_M.coeffs[1] = identity(constant_term(r_star_M_1[2])) + y1s_M.coeffs[2:order + 1] .= zero(y1s_M.coeffs[1]) + z1s_M.coeffs[1] = identity(constant_term(r_star_M_1[3])) + z1s_M.coeffs[2:order + 1] .= zero(z1s_M.coeffs[1]) + tmp5256.coeffs[1] = constant_term(x1s_M) ^ float(constant_term(2)) + tmp5256.coeffs[2:order + 1] .= zero(tmp5256.coeffs[1]) + tmp5258.coeffs[1] = constant_term(y1s_M) ^ float(constant_term(2)) + tmp5258.coeffs[2:order + 1] .= zero(tmp5258.coeffs[1]) + ρ1s2_M.coeffs[1] = constant_term(tmp5256) + constant_term(tmp5258) + ρ1s2_M.coeffs[2:order + 1] .= zero(ρ1s2_M.coeffs[1]) + ρ1s_M.coeffs[1] = sqrt(constant_term(ρ1s2_M)) + ρ1s_M.coeffs[2:order + 1] .= zero(ρ1s_M.coeffs[1]) + z1s2_M.coeffs[1] = constant_term(z1s_M) ^ float(constant_term(2)) + z1s2_M.coeffs[2:order + 1] .= zero(z1s2_M.coeffs[1]) + r1s2_M.coeffs[1] = constant_term(ρ1s2_M) + constant_term(z1s2_M) + r1s2_M.coeffs[2:order + 1] .= zero(r1s2_M.coeffs[1]) + r1s_M.coeffs[1] = sqrt(constant_term(r1s2_M)) + r1s_M.coeffs[2:order + 1] .= zero(r1s_M.coeffs[1]) + r1s5_M.coeffs[1] = constant_term(r1s_M) ^ float(constant_term(5)) + r1s5_M.coeffs[2:order + 1] .= zero(r1s5_M.coeffs[1]) + x1s_S.coeffs[1] = identity(constant_term(r_star_S_1[1])) + x1s_S.coeffs[2:order + 1] .= zero(x1s_S.coeffs[1]) + y1s_S.coeffs[1] = identity(constant_term(r_star_S_1[2])) + y1s_S.coeffs[2:order + 1] .= zero(y1s_S.coeffs[1]) + z1s_S.coeffs[1] = identity(constant_term(r_star_S_1[3])) + z1s_S.coeffs[2:order + 1] .= zero(z1s_S.coeffs[1]) + tmp5268.coeffs[1] = constant_term(x1s_S) ^ float(constant_term(2)) + tmp5268.coeffs[2:order + 1] .= zero(tmp5268.coeffs[1]) + tmp5270.coeffs[1] = constant_term(y1s_S) ^ float(constant_term(2)) + tmp5270.coeffs[2:order + 1] .= zero(tmp5270.coeffs[1]) + ρ1s2_S.coeffs[1] = constant_term(tmp5268) + constant_term(tmp5270) + ρ1s2_S.coeffs[2:order + 1] .= zero(ρ1s2_S.coeffs[1]) + ρ1s_S.coeffs[1] = sqrt(constant_term(ρ1s2_S)) + ρ1s_S.coeffs[2:order + 1] .= zero(ρ1s_S.coeffs[1]) + z1s2_S.coeffs[1] = constant_term(z1s_S) ^ float(constant_term(2)) + z1s2_S.coeffs[2:order + 1] .= zero(z1s2_S.coeffs[1]) + r1s2_S.coeffs[1] = constant_term(ρ1s2_S) + constant_term(z1s2_S) + r1s2_S.coeffs[2:order + 1] .= zero(r1s2_S.coeffs[1]) + r1s_S.coeffs[1] = sqrt(constant_term(r1s2_S)) + r1s_S.coeffs[2:order + 1] .= zero(r1s_S.coeffs[1]) + r1s5_S.coeffs[1] = constant_term(r1s_S) ^ float(constant_term(5)) + r1s5_S.coeffs[2:order + 1] .= zero(r1s5_S.coeffs[1]) + tmp5279.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_1[1]) + tmp5279.coeffs[2:order + 1] .= zero(tmp5279.coeffs[1]) + tmp5280.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_1[2]) + tmp5280.coeffs[2:order + 1] .= zero(tmp5280.coeffs[1]) + coeff1_1_M.coeffs[1] = constant_term(tmp5279) + constant_term(tmp5280) + coeff1_1_M.coeffs[2:order + 1] .= zero(coeff1_1_M.coeffs[1]) + tmp5282.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_1[1]) + tmp5282.coeffs[2:order + 1] .= zero(tmp5282.coeffs[1]) + tmp5283.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_1[2]) + tmp5283.coeffs[2:order + 1] .= zero(tmp5283.coeffs[1]) + coeff1_1_S.coeffs[1] = constant_term(tmp5282) + constant_term(tmp5283) + coeff1_1_S.coeffs[2:order + 1] .= zero(coeff1_1_S.coeffs[1]) + coeff2_1_M.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_M_1[3]) + coeff2_1_M.coeffs[2:order + 1] .= zero(coeff2_1_M.coeffs[1]) + coeff2_1_S.coeffs[1] = constant_term(Z_bf[mo, ea]) * constant_term(r_star_S_1[3]) + coeff2_1_S.coeffs[2:order + 1] .= zero(coeff2_1_S.coeffs[1]) + tmp5288.coeffs[1] = constant_term(10) * constant_term(coeff1_1_M) + tmp5288.coeffs[2:order + 1] .= zero(tmp5288.coeffs[1]) + tmp5289.coeffs[1] = constant_term(tmp5288) * constant_term(coeff2_1_M) + tmp5289.coeffs[2:order + 1] .= zero(tmp5289.coeffs[1]) + coeff3_1_M.coeffs[1] = constant_term(tmp5289) / constant_term(r_p2[mo, ea]) + coeff3_1_M.coeffs[2:order + 1] .= zero(coeff3_1_M.coeffs[1]) + tmp5292.coeffs[1] = constant_term(10) * constant_term(coeff1_1_S) + tmp5292.coeffs[2:order + 1] .= zero(tmp5292.coeffs[1]) + tmp5293.coeffs[1] = constant_term(tmp5292) * constant_term(coeff2_1_S) + tmp5293.coeffs[2:order + 1] .= zero(tmp5293.coeffs[1]) + coeff3_1_S.coeffs[1] = constant_term(tmp5293) / constant_term(r_p2[mo, ea]) + coeff3_1_S.coeffs[2:order + 1] .= zero(coeff3_1_S.coeffs[1]) + k_21E_div_r1s5_M.coeffs[1] = constant_term(k_21E) / constant_term(r1s5_M) + k_21E_div_r1s5_M.coeffs[2:order + 1] .= zero(k_21E_div_r1s5_M.coeffs[1]) + k_21E_div_r1s5_S.coeffs[1] = constant_term(k_21E) / constant_term(r1s5_S) + k_21E_div_r1s5_S.coeffs[2:order + 1] .= zero(k_21E_div_r1s5_S.coeffs[1]) + tmp5298.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) + tmp5298.coeffs[2:order + 1] .= zero(tmp5298.coeffs[1]) + tmp5299.coeffs[1] = constant_term(tmp5298) * constant_term(r_star_M_1[1]) + tmp5299.coeffs[2:order + 1] .= zero(tmp5299.coeffs[1]) + tmp5300.coeffs[1] = constant_term(coeff3_1_M) * constant_term(X_bf[mo, ea]) + tmp5300.coeffs[2:order + 1] .= zero(tmp5300.coeffs[1]) + tmp5301.coeffs[1] = constant_term(tmp5299) - constant_term(tmp5300) + tmp5301.coeffs[2:order + 1] .= zero(tmp5301.coeffs[1]) + a_tid_1_M_x.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp5301) + a_tid_1_M_x.coeffs[2:order + 1] .= zero(a_tid_1_M_x.coeffs[1]) + tmp5304.coeffs[1] = constant_term(2) * constant_term(coeff2_1_M) + tmp5304.coeffs[2:order + 1] .= zero(tmp5304.coeffs[1]) + tmp5305.coeffs[1] = constant_term(tmp5304) * constant_term(r_star_M_1[2]) + tmp5305.coeffs[2:order + 1] .= zero(tmp5305.coeffs[1]) + tmp5306.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Y_bf[mo, ea]) + tmp5306.coeffs[2:order + 1] .= zero(tmp5306.coeffs[1]) + tmp5307.coeffs[1] = constant_term(tmp5305) - constant_term(tmp5306) + tmp5307.coeffs[2:order + 1] .= zero(tmp5307.coeffs[1]) + a_tid_1_M_y.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp5307) + a_tid_1_M_y.coeffs[2:order + 1] .= zero(a_tid_1_M_y.coeffs[1]) + tmp5310.coeffs[1] = constant_term(2) * constant_term(coeff1_1_M) + tmp5310.coeffs[2:order + 1] .= zero(tmp5310.coeffs[1]) + tmp5311.coeffs[1] = constant_term(tmp5310) * constant_term(r_star_M_1[3]) + tmp5311.coeffs[2:order + 1] .= zero(tmp5311.coeffs[1]) + tmp5312.coeffs[1] = constant_term(coeff3_1_M) * constant_term(Z_bf[mo, ea]) + tmp5312.coeffs[2:order + 1] .= zero(tmp5312.coeffs[1]) + tmp5313.coeffs[1] = constant_term(tmp5311) - constant_term(tmp5312) + tmp5313.coeffs[2:order + 1] .= zero(tmp5313.coeffs[1]) + a_tid_1_M_z.coeffs[1] = constant_term(k_21E_div_r1s5_M) * constant_term(tmp5313) + a_tid_1_M_z.coeffs[2:order + 1] .= zero(a_tid_1_M_z.coeffs[1]) + tmp5316.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) + tmp5316.coeffs[2:order + 1] .= zero(tmp5316.coeffs[1]) + tmp5317.coeffs[1] = constant_term(tmp5316) * constant_term(r_star_S_1[1]) + tmp5317.coeffs[2:order + 1] .= zero(tmp5317.coeffs[1]) + tmp5318.coeffs[1] = constant_term(coeff3_1_S) * constant_term(X_bf[mo, ea]) + tmp5318.coeffs[2:order + 1] .= zero(tmp5318.coeffs[1]) + tmp5319.coeffs[1] = constant_term(tmp5317) - constant_term(tmp5318) + tmp5319.coeffs[2:order + 1] .= zero(tmp5319.coeffs[1]) + a_tid_1_S_x.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp5319) + a_tid_1_S_x.coeffs[2:order + 1] .= zero(a_tid_1_S_x.coeffs[1]) + tmp5322.coeffs[1] = constant_term(2) * constant_term(coeff2_1_S) + tmp5322.coeffs[2:order + 1] .= zero(tmp5322.coeffs[1]) + tmp5323.coeffs[1] = constant_term(tmp5322) * constant_term(r_star_S_1[2]) + tmp5323.coeffs[2:order + 1] .= zero(tmp5323.coeffs[1]) + tmp5324.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Y_bf[mo, ea]) + tmp5324.coeffs[2:order + 1] .= zero(tmp5324.coeffs[1]) + tmp5325.coeffs[1] = constant_term(tmp5323) - constant_term(tmp5324) + tmp5325.coeffs[2:order + 1] .= zero(tmp5325.coeffs[1]) + a_tid_1_S_y.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp5325) + a_tid_1_S_y.coeffs[2:order + 1] .= zero(a_tid_1_S_y.coeffs[1]) + tmp5328.coeffs[1] = constant_term(2) * constant_term(coeff1_1_S) + tmp5328.coeffs[2:order + 1] .= zero(tmp5328.coeffs[1]) + tmp5329.coeffs[1] = constant_term(tmp5328) * constant_term(r_star_S_1[3]) + tmp5329.coeffs[2:order + 1] .= zero(tmp5329.coeffs[1]) + tmp5330.coeffs[1] = constant_term(coeff3_1_S) * constant_term(Z_bf[mo, ea]) + tmp5330.coeffs[2:order + 1] .= zero(tmp5330.coeffs[1]) + tmp5331.coeffs[1] = constant_term(tmp5329) - constant_term(tmp5330) + tmp5331.coeffs[2:order + 1] .= zero(tmp5331.coeffs[1]) + a_tid_1_S_z.coeffs[1] = constant_term(k_21E_div_r1s5_S) * constant_term(tmp5331) + a_tid_1_S_z.coeffs[2:order + 1] .= zero(a_tid_1_S_z.coeffs[1]) + x2s_M.coeffs[1] = identity(constant_term(r_star_M_2[1])) + x2s_M.coeffs[2:order + 1] .= zero(x2s_M.coeffs[1]) + y2s_M.coeffs[1] = identity(constant_term(r_star_M_2[2])) + y2s_M.coeffs[2:order + 1] .= zero(y2s_M.coeffs[1]) + z2s_M.coeffs[1] = identity(constant_term(r_star_M_2[3])) + z2s_M.coeffs[2:order + 1] .= zero(z2s_M.coeffs[1]) + tmp5334.coeffs[1] = constant_term(x2s_M) ^ float(constant_term(2)) + tmp5334.coeffs[2:order + 1] .= zero(tmp5334.coeffs[1]) + tmp5336.coeffs[1] = constant_term(y2s_M) ^ float(constant_term(2)) + tmp5336.coeffs[2:order + 1] .= zero(tmp5336.coeffs[1]) + ρ2s2_M.coeffs[1] = constant_term(tmp5334) + constant_term(tmp5336) + ρ2s2_M.coeffs[2:order + 1] .= zero(ρ2s2_M.coeffs[1]) + ρ2s_M.coeffs[1] = sqrt(constant_term(ρ2s2_M)) + ρ2s_M.coeffs[2:order + 1] .= zero(ρ2s_M.coeffs[1]) + z2s2_M.coeffs[1] = constant_term(z2s_M) ^ float(constant_term(2)) + z2s2_M.coeffs[2:order + 1] .= zero(z2s2_M.coeffs[1]) + r2s2_M.coeffs[1] = constant_term(ρ2s2_M) + constant_term(z2s2_M) + r2s2_M.coeffs[2:order + 1] .= zero(r2s2_M.coeffs[1]) + r2s_M.coeffs[1] = sqrt(constant_term(r2s2_M)) + r2s_M.coeffs[2:order + 1] .= zero(r2s_M.coeffs[1]) + r2s5_M.coeffs[1] = constant_term(r2s_M) ^ float(constant_term(5)) + r2s5_M.coeffs[2:order + 1] .= zero(r2s5_M.coeffs[1]) + x2s_S.coeffs[1] = identity(constant_term(r_star_S_2[1])) + x2s_S.coeffs[2:order + 1] .= zero(x2s_S.coeffs[1]) + y2s_S.coeffs[1] = identity(constant_term(r_star_S_2[2])) + y2s_S.coeffs[2:order + 1] .= zero(y2s_S.coeffs[1]) + z2s_S.coeffs[1] = identity(constant_term(r_star_S_2[3])) + z2s_S.coeffs[2:order + 1] .= zero(z2s_S.coeffs[1]) + tmp5346.coeffs[1] = constant_term(x2s_S) ^ float(constant_term(2)) + tmp5346.coeffs[2:order + 1] .= zero(tmp5346.coeffs[1]) + tmp5348.coeffs[1] = constant_term(y2s_S) ^ float(constant_term(2)) + tmp5348.coeffs[2:order + 1] .= zero(tmp5348.coeffs[1]) + ρ2s2_S.coeffs[1] = constant_term(tmp5346) + constant_term(tmp5348) + ρ2s2_S.coeffs[2:order + 1] .= zero(ρ2s2_S.coeffs[1]) + ρ2s_S.coeffs[1] = sqrt(constant_term(ρ2s2_S)) + ρ2s_S.coeffs[2:order + 1] .= zero(ρ2s_S.coeffs[1]) + z2s2_S.coeffs[1] = constant_term(z2s_S) ^ float(constant_term(2)) + z2s2_S.coeffs[2:order + 1] .= zero(z2s2_S.coeffs[1]) + r2s2_S.coeffs[1] = constant_term(ρ2s2_S) + constant_term(z2s2_S) + r2s2_S.coeffs[2:order + 1] .= zero(r2s2_S.coeffs[1]) + r2s_S.coeffs[1] = sqrt(constant_term(r2s2_S)) + r2s_S.coeffs[2:order + 1] .= zero(r2s_S.coeffs[1]) + r2s5_S.coeffs[1] = constant_term(r2s_S) ^ float(constant_term(5)) + r2s5_S.coeffs[2:order + 1] .= zero(r2s5_S.coeffs[1]) + tmp5357.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_M_2[1]) + tmp5357.coeffs[2:order + 1] .= zero(tmp5357.coeffs[1]) + tmp5358.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_M_2[2]) + tmp5358.coeffs[2:order + 1] .= zero(tmp5358.coeffs[1]) + coeff1_2_M.coeffs[1] = constant_term(tmp5357) + constant_term(tmp5358) + coeff1_2_M.coeffs[2:order + 1] .= zero(coeff1_2_M.coeffs[1]) + tmp5360.coeffs[1] = constant_term(X_bf[mo, ea]) * constant_term(r_star_S_2[1]) + tmp5360.coeffs[2:order + 1] .= zero(tmp5360.coeffs[1]) + tmp5361.coeffs[1] = constant_term(Y_bf[mo, ea]) * constant_term(r_star_S_2[2]) + tmp5361.coeffs[2:order + 1] .= zero(tmp5361.coeffs[1]) + coeff1_2_S.coeffs[1] = constant_term(tmp5360) + constant_term(tmp5361) + coeff1_2_S.coeffs[2:order + 1] .= zero(coeff1_2_S.coeffs[1]) + tmp5365.coeffs[1] = constant_term(coeff1_2_M) ^ float(constant_term(2)) + tmp5365.coeffs[2:order + 1] .= zero(tmp5365.coeffs[1]) + tmp5368.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) + tmp5368.coeffs[2:order + 1] .= zero(tmp5368.coeffs[1]) + tmp5369.coeffs[1] = constant_term(0.5) * constant_term(tmp5368) + tmp5369.coeffs[2:order + 1] .= zero(tmp5369.coeffs[1]) + tmp5370.coeffs[1] = constant_term(tmp5369) * constant_term(ρ2s2_M) + tmp5370.coeffs[2:order + 1] .= zero(tmp5370.coeffs[1]) + tmp5371.coeffs[1] = constant_term(tmp5365) - constant_term(tmp5370) + tmp5371.coeffs[2:order + 1] .= zero(tmp5371.coeffs[1]) + tmp5372.coeffs[1] = constant_term(5) * constant_term(tmp5371) + tmp5372.coeffs[2:order + 1] .= zero(tmp5372.coeffs[1]) + coeff3_2_M.coeffs[1] = constant_term(tmp5372) / constant_term(r_p2[mo, ea]) + coeff3_2_M.coeffs[2:order + 1] .= zero(coeff3_2_M.coeffs[1]) + tmp5376.coeffs[1] = constant_term(coeff1_2_S) ^ float(constant_term(2)) + tmp5376.coeffs[2:order + 1] .= zero(tmp5376.coeffs[1]) + tmp5379.coeffs[1] = constant_term(r_xy[mo, ea]) ^ float(constant_term(2)) + tmp5379.coeffs[2:order + 1] .= zero(tmp5379.coeffs[1]) + tmp5380.coeffs[1] = constant_term(0.5) * constant_term(tmp5379) + tmp5380.coeffs[2:order + 1] .= zero(tmp5380.coeffs[1]) + tmp5381.coeffs[1] = constant_term(tmp5380) * constant_term(ρ2s2_S) + tmp5381.coeffs[2:order + 1] .= zero(tmp5381.coeffs[1]) + tmp5382.coeffs[1] = constant_term(tmp5376) - constant_term(tmp5381) + tmp5382.coeffs[2:order + 1] .= zero(tmp5382.coeffs[1]) + tmp5383.coeffs[1] = constant_term(5) * constant_term(tmp5382) + tmp5383.coeffs[2:order + 1] .= zero(tmp5383.coeffs[1]) + coeff3_2_S.coeffs[1] = constant_term(tmp5383) / constant_term(r_p2[mo, ea]) + coeff3_2_S.coeffs[2:order + 1] .= zero(coeff3_2_S.coeffs[1]) + k_22E_div_r2s5_M.coeffs[1] = constant_term(k_22E) / constant_term(r2s5_M) + k_22E_div_r2s5_M.coeffs[2:order + 1] .= zero(k_22E_div_r2s5_M.coeffs[1]) + k_22E_div_r2s5_S.coeffs[1] = constant_term(k_22E) / constant_term(r2s5_S) + k_22E_div_r2s5_S.coeffs[2:order + 1] .= zero(k_22E_div_r2s5_S.coeffs[1]) + tmp5388.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) + tmp5388.coeffs[2:order + 1] .= zero(tmp5388.coeffs[1]) + tmp5389.coeffs[1] = constant_term(tmp5388) * constant_term(r_star_M_2[1]) + tmp5389.coeffs[2:order + 1] .= zero(tmp5389.coeffs[1]) + tmp5390.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) + tmp5390.coeffs[2:order + 1] .= zero(tmp5390.coeffs[1]) + tmp5391.coeffs[1] = constant_term(tmp5390) * constant_term(X_bf[mo, ea]) + tmp5391.coeffs[2:order + 1] .= zero(tmp5391.coeffs[1]) + tmp5392.coeffs[1] = constant_term(tmp5389) - constant_term(tmp5391) + tmp5392.coeffs[2:order + 1] .= zero(tmp5392.coeffs[1]) + a_tid_2_M_x.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp5392) + a_tid_2_M_x.coeffs[2:order + 1] .= zero(a_tid_2_M_x.coeffs[1]) + tmp5395.coeffs[1] = constant_term(2) * constant_term(coeff1_2_M) + tmp5395.coeffs[2:order + 1] .= zero(tmp5395.coeffs[1]) + tmp5396.coeffs[1] = constant_term(tmp5395) * constant_term(r_star_M_2[2]) + tmp5396.coeffs[2:order + 1] .= zero(tmp5396.coeffs[1]) + tmp5397.coeffs[1] = constant_term(ρ2s2_M) + constant_term(coeff3_2_M) + tmp5397.coeffs[2:order + 1] .= zero(tmp5397.coeffs[1]) + tmp5398.coeffs[1] = constant_term(tmp5397) * constant_term(Y_bf[mo, ea]) + tmp5398.coeffs[2:order + 1] .= zero(tmp5398.coeffs[1]) + tmp5399.coeffs[1] = constant_term(tmp5396) - constant_term(tmp5398) + tmp5399.coeffs[2:order + 1] .= zero(tmp5399.coeffs[1]) + a_tid_2_M_y.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp5399) + a_tid_2_M_y.coeffs[2:order + 1] .= zero(a_tid_2_M_y.coeffs[1]) + tmp5401.coeffs[1] = -(constant_term(coeff3_2_M)) + tmp5401.coeffs[2:order + 1] .= zero(tmp5401.coeffs[1]) + tmp5402.coeffs[1] = constant_term(k_22E_div_r2s5_M) * constant_term(tmp5401) + tmp5402.coeffs[2:order + 1] .= zero(tmp5402.coeffs[1]) + a_tid_2_M_z.coeffs[1] = constant_term(tmp5402) * constant_term(Z_bf[mo, ea]) + a_tid_2_M_z.coeffs[2:order + 1] .= zero(a_tid_2_M_z.coeffs[1]) + tmp5405.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) + tmp5405.coeffs[2:order + 1] .= zero(tmp5405.coeffs[1]) + tmp5406.coeffs[1] = constant_term(tmp5405) * constant_term(r_star_S_2[1]) + tmp5406.coeffs[2:order + 1] .= zero(tmp5406.coeffs[1]) + tmp5407.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) + tmp5407.coeffs[2:order + 1] .= zero(tmp5407.coeffs[1]) + tmp5408.coeffs[1] = constant_term(tmp5407) * constant_term(X_bf[mo, ea]) + tmp5408.coeffs[2:order + 1] .= zero(tmp5408.coeffs[1]) + tmp5409.coeffs[1] = constant_term(tmp5406) - constant_term(tmp5408) + tmp5409.coeffs[2:order + 1] .= zero(tmp5409.coeffs[1]) + a_tid_2_S_x.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp5409) + a_tid_2_S_x.coeffs[2:order + 1] .= zero(a_tid_2_S_x.coeffs[1]) + tmp5412.coeffs[1] = constant_term(2) * constant_term(coeff1_2_S) + tmp5412.coeffs[2:order + 1] .= zero(tmp5412.coeffs[1]) + tmp5413.coeffs[1] = constant_term(tmp5412) * constant_term(r_star_S_2[2]) + tmp5413.coeffs[2:order + 1] .= zero(tmp5413.coeffs[1]) + tmp5414.coeffs[1] = constant_term(ρ2s2_S) + constant_term(coeff3_2_S) + tmp5414.coeffs[2:order + 1] .= zero(tmp5414.coeffs[1]) + tmp5415.coeffs[1] = constant_term(tmp5414) * constant_term(Y_bf[mo, ea]) + tmp5415.coeffs[2:order + 1] .= zero(tmp5415.coeffs[1]) + tmp5416.coeffs[1] = constant_term(tmp5413) - constant_term(tmp5415) + tmp5416.coeffs[2:order + 1] .= zero(tmp5416.coeffs[1]) + a_tid_2_S_y.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp5416) + a_tid_2_S_y.coeffs[2:order + 1] .= zero(a_tid_2_S_y.coeffs[1]) + tmp5418.coeffs[1] = -(constant_term(coeff3_2_S)) + tmp5418.coeffs[2:order + 1] .= zero(tmp5418.coeffs[1]) + tmp5419.coeffs[1] = constant_term(k_22E_div_r2s5_S) * constant_term(tmp5418) + tmp5419.coeffs[2:order + 1] .= zero(tmp5419.coeffs[1]) + a_tid_2_S_z.coeffs[1] = constant_term(tmp5419) * constant_term(Z_bf[mo, ea]) + a_tid_2_S_z.coeffs[2:order + 1] .= zero(a_tid_2_S_z.coeffs[1]) + tmp5421.coeffs[1] = constant_term(RE_au) / constant_term(r_p1d2[mo, ea]) + tmp5421.coeffs[2:order + 1] .= zero(tmp5421.coeffs[1]) + RE_div_r_p5.coeffs[1] = constant_term(tmp5421) ^ float(constant_term(5)) + RE_div_r_p5.coeffs[2:order + 1] .= zero(RE_div_r_p5.coeffs[1]) + aux_tidacc.coeffs[1] = constant_term(tid_num_coeff) * constant_term(RE_div_r_p5) + aux_tidacc.coeffs[2:order + 1] .= zero(aux_tidacc.coeffs[1]) + a_tidal_coeff_M.coeffs[1] = constant_term(μ[mo]) * constant_term(aux_tidacc) + a_tidal_coeff_M.coeffs[2:order + 1] .= zero(a_tidal_coeff_M.coeffs[1]) + a_tidal_coeff_S.coeffs[1] = constant_term(μ[su]) * constant_term(aux_tidacc) + a_tidal_coeff_S.coeffs[2:order + 1] .= zero(a_tidal_coeff_S.coeffs[1]) + tmp5427.coeffs[1] = constant_term(a_tid_0_M_x) + constant_term(a_tid_1_M_x) + tmp5427.coeffs[2:order + 1] .= zero(tmp5427.coeffs[1]) + tmp5428.coeffs[1] = constant_term(tmp5427) + constant_term(a_tid_2_M_x) + tmp5428.coeffs[2:order + 1] .= zero(tmp5428.coeffs[1]) + tmp5429.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp5428) + tmp5429.coeffs[2:order + 1] .= zero(tmp5429.coeffs[1]) + tmp5430.coeffs[1] = constant_term(a_tid_0_S_x) + constant_term(a_tid_1_S_x) + tmp5430.coeffs[2:order + 1] .= zero(tmp5430.coeffs[1]) + tmp5431.coeffs[1] = constant_term(tmp5430) + constant_term(a_tid_2_S_x) + tmp5431.coeffs[2:order + 1] .= zero(tmp5431.coeffs[1]) + tmp5432.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp5431) + tmp5432.coeffs[2:order + 1] .= zero(tmp5432.coeffs[1]) + a_tidal_tod_x.coeffs[1] = constant_term(tmp5429) + constant_term(tmp5432) + a_tidal_tod_x.coeffs[2:order + 1] .= zero(a_tidal_tod_x.coeffs[1]) + tmp5434.coeffs[1] = constant_term(a_tid_0_M_y) + constant_term(a_tid_1_M_y) + tmp5434.coeffs[2:order + 1] .= zero(tmp5434.coeffs[1]) + tmp5435.coeffs[1] = constant_term(tmp5434) + constant_term(a_tid_2_M_y) + tmp5435.coeffs[2:order + 1] .= zero(tmp5435.coeffs[1]) + tmp5436.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp5435) + tmp5436.coeffs[2:order + 1] .= zero(tmp5436.coeffs[1]) + tmp5437.coeffs[1] = constant_term(a_tid_0_S_y) + constant_term(a_tid_1_S_y) + tmp5437.coeffs[2:order + 1] .= zero(tmp5437.coeffs[1]) + tmp5438.coeffs[1] = constant_term(tmp5437) + constant_term(a_tid_2_S_y) + tmp5438.coeffs[2:order + 1] .= zero(tmp5438.coeffs[1]) + tmp5439.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp5438) + tmp5439.coeffs[2:order + 1] .= zero(tmp5439.coeffs[1]) + a_tidal_tod_y.coeffs[1] = constant_term(tmp5436) + constant_term(tmp5439) + a_tidal_tod_y.coeffs[2:order + 1] .= zero(a_tidal_tod_y.coeffs[1]) + tmp5441.coeffs[1] = constant_term(a_tid_0_M_z) + constant_term(a_tid_1_M_z) + tmp5441.coeffs[2:order + 1] .= zero(tmp5441.coeffs[1]) + tmp5442.coeffs[1] = constant_term(tmp5441) + constant_term(a_tid_2_M_z) + tmp5442.coeffs[2:order + 1] .= zero(tmp5442.coeffs[1]) + tmp5443.coeffs[1] = constant_term(a_tidal_coeff_M) * constant_term(tmp5442) + tmp5443.coeffs[2:order + 1] .= zero(tmp5443.coeffs[1]) + tmp5444.coeffs[1] = constant_term(a_tid_0_S_z) + constant_term(a_tid_1_S_z) + tmp5444.coeffs[2:order + 1] .= zero(tmp5444.coeffs[1]) + tmp5445.coeffs[1] = constant_term(tmp5444) + constant_term(a_tid_2_S_z) + tmp5445.coeffs[2:order + 1] .= zero(tmp5445.coeffs[1]) + tmp5446.coeffs[1] = constant_term(a_tidal_coeff_S) * constant_term(tmp5445) + tmp5446.coeffs[2:order + 1] .= zero(tmp5446.coeffs[1]) + a_tidal_tod_z.coeffs[1] = constant_term(tmp5443) + constant_term(tmp5446) + a_tidal_tod_z.coeffs[2:order + 1] .= zero(a_tidal_tod_z.coeffs[1]) + tmp5448.coeffs[1] = constant_term(RotM[1, 1, ea]) * constant_term(a_tidal_tod_x) + tmp5448.coeffs[2:order + 1] .= zero(tmp5448.coeffs[1]) + tmp5449.coeffs[1] = constant_term(RotM[2, 1, ea]) * constant_term(a_tidal_tod_y) + tmp5449.coeffs[2:order + 1] .= zero(tmp5449.coeffs[1]) + tmp5450.coeffs[1] = constant_term(tmp5448) + constant_term(tmp5449) + tmp5450.coeffs[2:order + 1] .= zero(tmp5450.coeffs[1]) + tmp5451.coeffs[1] = constant_term(RotM[3, 1, ea]) * constant_term(a_tidal_tod_z) + tmp5451.coeffs[2:order + 1] .= zero(tmp5451.coeffs[1]) + a_tidal_x.coeffs[1] = constant_term(tmp5450) + constant_term(tmp5451) + a_tidal_x.coeffs[2:order + 1] .= zero(a_tidal_x.coeffs[1]) + tmp5453.coeffs[1] = constant_term(RotM[1, 2, ea]) * constant_term(a_tidal_tod_x) + tmp5453.coeffs[2:order + 1] .= zero(tmp5453.coeffs[1]) + tmp5454.coeffs[1] = constant_term(RotM[2, 2, ea]) * constant_term(a_tidal_tod_y) + tmp5454.coeffs[2:order + 1] .= zero(tmp5454.coeffs[1]) + tmp5455.coeffs[1] = constant_term(tmp5453) + constant_term(tmp5454) + tmp5455.coeffs[2:order + 1] .= zero(tmp5455.coeffs[1]) + tmp5456.coeffs[1] = constant_term(RotM[3, 2, ea]) * constant_term(a_tidal_tod_z) + tmp5456.coeffs[2:order + 1] .= zero(tmp5456.coeffs[1]) + a_tidal_y.coeffs[1] = constant_term(tmp5455) + constant_term(tmp5456) + a_tidal_y.coeffs[2:order + 1] .= zero(a_tidal_y.coeffs[1]) + tmp5458.coeffs[1] = constant_term(RotM[1, 3, ea]) * constant_term(a_tidal_tod_x) + tmp5458.coeffs[2:order + 1] .= zero(tmp5458.coeffs[1]) + tmp5459.coeffs[1] = constant_term(RotM[2, 3, ea]) * constant_term(a_tidal_tod_y) + tmp5459.coeffs[2:order + 1] .= zero(tmp5459.coeffs[1]) + tmp5460.coeffs[1] = constant_term(tmp5458) + constant_term(tmp5459) + tmp5460.coeffs[2:order + 1] .= zero(tmp5460.coeffs[1]) + tmp5461.coeffs[1] = constant_term(RotM[3, 3, ea]) * constant_term(a_tidal_tod_z) + tmp5461.coeffs[2:order + 1] .= zero(tmp5461.coeffs[1]) + a_tidal_z.coeffs[1] = constant_term(tmp5460) + constant_term(tmp5461) + a_tidal_z.coeffs[2:order + 1] .= zero(a_tidal_z.coeffs[1]) + accX_mo_tides.coeffs[1] = constant_term(accX[mo]) + constant_term(a_tidal_x) + accX_mo_tides.coeffs[2:order + 1] .= zero(accX_mo_tides.coeffs[1]) + accY_mo_tides.coeffs[1] = constant_term(accY[mo]) + constant_term(a_tidal_y) + accY_mo_tides.coeffs[2:order + 1] .= zero(accY_mo_tides.coeffs[1]) + accZ_mo_tides.coeffs[1] = constant_term(accZ[mo]) + constant_term(a_tidal_z) + accZ_mo_tides.coeffs[2:order + 1] .= zero(accZ_mo_tides.coeffs[1]) + (accX[mo]).coeffs[1] = identity(constant_term(accX_mo_tides)) + (accX[mo]).coeffs[2:order + 1] .= zero((accX[mo]).coeffs[1]) + (accY[mo]).coeffs[1] = identity(constant_term(accY_mo_tides)) + (accY[mo]).coeffs[2:order + 1] .= zero((accY[mo]).coeffs[1]) + (accZ[mo]).coeffs[1] = identity(constant_term(accZ_mo_tides)) + (accZ[mo]).coeffs[2:order + 1] .= zero((accZ[mo]).coeffs[1]) + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:984 =# Threads.@threads for i = 1:N_ext + (dq[3 * (N + i) - 2]).coeffs[1] = constant_term(postNewtonX[i]) + constant_term(accX[i]) + (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + (dq[3 * (N + i) - 1]).coeffs[1] = constant_term(postNewtonY[i]) + constant_term(accY[i]) + (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + (dq[3 * (N + i)]).coeffs[1] = constant_term(postNewtonZ[i]) + constant_term(accZ[i]) + (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) + end + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:989 =# Threads.@threads for i = N_ext + 1:N + (dq[3 * (N + i) - 2]).coeffs[1] = identity(constant_term(postNewtonX[i])) + (dq[3 * (N + i) - 2]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 2]).coeffs[1]) + (dq[3 * (N + i) - 1]).coeffs[1] = identity(constant_term(postNewtonY[i])) + (dq[3 * (N + i) - 1]).coeffs[2:order + 1] .= zero((dq[3 * (N + i) - 1]).coeffs[1]) + (dq[3 * (N + i)]).coeffs[1] = identity(constant_term(postNewtonZ[i])) + (dq[3 * (N + i)]).coeffs[2:order + 1] .= zero((dq[3 * (N + i)]).coeffs[1]) + end + tmp5469.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(q[6N + 4]) + tmp5469.coeffs[2:order + 1] .= zero(tmp5469.coeffs[1]) + tmp5470.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(q[6N + 5]) + tmp5470.coeffs[2:order + 1] .= zero(tmp5470.coeffs[1]) + tmp5471.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(q[6N + 6]) + tmp5471.coeffs[2:order + 1] .= zero(tmp5471.coeffs[1]) + tmp5472.coeffs[1] = constant_term(tmp5470) + constant_term(tmp5471) + tmp5472.coeffs[2:order + 1] .= zero(tmp5472.coeffs[1]) + Iω_x.coeffs[1] = constant_term(tmp5469) + constant_term(tmp5472) + Iω_x.coeffs[2:order + 1] .= zero(Iω_x.coeffs[1]) + tmp5474.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(q[6N + 4]) + tmp5474.coeffs[2:order + 1] .= zero(tmp5474.coeffs[1]) + tmp5475.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(q[6N + 5]) + tmp5475.coeffs[2:order + 1] .= zero(tmp5475.coeffs[1]) + tmp5476.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(q[6N + 6]) + tmp5476.coeffs[2:order + 1] .= zero(tmp5476.coeffs[1]) + tmp5477.coeffs[1] = constant_term(tmp5475) + constant_term(tmp5476) + tmp5477.coeffs[2:order + 1] .= zero(tmp5477.coeffs[1]) + Iω_y.coeffs[1] = constant_term(tmp5474) + constant_term(tmp5477) + Iω_y.coeffs[2:order + 1] .= zero(Iω_y.coeffs[1]) + tmp5479.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(q[6N + 4]) + tmp5479.coeffs[2:order + 1] .= zero(tmp5479.coeffs[1]) + tmp5480.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(q[6N + 5]) + tmp5480.coeffs[2:order + 1] .= zero(tmp5480.coeffs[1]) + tmp5481.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(q[6N + 6]) + tmp5481.coeffs[2:order + 1] .= zero(tmp5481.coeffs[1]) + tmp5482.coeffs[1] = constant_term(tmp5480) + constant_term(tmp5481) + tmp5482.coeffs[2:order + 1] .= zero(tmp5482.coeffs[1]) + Iω_z.coeffs[1] = constant_term(tmp5479) + constant_term(tmp5482) + Iω_z.coeffs[2:order + 1] .= zero(Iω_z.coeffs[1]) + tmp5484.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_z) + tmp5484.coeffs[2:order + 1] .= zero(tmp5484.coeffs[1]) + tmp5485.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_y) + tmp5485.coeffs[2:order + 1] .= zero(tmp5485.coeffs[1]) + ωxIω_x.coeffs[1] = constant_term(tmp5484) - constant_term(tmp5485) + ωxIω_x.coeffs[2:order + 1] .= zero(ωxIω_x.coeffs[1]) + tmp5487.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Iω_x) + tmp5487.coeffs[2:order + 1] .= zero(tmp5487.coeffs[1]) + tmp5488.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_z) + tmp5488.coeffs[2:order + 1] .= zero(tmp5488.coeffs[1]) + ωxIω_y.coeffs[1] = constant_term(tmp5487) - constant_term(tmp5488) + ωxIω_y.coeffs[2:order + 1] .= zero(ωxIω_y.coeffs[1]) + tmp5490.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Iω_y) + tmp5490.coeffs[2:order + 1] .= zero(tmp5490.coeffs[1]) + tmp5491.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Iω_x) + tmp5491.coeffs[2:order + 1] .= zero(tmp5491.coeffs[1]) + ωxIω_z.coeffs[1] = constant_term(tmp5490) - constant_term(tmp5491) + ωxIω_z.coeffs[2:order + 1] .= zero(ωxIω_z.coeffs[1]) + tmp5493.coeffs[1] = constant_term(dI_m_t[1, 1]) * constant_term(q[6N + 4]) + tmp5493.coeffs[2:order + 1] .= zero(tmp5493.coeffs[1]) + tmp5494.coeffs[1] = constant_term(dI_m_t[1, 2]) * constant_term(q[6N + 5]) + tmp5494.coeffs[2:order + 1] .= zero(tmp5494.coeffs[1]) + tmp5495.coeffs[1] = constant_term(dI_m_t[1, 3]) * constant_term(q[6N + 6]) + tmp5495.coeffs[2:order + 1] .= zero(tmp5495.coeffs[1]) + tmp5496.coeffs[1] = constant_term(tmp5494) + constant_term(tmp5495) + tmp5496.coeffs[2:order + 1] .= zero(tmp5496.coeffs[1]) + dIω_x.coeffs[1] = constant_term(tmp5493) + constant_term(tmp5496) + dIω_x.coeffs[2:order + 1] .= zero(dIω_x.coeffs[1]) + tmp5498.coeffs[1] = constant_term(dI_m_t[2, 1]) * constant_term(q[6N + 4]) + tmp5498.coeffs[2:order + 1] .= zero(tmp5498.coeffs[1]) + tmp5499.coeffs[1] = constant_term(dI_m_t[2, 2]) * constant_term(q[6N + 5]) + tmp5499.coeffs[2:order + 1] .= zero(tmp5499.coeffs[1]) + tmp5500.coeffs[1] = constant_term(dI_m_t[2, 3]) * constant_term(q[6N + 6]) + tmp5500.coeffs[2:order + 1] .= zero(tmp5500.coeffs[1]) + tmp5501.coeffs[1] = constant_term(tmp5499) + constant_term(tmp5500) + tmp5501.coeffs[2:order + 1] .= zero(tmp5501.coeffs[1]) + dIω_y.coeffs[1] = constant_term(tmp5498) + constant_term(tmp5501) + dIω_y.coeffs[2:order + 1] .= zero(dIω_y.coeffs[1]) + tmp5503.coeffs[1] = constant_term(dI_m_t[3, 1]) * constant_term(q[6N + 4]) + tmp5503.coeffs[2:order + 1] .= zero(tmp5503.coeffs[1]) + tmp5504.coeffs[1] = constant_term(dI_m_t[3, 2]) * constant_term(q[6N + 5]) + tmp5504.coeffs[2:order + 1] .= zero(tmp5504.coeffs[1]) + tmp5505.coeffs[1] = constant_term(dI_m_t[3, 3]) * constant_term(q[6N + 6]) + tmp5505.coeffs[2:order + 1] .= zero(tmp5505.coeffs[1]) + tmp5506.coeffs[1] = constant_term(tmp5504) + constant_term(tmp5505) + tmp5506.coeffs[2:order + 1] .= zero(tmp5506.coeffs[1]) + dIω_z.coeffs[1] = constant_term(tmp5503) + constant_term(tmp5506) + dIω_z.coeffs[2:order + 1] .= zero(dIω_z.coeffs[1]) + er_EM_I_1.coeffs[1] = constant_term(X[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_1.coeffs[2:order + 1] .= zero(er_EM_I_1.coeffs[1]) + er_EM_I_2.coeffs[1] = constant_term(Y[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_2.coeffs[2:order + 1] .= zero(er_EM_I_2.coeffs[1]) + er_EM_I_3.coeffs[1] = constant_term(Z[ea, mo]) / constant_term(r_p1d2[ea, mo]) + er_EM_I_3.coeffs[2:order + 1] .= zero(er_EM_I_3.coeffs[1]) + p_E_I_1.coeffs[1] = identity(constant_term(RotM[3, 1, ea])) + p_E_I_1.coeffs[2:order + 1] .= zero(p_E_I_1.coeffs[1]) + p_E_I_2.coeffs[1] = identity(constant_term(RotM[3, 2, ea])) + p_E_I_2.coeffs[2:order + 1] .= zero(p_E_I_2.coeffs[1]) + p_E_I_3.coeffs[1] = identity(constant_term(RotM[3, 3, ea])) + p_E_I_3.coeffs[2:order + 1] .= zero(p_E_I_3.coeffs[1]) + tmp5511.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(er_EM_I_1) + tmp5511.coeffs[2:order + 1] .= zero(tmp5511.coeffs[1]) + tmp5512.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(er_EM_I_2) + tmp5512.coeffs[2:order + 1] .= zero(tmp5512.coeffs[1]) + tmp5513.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(er_EM_I_3) + tmp5513.coeffs[2:order + 1] .= zero(tmp5513.coeffs[1]) + tmp5514.coeffs[1] = constant_term(tmp5512) + constant_term(tmp5513) + tmp5514.coeffs[2:order + 1] .= zero(tmp5514.coeffs[1]) + er_EM_1.coeffs[1] = constant_term(tmp5511) + constant_term(tmp5514) + er_EM_1.coeffs[2:order + 1] .= zero(er_EM_1.coeffs[1]) + tmp5516.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(er_EM_I_1) + tmp5516.coeffs[2:order + 1] .= zero(tmp5516.coeffs[1]) + tmp5517.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(er_EM_I_2) + tmp5517.coeffs[2:order + 1] .= zero(tmp5517.coeffs[1]) + tmp5518.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(er_EM_I_3) + tmp5518.coeffs[2:order + 1] .= zero(tmp5518.coeffs[1]) + tmp5519.coeffs[1] = constant_term(tmp5517) + constant_term(tmp5518) + tmp5519.coeffs[2:order + 1] .= zero(tmp5519.coeffs[1]) + er_EM_2.coeffs[1] = constant_term(tmp5516) + constant_term(tmp5519) + er_EM_2.coeffs[2:order + 1] .= zero(er_EM_2.coeffs[1]) + tmp5521.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(er_EM_I_1) + tmp5521.coeffs[2:order + 1] .= zero(tmp5521.coeffs[1]) + tmp5522.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(er_EM_I_2) + tmp5522.coeffs[2:order + 1] .= zero(tmp5522.coeffs[1]) + tmp5523.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(er_EM_I_3) + tmp5523.coeffs[2:order + 1] .= zero(tmp5523.coeffs[1]) + tmp5524.coeffs[1] = constant_term(tmp5522) + constant_term(tmp5523) + tmp5524.coeffs[2:order + 1] .= zero(tmp5524.coeffs[1]) + er_EM_3.coeffs[1] = constant_term(tmp5521) + constant_term(tmp5524) + er_EM_3.coeffs[2:order + 1] .= zero(er_EM_3.coeffs[1]) + tmp5526.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(p_E_I_1) + tmp5526.coeffs[2:order + 1] .= zero(tmp5526.coeffs[1]) + tmp5527.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(p_E_I_2) + tmp5527.coeffs[2:order + 1] .= zero(tmp5527.coeffs[1]) + tmp5528.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(p_E_I_3) + tmp5528.coeffs[2:order + 1] .= zero(tmp5528.coeffs[1]) + tmp5529.coeffs[1] = constant_term(tmp5527) + constant_term(tmp5528) + tmp5529.coeffs[2:order + 1] .= zero(tmp5529.coeffs[1]) + p_E_1.coeffs[1] = constant_term(tmp5526) + constant_term(tmp5529) + p_E_1.coeffs[2:order + 1] .= zero(p_E_1.coeffs[1]) + tmp5531.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(p_E_I_1) + tmp5531.coeffs[2:order + 1] .= zero(tmp5531.coeffs[1]) + tmp5532.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(p_E_I_2) + tmp5532.coeffs[2:order + 1] .= zero(tmp5532.coeffs[1]) + tmp5533.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(p_E_I_3) + tmp5533.coeffs[2:order + 1] .= zero(tmp5533.coeffs[1]) + tmp5534.coeffs[1] = constant_term(tmp5532) + constant_term(tmp5533) + tmp5534.coeffs[2:order + 1] .= zero(tmp5534.coeffs[1]) + p_E_2.coeffs[1] = constant_term(tmp5531) + constant_term(tmp5534) + p_E_2.coeffs[2:order + 1] .= zero(p_E_2.coeffs[1]) + tmp5536.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(p_E_I_1) + tmp5536.coeffs[2:order + 1] .= zero(tmp5536.coeffs[1]) + tmp5537.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(p_E_I_2) + tmp5537.coeffs[2:order + 1] .= zero(tmp5537.coeffs[1]) + tmp5538.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(p_E_I_3) + tmp5538.coeffs[2:order + 1] .= zero(tmp5538.coeffs[1]) + tmp5539.coeffs[1] = constant_term(tmp5537) + constant_term(tmp5538) + tmp5539.coeffs[2:order + 1] .= zero(tmp5539.coeffs[1]) + p_E_3.coeffs[1] = constant_term(tmp5536) + constant_term(tmp5539) + p_E_3.coeffs[2:order + 1] .= zero(p_E_3.coeffs[1]) + tmp5541.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(er_EM_1) + tmp5541.coeffs[2:order + 1] .= zero(tmp5541.coeffs[1]) + tmp5542.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(er_EM_2) + tmp5542.coeffs[2:order + 1] .= zero(tmp5542.coeffs[1]) + tmp5543.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(er_EM_3) + tmp5543.coeffs[2:order + 1] .= zero(tmp5543.coeffs[1]) + tmp5544.coeffs[1] = constant_term(tmp5542) + constant_term(tmp5543) + tmp5544.coeffs[2:order + 1] .= zero(tmp5544.coeffs[1]) + I_er_EM_1.coeffs[1] = constant_term(tmp5541) + constant_term(tmp5544) + I_er_EM_1.coeffs[2:order + 1] .= zero(I_er_EM_1.coeffs[1]) + tmp5546.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(er_EM_1) + tmp5546.coeffs[2:order + 1] .= zero(tmp5546.coeffs[1]) + tmp5547.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(er_EM_2) + tmp5547.coeffs[2:order + 1] .= zero(tmp5547.coeffs[1]) + tmp5548.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(er_EM_3) + tmp5548.coeffs[2:order + 1] .= zero(tmp5548.coeffs[1]) + tmp5549.coeffs[1] = constant_term(tmp5547) + constant_term(tmp5548) + tmp5549.coeffs[2:order + 1] .= zero(tmp5549.coeffs[1]) + I_er_EM_2.coeffs[1] = constant_term(tmp5546) + constant_term(tmp5549) + I_er_EM_2.coeffs[2:order + 1] .= zero(I_er_EM_2.coeffs[1]) + tmp5551.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(er_EM_1) + tmp5551.coeffs[2:order + 1] .= zero(tmp5551.coeffs[1]) + tmp5552.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(er_EM_2) + tmp5552.coeffs[2:order + 1] .= zero(tmp5552.coeffs[1]) + tmp5553.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(er_EM_3) + tmp5553.coeffs[2:order + 1] .= zero(tmp5553.coeffs[1]) + tmp5554.coeffs[1] = constant_term(tmp5552) + constant_term(tmp5553) + tmp5554.coeffs[2:order + 1] .= zero(tmp5554.coeffs[1]) + I_er_EM_3.coeffs[1] = constant_term(tmp5551) + constant_term(tmp5554) + I_er_EM_3.coeffs[2:order + 1] .= zero(I_er_EM_3.coeffs[1]) + tmp5556.coeffs[1] = constant_term(I_m_t[1, 1]) * constant_term(p_E_1) + tmp5556.coeffs[2:order + 1] .= zero(tmp5556.coeffs[1]) + tmp5557.coeffs[1] = constant_term(I_m_t[1, 2]) * constant_term(p_E_2) + tmp5557.coeffs[2:order + 1] .= zero(tmp5557.coeffs[1]) + tmp5558.coeffs[1] = constant_term(I_m_t[1, 3]) * constant_term(p_E_3) + tmp5558.coeffs[2:order + 1] .= zero(tmp5558.coeffs[1]) + tmp5559.coeffs[1] = constant_term(tmp5557) + constant_term(tmp5558) + tmp5559.coeffs[2:order + 1] .= zero(tmp5559.coeffs[1]) + I_p_E_1.coeffs[1] = constant_term(tmp5556) + constant_term(tmp5559) + I_p_E_1.coeffs[2:order + 1] .= zero(I_p_E_1.coeffs[1]) + tmp5561.coeffs[1] = constant_term(I_m_t[2, 1]) * constant_term(p_E_1) + tmp5561.coeffs[2:order + 1] .= zero(tmp5561.coeffs[1]) + tmp5562.coeffs[1] = constant_term(I_m_t[2, 2]) * constant_term(p_E_2) + tmp5562.coeffs[2:order + 1] .= zero(tmp5562.coeffs[1]) + tmp5563.coeffs[1] = constant_term(I_m_t[2, 3]) * constant_term(p_E_3) + tmp5563.coeffs[2:order + 1] .= zero(tmp5563.coeffs[1]) + tmp5564.coeffs[1] = constant_term(tmp5562) + constant_term(tmp5563) + tmp5564.coeffs[2:order + 1] .= zero(tmp5564.coeffs[1]) + I_p_E_2.coeffs[1] = constant_term(tmp5561) + constant_term(tmp5564) + I_p_E_2.coeffs[2:order + 1] .= zero(I_p_E_2.coeffs[1]) + tmp5566.coeffs[1] = constant_term(I_m_t[3, 1]) * constant_term(p_E_1) + tmp5566.coeffs[2:order + 1] .= zero(tmp5566.coeffs[1]) + tmp5567.coeffs[1] = constant_term(I_m_t[3, 2]) * constant_term(p_E_2) + tmp5567.coeffs[2:order + 1] .= zero(tmp5567.coeffs[1]) + tmp5568.coeffs[1] = constant_term(I_m_t[3, 3]) * constant_term(p_E_3) + tmp5568.coeffs[2:order + 1] .= zero(tmp5568.coeffs[1]) + tmp5569.coeffs[1] = constant_term(tmp5567) + constant_term(tmp5568) + tmp5569.coeffs[2:order + 1] .= zero(tmp5569.coeffs[1]) + I_p_E_3.coeffs[1] = constant_term(tmp5566) + constant_term(tmp5569) + I_p_E_3.coeffs[2:order + 1] .= zero(I_p_E_3.coeffs[1]) + tmp5571.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_3) + tmp5571.coeffs[2:order + 1] .= zero(tmp5571.coeffs[1]) + tmp5572.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_2) + tmp5572.coeffs[2:order + 1] .= zero(tmp5572.coeffs[1]) + er_EM_cross_I_er_EM_1.coeffs[1] = constant_term(tmp5571) - constant_term(tmp5572) + er_EM_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_1.coeffs[1]) + tmp5574.coeffs[1] = constant_term(er_EM_3) * constant_term(I_er_EM_1) + tmp5574.coeffs[2:order + 1] .= zero(tmp5574.coeffs[1]) + tmp5575.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_3) + tmp5575.coeffs[2:order + 1] .= zero(tmp5575.coeffs[1]) + er_EM_cross_I_er_EM_2.coeffs[1] = constant_term(tmp5574) - constant_term(tmp5575) + er_EM_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_2.coeffs[1]) + tmp5577.coeffs[1] = constant_term(er_EM_1) * constant_term(I_er_EM_2) + tmp5577.coeffs[2:order + 1] .= zero(tmp5577.coeffs[1]) + tmp5578.coeffs[1] = constant_term(er_EM_2) * constant_term(I_er_EM_1) + tmp5578.coeffs[2:order + 1] .= zero(tmp5578.coeffs[1]) + er_EM_cross_I_er_EM_3.coeffs[1] = constant_term(tmp5577) - constant_term(tmp5578) + er_EM_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_er_EM_3.coeffs[1]) + tmp5580.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_3) + tmp5580.coeffs[2:order + 1] .= zero(tmp5580.coeffs[1]) + tmp5581.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_2) + tmp5581.coeffs[2:order + 1] .= zero(tmp5581.coeffs[1]) + er_EM_cross_I_p_E_1.coeffs[1] = constant_term(tmp5580) - constant_term(tmp5581) + er_EM_cross_I_p_E_1.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_1.coeffs[1]) + tmp5583.coeffs[1] = constant_term(er_EM_3) * constant_term(I_p_E_1) + tmp5583.coeffs[2:order + 1] .= zero(tmp5583.coeffs[1]) + tmp5584.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_3) + tmp5584.coeffs[2:order + 1] .= zero(tmp5584.coeffs[1]) + er_EM_cross_I_p_E_2.coeffs[1] = constant_term(tmp5583) - constant_term(tmp5584) + er_EM_cross_I_p_E_2.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_2.coeffs[1]) + tmp5586.coeffs[1] = constant_term(er_EM_1) * constant_term(I_p_E_2) + tmp5586.coeffs[2:order + 1] .= zero(tmp5586.coeffs[1]) + tmp5587.coeffs[1] = constant_term(er_EM_2) * constant_term(I_p_E_1) + tmp5587.coeffs[2:order + 1] .= zero(tmp5587.coeffs[1]) + er_EM_cross_I_p_E_3.coeffs[1] = constant_term(tmp5586) - constant_term(tmp5587) + er_EM_cross_I_p_E_3.coeffs[2:order + 1] .= zero(er_EM_cross_I_p_E_3.coeffs[1]) + tmp5589.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_3) + tmp5589.coeffs[2:order + 1] .= zero(tmp5589.coeffs[1]) + tmp5590.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_2) + tmp5590.coeffs[2:order + 1] .= zero(tmp5590.coeffs[1]) + p_E_cross_I_er_EM_1.coeffs[1] = constant_term(tmp5589) - constant_term(tmp5590) + p_E_cross_I_er_EM_1.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_1.coeffs[1]) + tmp5592.coeffs[1] = constant_term(p_E_3) * constant_term(I_er_EM_1) + tmp5592.coeffs[2:order + 1] .= zero(tmp5592.coeffs[1]) + tmp5593.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_3) + tmp5593.coeffs[2:order + 1] .= zero(tmp5593.coeffs[1]) + p_E_cross_I_er_EM_2.coeffs[1] = constant_term(tmp5592) - constant_term(tmp5593) + p_E_cross_I_er_EM_2.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_2.coeffs[1]) + tmp5595.coeffs[1] = constant_term(p_E_1) * constant_term(I_er_EM_2) + tmp5595.coeffs[2:order + 1] .= zero(tmp5595.coeffs[1]) + tmp5596.coeffs[1] = constant_term(p_E_2) * constant_term(I_er_EM_1) + tmp5596.coeffs[2:order + 1] .= zero(tmp5596.coeffs[1]) + p_E_cross_I_er_EM_3.coeffs[1] = constant_term(tmp5595) - constant_term(tmp5596) + p_E_cross_I_er_EM_3.coeffs[2:order + 1] .= zero(p_E_cross_I_er_EM_3.coeffs[1]) + tmp5598.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_3) + tmp5598.coeffs[2:order + 1] .= zero(tmp5598.coeffs[1]) + tmp5599.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_2) + tmp5599.coeffs[2:order + 1] .= zero(tmp5599.coeffs[1]) + p_E_cross_I_p_E_1.coeffs[1] = constant_term(tmp5598) - constant_term(tmp5599) + p_E_cross_I_p_E_1.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_1.coeffs[1]) + tmp5601.coeffs[1] = constant_term(p_E_3) * constant_term(I_p_E_1) + tmp5601.coeffs[2:order + 1] .= zero(tmp5601.coeffs[1]) + tmp5602.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_3) + tmp5602.coeffs[2:order + 1] .= zero(tmp5602.coeffs[1]) + p_E_cross_I_p_E_2.coeffs[1] = constant_term(tmp5601) - constant_term(tmp5602) + p_E_cross_I_p_E_2.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_2.coeffs[1]) + tmp5604.coeffs[1] = constant_term(p_E_1) * constant_term(I_p_E_2) + tmp5604.coeffs[2:order + 1] .= zero(tmp5604.coeffs[1]) + tmp5605.coeffs[1] = constant_term(p_E_2) * constant_term(I_p_E_1) + tmp5605.coeffs[2:order + 1] .= zero(tmp5605.coeffs[1]) + p_E_cross_I_p_E_3.coeffs[1] = constant_term(tmp5604) - constant_term(tmp5605) + p_E_cross_I_p_E_3.coeffs[2:order + 1] .= zero(p_E_cross_I_p_E_3.coeffs[1]) + tmp5609.coeffs[1] = constant_term(sin_ϕ[ea, mo]) ^ float(constant_term(2)) + tmp5609.coeffs[2:order + 1] .= zero(tmp5609.coeffs[1]) + tmp5610.coeffs[1] = constant_term(7) * constant_term(tmp5609) + tmp5610.coeffs[2:order + 1] .= zero(tmp5610.coeffs[1]) + one_minus_7sin2ϕEM.coeffs[1] = constant_term(one_t) - constant_term(tmp5610) + one_minus_7sin2ϕEM.coeffs[2:order + 1] .= zero(one_minus_7sin2ϕEM.coeffs[1]) + two_sinϕEM.coeffs[1] = constant_term(2) * constant_term(sin_ϕ[ea, mo]) + two_sinϕEM.coeffs[2:order + 1] .= zero(two_sinϕEM.coeffs[1]) + tmp5615.coeffs[1] = constant_term(r_p1d2[mo, ea]) ^ float(constant_term(5)) + tmp5615.coeffs[2:order + 1] .= zero(tmp5615.coeffs[1]) + N_MfigM_figE_factor_div_rEMp5.coeffs[1] = constant_term(N_MfigM_figE_factor) / constant_term(tmp5615) + N_MfigM_figE_factor_div_rEMp5.coeffs[2:order + 1] .= zero(N_MfigM_figE_factor_div_rEMp5.coeffs[1]) + tmp5617.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_1) + tmp5617.coeffs[2:order + 1] .= zero(tmp5617.coeffs[1]) + tmp5618.coeffs[1] = constant_term(er_EM_cross_I_p_E_1) + constant_term(p_E_cross_I_er_EM_1) + tmp5618.coeffs[2:order + 1] .= zero(tmp5618.coeffs[1]) + tmp5619.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp5618) + tmp5619.coeffs[2:order + 1] .= zero(tmp5619.coeffs[1]) + tmp5620.coeffs[1] = constant_term(tmp5617) + constant_term(tmp5619) + tmp5620.coeffs[2:order + 1] .= zero(tmp5620.coeffs[1]) + tmp5622.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_1) + tmp5622.coeffs[2:order + 1] .= zero(tmp5622.coeffs[1]) + tmp5623.coeffs[1] = constant_term(tmp5620) - constant_term(tmp5622) + tmp5623.coeffs[2:order + 1] .= zero(tmp5623.coeffs[1]) + N_MfigM_figE_1.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5623) + N_MfigM_figE_1.coeffs[2:order + 1] .= zero(N_MfigM_figE_1.coeffs[1]) + tmp5625.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_2) + tmp5625.coeffs[2:order + 1] .= zero(tmp5625.coeffs[1]) + tmp5626.coeffs[1] = constant_term(er_EM_cross_I_p_E_2) + constant_term(p_E_cross_I_er_EM_2) + tmp5626.coeffs[2:order + 1] .= zero(tmp5626.coeffs[1]) + tmp5627.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp5626) + tmp5627.coeffs[2:order + 1] .= zero(tmp5627.coeffs[1]) + tmp5628.coeffs[1] = constant_term(tmp5625) + constant_term(tmp5627) + tmp5628.coeffs[2:order + 1] .= zero(tmp5628.coeffs[1]) + tmp5630.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_2) + tmp5630.coeffs[2:order + 1] .= zero(tmp5630.coeffs[1]) + tmp5631.coeffs[1] = constant_term(tmp5628) - constant_term(tmp5630) + tmp5631.coeffs[2:order + 1] .= zero(tmp5631.coeffs[1]) + N_MfigM_figE_2.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5631) + N_MfigM_figE_2.coeffs[2:order + 1] .= zero(N_MfigM_figE_2.coeffs[1]) + tmp5633.coeffs[1] = constant_term(one_minus_7sin2ϕEM) * constant_term(er_EM_cross_I_er_EM_3) + tmp5633.coeffs[2:order + 1] .= zero(tmp5633.coeffs[1]) + tmp5634.coeffs[1] = constant_term(er_EM_cross_I_p_E_3) + constant_term(p_E_cross_I_er_EM_3) + tmp5634.coeffs[2:order + 1] .= zero(tmp5634.coeffs[1]) + tmp5635.coeffs[1] = constant_term(two_sinϕEM) * constant_term(tmp5634) + tmp5635.coeffs[2:order + 1] .= zero(tmp5635.coeffs[1]) + tmp5636.coeffs[1] = constant_term(tmp5633) + constant_term(tmp5635) + tmp5636.coeffs[2:order + 1] .= zero(tmp5636.coeffs[1]) + tmp5638.coeffs[1] = constant_term(0.4) * constant_term(p_E_cross_I_p_E_3) + tmp5638.coeffs[2:order + 1] .= zero(tmp5638.coeffs[1]) + tmp5639.coeffs[1] = constant_term(tmp5636) - constant_term(tmp5638) + tmp5639.coeffs[2:order + 1] .= zero(tmp5639.coeffs[1]) + N_MfigM_figE_3.coeffs[1] = constant_term(N_MfigM_figE_factor_div_rEMp5) * constant_term(tmp5639) + N_MfigM_figE_3.coeffs[2:order + 1] .= zero(N_MfigM_figE_3.coeffs[1]) + tmp5641.coeffs[1] = constant_term(RotM[1, 1, mo]) * constant_term(N_MfigM[1]) + tmp5641.coeffs[2:order + 1] .= zero(tmp5641.coeffs[1]) + tmp5642.coeffs[1] = constant_term(RotM[1, 2, mo]) * constant_term(N_MfigM[2]) + tmp5642.coeffs[2:order + 1] .= zero(tmp5642.coeffs[1]) + tmp5643.coeffs[1] = constant_term(RotM[1, 3, mo]) * constant_term(N_MfigM[3]) + tmp5643.coeffs[2:order + 1] .= zero(tmp5643.coeffs[1]) + tmp5644.coeffs[1] = constant_term(tmp5642) + constant_term(tmp5643) + tmp5644.coeffs[2:order + 1] .= zero(tmp5644.coeffs[1]) + N_1_LMF.coeffs[1] = constant_term(tmp5641) + constant_term(tmp5644) + N_1_LMF.coeffs[2:order + 1] .= zero(N_1_LMF.coeffs[1]) + tmp5646.coeffs[1] = constant_term(RotM[2, 1, mo]) * constant_term(N_MfigM[1]) + tmp5646.coeffs[2:order + 1] .= zero(tmp5646.coeffs[1]) + tmp5647.coeffs[1] = constant_term(RotM[2, 2, mo]) * constant_term(N_MfigM[2]) + tmp5647.coeffs[2:order + 1] .= zero(tmp5647.coeffs[1]) + tmp5648.coeffs[1] = constant_term(RotM[2, 3, mo]) * constant_term(N_MfigM[3]) + tmp5648.coeffs[2:order + 1] .= zero(tmp5648.coeffs[1]) + tmp5649.coeffs[1] = constant_term(tmp5647) + constant_term(tmp5648) + tmp5649.coeffs[2:order + 1] .= zero(tmp5649.coeffs[1]) + N_2_LMF.coeffs[1] = constant_term(tmp5646) + constant_term(tmp5649) + N_2_LMF.coeffs[2:order + 1] .= zero(N_2_LMF.coeffs[1]) + tmp5651.coeffs[1] = constant_term(RotM[3, 1, mo]) * constant_term(N_MfigM[1]) + tmp5651.coeffs[2:order + 1] .= zero(tmp5651.coeffs[1]) + tmp5652.coeffs[1] = constant_term(RotM[3, 2, mo]) * constant_term(N_MfigM[2]) + tmp5652.coeffs[2:order + 1] .= zero(tmp5652.coeffs[1]) + tmp5653.coeffs[1] = constant_term(RotM[3, 3, mo]) * constant_term(N_MfigM[3]) + tmp5653.coeffs[2:order + 1] .= zero(tmp5653.coeffs[1]) + tmp5654.coeffs[1] = constant_term(tmp5652) + constant_term(tmp5653) + tmp5654.coeffs[2:order + 1] .= zero(tmp5654.coeffs[1]) + N_3_LMF.coeffs[1] = constant_term(tmp5651) + constant_term(tmp5654) + N_3_LMF.coeffs[2:order + 1] .= zero(N_3_LMF.coeffs[1]) + tmp5656.coeffs[1] = constant_term(q[6N + 10]) - constant_term(q[6N + 4]) + tmp5656.coeffs[2:order + 1] .= zero(tmp5656.coeffs[1]) + tmp5657.coeffs[1] = constant_term(k_ν) * constant_term(tmp5656) + tmp5657.coeffs[2:order + 1] .= zero(tmp5657.coeffs[1]) + tmp5658.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + tmp5658.coeffs[2:order + 1] .= zero(tmp5658.coeffs[1]) + tmp5659.coeffs[1] = constant_term(tmp5658) * constant_term(q[6N + 11]) + tmp5659.coeffs[2:order + 1] .= zero(tmp5659.coeffs[1]) + N_cmb_1.coeffs[1] = constant_term(tmp5657) - constant_term(tmp5659) + N_cmb_1.coeffs[2:order + 1] .= zero(N_cmb_1.coeffs[1]) + tmp5661.coeffs[1] = constant_term(q[6N + 11]) - constant_term(q[6N + 5]) + tmp5661.coeffs[2:order + 1] .= zero(tmp5661.coeffs[1]) + tmp5662.coeffs[1] = constant_term(k_ν) * constant_term(tmp5661) + tmp5662.coeffs[2:order + 1] .= zero(tmp5662.coeffs[1]) + tmp5663.coeffs[1] = constant_term(C_c_m_A_c) * constant_term(q[6N + 12]) + tmp5663.coeffs[2:order + 1] .= zero(tmp5663.coeffs[1]) + tmp5664.coeffs[1] = constant_term(tmp5663) * constant_term(q[6N + 10]) + tmp5664.coeffs[2:order + 1] .= zero(tmp5664.coeffs[1]) + N_cmb_2.coeffs[1] = constant_term(tmp5662) + constant_term(tmp5664) + N_cmb_2.coeffs[2:order + 1] .= zero(N_cmb_2.coeffs[1]) + tmp5666.coeffs[1] = constant_term(q[6N + 12]) - constant_term(q[6N + 6]) + tmp5666.coeffs[2:order + 1] .= zero(tmp5666.coeffs[1]) + N_cmb_3.coeffs[1] = constant_term(k_ν) * constant_term(tmp5666) + N_cmb_3.coeffs[2:order + 1] .= zero(N_cmb_3.coeffs[1]) + tmp5668.coeffs[1] = constant_term(μ[mo]) * constant_term(N_1_LMF) + tmp5668.coeffs[2:order + 1] .= zero(tmp5668.coeffs[1]) + tmp5669.coeffs[1] = constant_term(N_MfigM_figE_1) + constant_term(tmp5668) + tmp5669.coeffs[2:order + 1] .= zero(tmp5669.coeffs[1]) + tmp5670.coeffs[1] = constant_term(tmp5669) + constant_term(N_cmb_1) + tmp5670.coeffs[2:order + 1] .= zero(tmp5670.coeffs[1]) + tmp5671.coeffs[1] = constant_term(dIω_x) + constant_term(ωxIω_x) + tmp5671.coeffs[2:order + 1] .= zero(tmp5671.coeffs[1]) + I_dω_1.coeffs[1] = constant_term(tmp5670) - constant_term(tmp5671) + I_dω_1.coeffs[2:order + 1] .= zero(I_dω_1.coeffs[1]) + tmp5673.coeffs[1] = constant_term(μ[mo]) * constant_term(N_2_LMF) + tmp5673.coeffs[2:order + 1] .= zero(tmp5673.coeffs[1]) + tmp5674.coeffs[1] = constant_term(N_MfigM_figE_2) + constant_term(tmp5673) + tmp5674.coeffs[2:order + 1] .= zero(tmp5674.coeffs[1]) + tmp5675.coeffs[1] = constant_term(tmp5674) + constant_term(N_cmb_2) + tmp5675.coeffs[2:order + 1] .= zero(tmp5675.coeffs[1]) + tmp5676.coeffs[1] = constant_term(dIω_y) + constant_term(ωxIω_y) + tmp5676.coeffs[2:order + 1] .= zero(tmp5676.coeffs[1]) + I_dω_2.coeffs[1] = constant_term(tmp5675) - constant_term(tmp5676) + I_dω_2.coeffs[2:order + 1] .= zero(I_dω_2.coeffs[1]) + tmp5678.coeffs[1] = constant_term(μ[mo]) * constant_term(N_3_LMF) + tmp5678.coeffs[2:order + 1] .= zero(tmp5678.coeffs[1]) + tmp5679.coeffs[1] = constant_term(N_MfigM_figE_3) + constant_term(tmp5678) + tmp5679.coeffs[2:order + 1] .= zero(tmp5679.coeffs[1]) + tmp5680.coeffs[1] = constant_term(tmp5679) + constant_term(N_cmb_3) + tmp5680.coeffs[2:order + 1] .= zero(tmp5680.coeffs[1]) + tmp5681.coeffs[1] = constant_term(dIω_z) + constant_term(ωxIω_z) + tmp5681.coeffs[2:order + 1] .= zero(tmp5681.coeffs[1]) + I_dω_3.coeffs[1] = constant_term(tmp5680) - constant_term(tmp5681) + I_dω_3.coeffs[2:order + 1] .= zero(I_dω_3.coeffs[1]) + Ic_ωc_1.coeffs[1] = constant_term(I_c_t[1, 1]) * constant_term(q[6N + 10]) + Ic_ωc_1.coeffs[2:order + 1] .= zero(Ic_ωc_1.coeffs[1]) + Ic_ωc_2.coeffs[1] = constant_term(I_c_t[2, 2]) * constant_term(q[6N + 11]) + Ic_ωc_2.coeffs[2:order + 1] .= zero(Ic_ωc_2.coeffs[1]) + Ic_ωc_3.coeffs[1] = constant_term(I_c_t[3, 3]) * constant_term(q[6N + 12]) + Ic_ωc_3.coeffs[2:order + 1] .= zero(Ic_ωc_3.coeffs[1]) + tmp5686.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_2) + tmp5686.coeffs[2:order + 1] .= zero(tmp5686.coeffs[1]) + tmp5687.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_3) + tmp5687.coeffs[2:order + 1] .= zero(tmp5687.coeffs[1]) + m_ωm_x_Icωc_1.coeffs[1] = constant_term(tmp5686) - constant_term(tmp5687) + m_ωm_x_Icωc_1.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_1.coeffs[1]) + tmp5689.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_3) + tmp5689.coeffs[2:order + 1] .= zero(tmp5689.coeffs[1]) + tmp5690.coeffs[1] = constant_term(q[6N + 6]) * constant_term(Ic_ωc_1) + tmp5690.coeffs[2:order + 1] .= zero(tmp5690.coeffs[1]) + m_ωm_x_Icωc_2.coeffs[1] = constant_term(tmp5689) - constant_term(tmp5690) + m_ωm_x_Icωc_2.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_2.coeffs[1]) + tmp5692.coeffs[1] = constant_term(q[6N + 5]) * constant_term(Ic_ωc_1) + tmp5692.coeffs[2:order + 1] .= zero(tmp5692.coeffs[1]) + tmp5693.coeffs[1] = constant_term(q[6N + 4]) * constant_term(Ic_ωc_2) + tmp5693.coeffs[2:order + 1] .= zero(tmp5693.coeffs[1]) + m_ωm_x_Icωc_3.coeffs[1] = constant_term(tmp5692) - constant_term(tmp5693) + m_ωm_x_Icωc_3.coeffs[2:order + 1] .= zero(m_ωm_x_Icωc_3.coeffs[1]) + Ic_dωc_1.coeffs[1] = constant_term(m_ωm_x_Icωc_1) - constant_term(N_cmb_1) + Ic_dωc_1.coeffs[2:order + 1] .= zero(Ic_dωc_1.coeffs[1]) + Ic_dωc_2.coeffs[1] = constant_term(m_ωm_x_Icωc_2) - constant_term(N_cmb_2) + Ic_dωc_2.coeffs[2:order + 1] .= zero(Ic_dωc_2.coeffs[1]) + Ic_dωc_3.coeffs[1] = constant_term(m_ωm_x_Icωc_3) - constant_term(N_cmb_3) + Ic_dωc_3.coeffs[2:order + 1] .= zero(Ic_dωc_3.coeffs[1]) + tmp5698.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp5698.coeffs[2:order + 1] .= zero(tmp5698.coeffs[1]) + tmp5778.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp5778.coeffs[2:order + 1] .= zero(tmp5778.coeffs[1]) + tmp5699.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp5698) + tmp5699.coeffs[2:order + 1] .= zero(tmp5699.coeffs[1]) + tmp5700.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp5700.coeffs[2:order + 1] .= zero(tmp5700.coeffs[1]) + tmp5779.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp5779.coeffs[2:order + 1] .= zero(tmp5779.coeffs[1]) + tmp5701.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp5700) + tmp5701.coeffs[2:order + 1] .= zero(tmp5701.coeffs[1]) + tmp5702.coeffs[1] = constant_term(tmp5699) + constant_term(tmp5701) + tmp5702.coeffs[2:order + 1] .= zero(tmp5702.coeffs[1]) + tmp5703.coeffs[1] = sin(constant_term(q[6N + 2])) + tmp5703.coeffs[2:order + 1] .= zero(tmp5703.coeffs[1]) + tmp5780.coeffs[1] = cos(constant_term(q[6N + 2])) + tmp5780.coeffs[2:order + 1] .= zero(tmp5780.coeffs[1]) + (dq[6N + 1]).coeffs[1] = constant_term(tmp5702) / constant_term(tmp5703) + (dq[6N + 1]).coeffs[2:order + 1] .= zero((dq[6N + 1]).coeffs[1]) + tmp5705.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp5705.coeffs[2:order + 1] .= zero(tmp5705.coeffs[1]) + tmp5781.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp5781.coeffs[2:order + 1] .= zero(tmp5781.coeffs[1]) + tmp5706.coeffs[1] = constant_term(q[6N + 4]) * constant_term(tmp5705) + tmp5706.coeffs[2:order + 1] .= zero(tmp5706.coeffs[1]) + tmp5707.coeffs[1] = sin(constant_term(q[6N + 3])) + tmp5707.coeffs[2:order + 1] .= zero(tmp5707.coeffs[1]) + tmp5782.coeffs[1] = cos(constant_term(q[6N + 3])) + tmp5782.coeffs[2:order + 1] .= zero(tmp5782.coeffs[1]) + tmp5708.coeffs[1] = constant_term(q[6N + 5]) * constant_term(tmp5707) + tmp5708.coeffs[2:order + 1] .= zero(tmp5708.coeffs[1]) + (dq[6N + 2]).coeffs[1] = constant_term(tmp5706) - constant_term(tmp5708) + (dq[6N + 2]).coeffs[2:order + 1] .= zero((dq[6N + 2]).coeffs[1]) + tmp5710.coeffs[1] = cos(constant_term(q[6N + 2])) + tmp5710.coeffs[2:order + 1] .= zero(tmp5710.coeffs[1]) + tmp5783.coeffs[1] = sin(constant_term(q[6N + 2])) + tmp5783.coeffs[2:order + 1] .= zero(tmp5783.coeffs[1]) + tmp5711.coeffs[1] = constant_term(dq[6N + 1]) * constant_term(tmp5710) + tmp5711.coeffs[2:order + 1] .= zero(tmp5711.coeffs[1]) + (dq[6N + 3]).coeffs[1] = constant_term(q[6N + 6]) - constant_term(tmp5711) + (dq[6N + 3]).coeffs[2:order + 1] .= zero((dq[6N + 3]).coeffs[1]) + tmp5713.coeffs[1] = constant_term(inv_I_m_t[1, 1]) * constant_term(I_dω_1) + tmp5713.coeffs[2:order + 1] .= zero(tmp5713.coeffs[1]) + tmp5714.coeffs[1] = constant_term(inv_I_m_t[1, 2]) * constant_term(I_dω_2) + tmp5714.coeffs[2:order + 1] .= zero(tmp5714.coeffs[1]) + tmp5715.coeffs[1] = constant_term(inv_I_m_t[1, 3]) * constant_term(I_dω_3) + tmp5715.coeffs[2:order + 1] .= zero(tmp5715.coeffs[1]) + tmp5716.coeffs[1] = constant_term(tmp5714) + constant_term(tmp5715) + tmp5716.coeffs[2:order + 1] .= zero(tmp5716.coeffs[1]) + (dq[6N + 4]).coeffs[1] = constant_term(tmp5713) + constant_term(tmp5716) + (dq[6N + 4]).coeffs[2:order + 1] .= zero((dq[6N + 4]).coeffs[1]) + tmp5718.coeffs[1] = constant_term(inv_I_m_t[2, 1]) * constant_term(I_dω_1) + tmp5718.coeffs[2:order + 1] .= zero(tmp5718.coeffs[1]) + tmp5719.coeffs[1] = constant_term(inv_I_m_t[2, 2]) * constant_term(I_dω_2) + tmp5719.coeffs[2:order + 1] .= zero(tmp5719.coeffs[1]) + tmp5720.coeffs[1] = constant_term(inv_I_m_t[2, 3]) * constant_term(I_dω_3) + tmp5720.coeffs[2:order + 1] .= zero(tmp5720.coeffs[1]) + tmp5721.coeffs[1] = constant_term(tmp5719) + constant_term(tmp5720) + tmp5721.coeffs[2:order + 1] .= zero(tmp5721.coeffs[1]) + (dq[6N + 5]).coeffs[1] = constant_term(tmp5718) + constant_term(tmp5721) + (dq[6N + 5]).coeffs[2:order + 1] .= zero((dq[6N + 5]).coeffs[1]) + tmp5723.coeffs[1] = constant_term(inv_I_m_t[3, 1]) * constant_term(I_dω_1) + tmp5723.coeffs[2:order + 1] .= zero(tmp5723.coeffs[1]) + tmp5724.coeffs[1] = constant_term(inv_I_m_t[3, 2]) * constant_term(I_dω_2) + tmp5724.coeffs[2:order + 1] .= zero(tmp5724.coeffs[1]) + tmp5725.coeffs[1] = constant_term(inv_I_m_t[3, 3]) * constant_term(I_dω_3) + tmp5725.coeffs[2:order + 1] .= zero(tmp5725.coeffs[1]) + tmp5726.coeffs[1] = constant_term(tmp5724) + constant_term(tmp5725) + tmp5726.coeffs[2:order + 1] .= zero(tmp5726.coeffs[1]) + (dq[6N + 6]).coeffs[1] = constant_term(tmp5723) + constant_term(tmp5726) + (dq[6N + 6]).coeffs[2:order + 1] .= zero((dq[6N + 6]).coeffs[1]) + tmp5728.coeffs[1] = sin(constant_term(q[6N + 8])) + tmp5728.coeffs[2:order + 1] .= zero(tmp5728.coeffs[1]) + tmp5784.coeffs[1] = cos(constant_term(q[6N + 8])) + tmp5784.coeffs[2:order + 1] .= zero(tmp5784.coeffs[1]) + tmp5729.coeffs[1] = constant_term(ω_c_CE_2) / constant_term(tmp5728) + tmp5729.coeffs[2:order + 1] .= zero(tmp5729.coeffs[1]) + (dq[6N + 9]).coeffs[1] = -(constant_term(tmp5729)) + (dq[6N + 9]).coeffs[2:order + 1] .= zero((dq[6N + 9]).coeffs[1]) + tmp5731.coeffs[1] = cos(constant_term(q[6N + 8])) + tmp5731.coeffs[2:order + 1] .= zero(tmp5731.coeffs[1]) + tmp5785.coeffs[1] = sin(constant_term(q[6N + 8])) + tmp5785.coeffs[2:order + 1] .= zero(tmp5785.coeffs[1]) + tmp5732.coeffs[1] = constant_term(dq[6N + 9]) * constant_term(tmp5731) + tmp5732.coeffs[2:order + 1] .= zero(tmp5732.coeffs[1]) + (dq[6N + 7]).coeffs[1] = constant_term(ω_c_CE_3) - constant_term(tmp5732) + (dq[6N + 7]).coeffs[2:order + 1] .= zero((dq[6N + 7]).coeffs[1]) + (dq[6N + 8]).coeffs[1] = identity(constant_term(ω_c_CE_1)) + (dq[6N + 8]).coeffs[2:order + 1] .= zero((dq[6N + 8]).coeffs[1]) + (dq[6N + 10]).coeffs[1] = constant_term(inv_I_c_t[1, 1]) * constant_term(Ic_dωc_1) + (dq[6N + 10]).coeffs[2:order + 1] .= zero((dq[6N + 10]).coeffs[1]) + (dq[6N + 11]).coeffs[1] = constant_term(inv_I_c_t[2, 2]) * constant_term(Ic_dωc_2) + (dq[6N + 11]).coeffs[2:order + 1] .= zero((dq[6N + 11]).coeffs[1]) + (dq[6N + 12]).coeffs[1] = constant_term(inv_I_c_t[3, 3]) * constant_term(Ic_dωc_3) + (dq[6N + 12]).coeffs[2:order + 1] .= zero((dq[6N + 12]).coeffs[1]) + (dq[6N + 13]).coeffs[1] = identity(constant_term(zero_q_1)) + (dq[6N + 13]).coeffs[2:order + 1] .= zero((dq[6N + 13]).coeffs[1]) for __idx = eachindex(q) (q[__idx]).coeffs[2] = (dq[__idx]).coeffs[1] end @@ -6345,109 +14523,109 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(ϕ_m, q[6N + 1], ord) TaylorSeries.identity!(θ_m, q[6N + 2], ord) TaylorSeries.identity!(ψ_m, q[6N + 3], ord) - TaylorSeries.sincos!(tmp5684, tmp4665, ϕ_m, ord) - TaylorSeries.sincos!(tmp5685, tmp4666, ψ_m, ord) - TaylorSeries.mul!(tmp4667, tmp4665, tmp4666, ord) - TaylorSeries.sincos!(tmp5686, tmp4668, θ_m, ord) - TaylorSeries.sincos!(tmp4669, tmp5687, ϕ_m, ord) - TaylorSeries.mul!(tmp4670, tmp4668, tmp4669, ord) - TaylorSeries.sincos!(tmp4671, tmp5688, ψ_m, ord) - TaylorSeries.mul!(tmp4672, tmp4670, tmp4671, ord) - TaylorSeries.subst!(RotM[1, 1, mo], tmp4667, tmp4672, ord) - TaylorSeries.sincos!(tmp5689, tmp4674, θ_m, ord) - TaylorSeries.subst!(tmp4675, tmp4674, ord) - TaylorSeries.sincos!(tmp5690, tmp4676, ψ_m, ord) - TaylorSeries.mul!(tmp4677, tmp4675, tmp4676, ord) - TaylorSeries.sincos!(tmp4678, tmp5691, ϕ_m, ord) - TaylorSeries.mul!(tmp4679, tmp4677, tmp4678, ord) - TaylorSeries.sincos!(tmp5692, tmp4680, ϕ_m, ord) - TaylorSeries.sincos!(tmp4681, tmp5693, ψ_m, ord) - TaylorSeries.mul!(tmp4682, tmp4680, tmp4681, ord) - TaylorSeries.subst!(RotM[2, 1, mo], tmp4679, tmp4682, ord) - TaylorSeries.sincos!(tmp4684, tmp5694, θ_m, ord) - TaylorSeries.sincos!(tmp4685, tmp5695, ϕ_m, ord) - TaylorSeries.mul!(RotM[3, 1, mo], tmp4684, tmp4685, ord) - TaylorSeries.sincos!(tmp5696, tmp4687, ψ_m, ord) - TaylorSeries.sincos!(tmp4688, tmp5697, ϕ_m, ord) - TaylorSeries.mul!(tmp4689, tmp4687, tmp4688, ord) - TaylorSeries.sincos!(tmp5698, tmp4690, θ_m, ord) - TaylorSeries.sincos!(tmp5699, tmp4691, ϕ_m, ord) - TaylorSeries.mul!(tmp4692, tmp4690, tmp4691, ord) - TaylorSeries.sincos!(tmp4693, tmp5700, ψ_m, ord) - TaylorSeries.mul!(tmp4694, tmp4692, tmp4693, ord) - TaylorSeries.add!(RotM[1, 2, mo], tmp4689, tmp4694, ord) - TaylorSeries.sincos!(tmp5701, tmp4696, θ_m, ord) - TaylorSeries.sincos!(tmp5702, tmp4697, ϕ_m, ord) - TaylorSeries.mul!(tmp4698, tmp4696, tmp4697, ord) - TaylorSeries.sincos!(tmp5703, tmp4699, ψ_m, ord) - TaylorSeries.mul!(tmp4700, tmp4698, tmp4699, ord) - TaylorSeries.sincos!(tmp4701, tmp5704, ϕ_m, ord) - TaylorSeries.sincos!(tmp4702, tmp5705, ψ_m, ord) - TaylorSeries.mul!(tmp4703, tmp4701, tmp4702, ord) - TaylorSeries.subst!(RotM[2, 2, mo], tmp4700, tmp4703, ord) - TaylorSeries.sincos!(tmp5706, tmp4705, ϕ_m, ord) - TaylorSeries.subst!(tmp4706, tmp4705, ord) - TaylorSeries.sincos!(tmp4707, tmp5707, θ_m, ord) - TaylorSeries.mul!(RotM[3, 2, mo], tmp4706, tmp4707, ord) - TaylorSeries.sincos!(tmp4709, tmp5708, θ_m, ord) - TaylorSeries.sincos!(tmp4710, tmp5709, ψ_m, ord) - TaylorSeries.mul!(RotM[1, 3, mo], tmp4709, tmp4710, ord) - TaylorSeries.sincos!(tmp5710, tmp4712, ψ_m, ord) - TaylorSeries.sincos!(tmp4713, tmp5711, θ_m, ord) - TaylorSeries.mul!(RotM[2, 3, mo], tmp4712, tmp4713, ord) - TaylorSeries.sincos!(tmp5712, RotM[3, 3, mo], θ_m, ord) - TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) - TaylorSeries.sincos!(tmp5713, tmp4716, ϕ_c, ord) - TaylorSeries.mul!(tmp4717, RotM[1, 1, mo], tmp4716, ord) - TaylorSeries.sincos!(tmp4718, tmp5714, ϕ_c, ord) - TaylorSeries.mul!(tmp4719, RotM[1, 2, mo], tmp4718, ord) - TaylorSeries.add!(mantlef2coref[1, 1], tmp4717, tmp4719, ord) - TaylorSeries.subst!(tmp4721, RotM[1, 1, mo], ord) - TaylorSeries.sincos!(tmp4722, tmp5715, ϕ_c, ord) + TaylorSeries.sincos!(tmp5737, tmp4718, ϕ_m, ord) + TaylorSeries.sincos!(tmp5738, tmp4719, ψ_m, ord) + TaylorSeries.mul!(tmp4720, tmp4718, tmp4719, ord) + TaylorSeries.sincos!(tmp5739, tmp4721, θ_m, ord) + TaylorSeries.sincos!(tmp4722, tmp5740, ϕ_m, ord) TaylorSeries.mul!(tmp4723, tmp4721, tmp4722, ord) - TaylorSeries.sincos!(tmp5716, tmp4724, ϕ_c, ord) - TaylorSeries.mul!(tmp4725, RotM[1, 2, mo], tmp4724, ord) - TaylorSeries.add!(mantlef2coref[2, 1], tmp4723, tmp4725, ord) + TaylorSeries.sincos!(tmp4724, tmp5741, ψ_m, ord) + TaylorSeries.mul!(tmp4725, tmp4723, tmp4724, ord) + TaylorSeries.subst!(RotM[1, 1, mo], tmp4720, tmp4725, ord) + TaylorSeries.sincos!(tmp5742, tmp4727, θ_m, ord) + TaylorSeries.subst!(tmp4728, tmp4727, ord) + TaylorSeries.sincos!(tmp5743, tmp4729, ψ_m, ord) + TaylorSeries.mul!(tmp4730, tmp4728, tmp4729, ord) + TaylorSeries.sincos!(tmp4731, tmp5744, ϕ_m, ord) + TaylorSeries.mul!(tmp4732, tmp4730, tmp4731, ord) + TaylorSeries.sincos!(tmp5745, tmp4733, ϕ_m, ord) + TaylorSeries.sincos!(tmp4734, tmp5746, ψ_m, ord) + TaylorSeries.mul!(tmp4735, tmp4733, tmp4734, ord) + TaylorSeries.subst!(RotM[2, 1, mo], tmp4732, tmp4735, ord) + TaylorSeries.sincos!(tmp4737, tmp5747, θ_m, ord) + TaylorSeries.sincos!(tmp4738, tmp5748, ϕ_m, ord) + TaylorSeries.mul!(RotM[3, 1, mo], tmp4737, tmp4738, ord) + TaylorSeries.sincos!(tmp5749, tmp4740, ψ_m, ord) + TaylorSeries.sincos!(tmp4741, tmp5750, ϕ_m, ord) + TaylorSeries.mul!(tmp4742, tmp4740, tmp4741, ord) + TaylorSeries.sincos!(tmp5751, tmp4743, θ_m, ord) + TaylorSeries.sincos!(tmp5752, tmp4744, ϕ_m, ord) + TaylorSeries.mul!(tmp4745, tmp4743, tmp4744, ord) + TaylorSeries.sincos!(tmp4746, tmp5753, ψ_m, ord) + TaylorSeries.mul!(tmp4747, tmp4745, tmp4746, ord) + TaylorSeries.add!(RotM[1, 2, mo], tmp4742, tmp4747, ord) + TaylorSeries.sincos!(tmp5754, tmp4749, θ_m, ord) + TaylorSeries.sincos!(tmp5755, tmp4750, ϕ_m, ord) + TaylorSeries.mul!(tmp4751, tmp4749, tmp4750, ord) + TaylorSeries.sincos!(tmp5756, tmp4752, ψ_m, ord) + TaylorSeries.mul!(tmp4753, tmp4751, tmp4752, ord) + TaylorSeries.sincos!(tmp4754, tmp5757, ϕ_m, ord) + TaylorSeries.sincos!(tmp4755, tmp5758, ψ_m, ord) + TaylorSeries.mul!(tmp4756, tmp4754, tmp4755, ord) + TaylorSeries.subst!(RotM[2, 2, mo], tmp4753, tmp4756, ord) + TaylorSeries.sincos!(tmp5759, tmp4758, ϕ_m, ord) + TaylorSeries.subst!(tmp4759, tmp4758, ord) + TaylorSeries.sincos!(tmp4760, tmp5760, θ_m, ord) + TaylorSeries.mul!(RotM[3, 2, mo], tmp4759, tmp4760, ord) + TaylorSeries.sincos!(tmp4762, tmp5761, θ_m, ord) + TaylorSeries.sincos!(tmp4763, tmp5762, ψ_m, ord) + TaylorSeries.mul!(RotM[1, 3, mo], tmp4762, tmp4763, ord) + TaylorSeries.sincos!(tmp5763, tmp4765, ψ_m, ord) + TaylorSeries.sincos!(tmp4766, tmp5764, θ_m, ord) + TaylorSeries.mul!(RotM[2, 3, mo], tmp4765, tmp4766, ord) + TaylorSeries.sincos!(tmp5765, RotM[3, 3, mo], θ_m, ord) + TaylorSeries.identity!(ϕ_c, q[6N + 7], ord) + TaylorSeries.sincos!(tmp5766, tmp4769, ϕ_c, ord) + TaylorSeries.mul!(tmp4770, RotM[1, 1, mo], tmp4769, ord) + TaylorSeries.sincos!(tmp4771, tmp5767, ϕ_c, ord) + TaylorSeries.mul!(tmp4772, RotM[1, 2, mo], tmp4771, ord) + TaylorSeries.add!(mantlef2coref[1, 1], tmp4770, tmp4772, ord) + TaylorSeries.subst!(tmp4774, RotM[1, 1, mo], ord) + TaylorSeries.sincos!(tmp4775, tmp5768, ϕ_c, ord) + TaylorSeries.mul!(tmp4776, tmp4774, tmp4775, ord) + TaylorSeries.sincos!(tmp5769, tmp4777, ϕ_c, ord) + TaylorSeries.mul!(tmp4778, RotM[1, 2, mo], tmp4777, ord) + TaylorSeries.add!(mantlef2coref[2, 1], tmp4776, tmp4778, ord) TaylorSeries.identity!(mantlef2coref[3, 1], RotM[1, 3, mo], ord) - TaylorSeries.sincos!(tmp5717, tmp4727, ϕ_c, ord) - TaylorSeries.mul!(tmp4728, RotM[2, 1, mo], tmp4727, ord) - TaylorSeries.sincos!(tmp4729, tmp5718, ϕ_c, ord) - TaylorSeries.mul!(tmp4730, RotM[2, 2, mo], tmp4729, ord) - TaylorSeries.add!(mantlef2coref[1, 2], tmp4728, tmp4730, ord) - TaylorSeries.subst!(tmp4732, RotM[2, 1, mo], ord) - TaylorSeries.sincos!(tmp4733, tmp5719, ϕ_c, ord) - TaylorSeries.mul!(tmp4734, tmp4732, tmp4733, ord) - TaylorSeries.sincos!(tmp5720, tmp4735, ϕ_c, ord) - TaylorSeries.mul!(tmp4736, RotM[2, 2, mo], tmp4735, ord) - TaylorSeries.add!(mantlef2coref[2, 2], tmp4734, tmp4736, ord) + TaylorSeries.sincos!(tmp5770, tmp4780, ϕ_c, ord) + TaylorSeries.mul!(tmp4781, RotM[2, 1, mo], tmp4780, ord) + TaylorSeries.sincos!(tmp4782, tmp5771, ϕ_c, ord) + TaylorSeries.mul!(tmp4783, RotM[2, 2, mo], tmp4782, ord) + TaylorSeries.add!(mantlef2coref[1, 2], tmp4781, tmp4783, ord) + TaylorSeries.subst!(tmp4785, RotM[2, 1, mo], ord) + TaylorSeries.sincos!(tmp4786, tmp5772, ϕ_c, ord) + TaylorSeries.mul!(tmp4787, tmp4785, tmp4786, ord) + TaylorSeries.sincos!(tmp5773, tmp4788, ϕ_c, ord) + TaylorSeries.mul!(tmp4789, RotM[2, 2, mo], tmp4788, ord) + TaylorSeries.add!(mantlef2coref[2, 2], tmp4787, tmp4789, ord) TaylorSeries.identity!(mantlef2coref[3, 2], RotM[2, 3, mo], ord) - TaylorSeries.sincos!(tmp5721, tmp4738, ϕ_c, ord) - TaylorSeries.mul!(tmp4739, RotM[3, 1, mo], tmp4738, ord) - TaylorSeries.sincos!(tmp4740, tmp5722, ϕ_c, ord) - TaylorSeries.mul!(tmp4741, RotM[3, 2, mo], tmp4740, ord) - TaylorSeries.add!(mantlef2coref[1, 3], tmp4739, tmp4741, ord) - TaylorSeries.subst!(tmp4743, RotM[3, 1, mo], ord) - TaylorSeries.sincos!(tmp4744, tmp5723, ϕ_c, ord) - TaylorSeries.mul!(tmp4745, tmp4743, tmp4744, ord) - TaylorSeries.sincos!(tmp5724, tmp4746, ϕ_c, ord) - TaylorSeries.mul!(tmp4747, RotM[3, 2, mo], tmp4746, ord) - TaylorSeries.add!(mantlef2coref[2, 3], tmp4745, tmp4747, ord) + TaylorSeries.sincos!(tmp5774, tmp4791, ϕ_c, ord) + TaylorSeries.mul!(tmp4792, RotM[3, 1, mo], tmp4791, ord) + TaylorSeries.sincos!(tmp4793, tmp5775, ϕ_c, ord) + TaylorSeries.mul!(tmp4794, RotM[3, 2, mo], tmp4793, ord) + TaylorSeries.add!(mantlef2coref[1, 3], tmp4792, tmp4794, ord) + TaylorSeries.subst!(tmp4796, RotM[3, 1, mo], ord) + TaylorSeries.sincos!(tmp4797, tmp5776, ϕ_c, ord) + TaylorSeries.mul!(tmp4798, tmp4796, tmp4797, ord) + TaylorSeries.sincos!(tmp5777, tmp4799, ϕ_c, ord) + TaylorSeries.mul!(tmp4800, RotM[3, 2, mo], tmp4799, ord) + TaylorSeries.add!(mantlef2coref[2, 3], tmp4798, tmp4800, ord) TaylorSeries.identity!(mantlef2coref[3, 3], RotM[3, 3, mo], ord) - TaylorSeries.mul!(tmp4749, mantlef2coref[1, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp4750, mantlef2coref[1, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp4751, mantlef2coref[1, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp4752, tmp4750, tmp4751, ord) - TaylorSeries.add!(ω_c_CE_1, tmp4749, tmp4752, ord) - TaylorSeries.mul!(tmp4754, mantlef2coref[2, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp4755, mantlef2coref[2, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp4756, mantlef2coref[2, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp4757, tmp4755, tmp4756, ord) - TaylorSeries.add!(ω_c_CE_2, tmp4754, tmp4757, ord) - TaylorSeries.mul!(tmp4759, mantlef2coref[3, 1], q[6N + 10], ord) - TaylorSeries.mul!(tmp4760, mantlef2coref[3, 2], q[6N + 11], ord) - TaylorSeries.mul!(tmp4761, mantlef2coref[3, 3], q[6N + 12], ord) - TaylorSeries.add!(tmp4762, tmp4760, tmp4761, ord) - TaylorSeries.add!(ω_c_CE_3, tmp4759, tmp4762, ord) + TaylorSeries.mul!(tmp4802, mantlef2coref[1, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp4803, mantlef2coref[1, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp4804, mantlef2coref[1, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp4805, tmp4803, tmp4804, ord) + TaylorSeries.add!(ω_c_CE_1, tmp4802, tmp4805, ord) + TaylorSeries.mul!(tmp4807, mantlef2coref[2, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp4808, mantlef2coref[2, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp4809, mantlef2coref[2, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp4810, tmp4808, tmp4809, ord) + TaylorSeries.add!(ω_c_CE_2, tmp4807, tmp4810, ord) + TaylorSeries.mul!(tmp4812, mantlef2coref[3, 1], q[6N + 10], ord) + TaylorSeries.mul!(tmp4813, mantlef2coref[3, 2], q[6N + 11], ord) + TaylorSeries.mul!(tmp4814, mantlef2coref[3, 3], q[6N + 12], ord) + TaylorSeries.add!(tmp4815, tmp4813, tmp4814, ord) + TaylorSeries.add!(ω_c_CE_3, tmp4812, tmp4815, ord) TaylorSeries.identity!(J2_t[su], J2S_t, ord) TaylorSeries.identity!(J2_t[ea], J2E_t, ord) for j = 1:N @@ -6464,7 +14642,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(accY[j], zero_q_1, ord) TaylorSeries.identity!(accZ[j], zero_q_1, ord) end - #= REPL[19]:380 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:373 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -6475,35 +14653,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.subst!(U[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.subst!(V[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.subst!(W[i, j], dq[3i], dq[3j], ord) - TaylorSeries.mul!(tmp4771[3j - 2], 4, dq[3j - 2], ord) - TaylorSeries.mul!(tmp4773[3i - 2], 3, dq[3i - 2], ord) - TaylorSeries.subst!(_4U_m_3X[i, j], tmp4771[3j - 2], tmp4773[3i - 2], ord) - TaylorSeries.mul!(tmp4776[3j - 1], 4, dq[3j - 1], ord) - TaylorSeries.mul!(tmp4778[3i - 1], 3, dq[3i - 1], ord) - TaylorSeries.subst!(_4V_m_3Y[i, j], tmp4776[3j - 1], tmp4778[3i - 1], ord) - TaylorSeries.mul!(tmp4781[3j], 4, dq[3j], ord) - TaylorSeries.mul!(tmp4783[3i], 3, dq[3i], ord) - TaylorSeries.subst!(_4W_m_3Z[i, j], tmp4781[3j], tmp4783[3i], ord) + TaylorSeries.mul!(tmp4824[3j - 2], 4, dq[3j - 2], ord) + TaylorSeries.mul!(tmp4826[3i - 2], 3, dq[3i - 2], ord) + TaylorSeries.subst!(_4U_m_3X[i, j], tmp4824[3j - 2], tmp4826[3i - 2], ord) + TaylorSeries.mul!(tmp4829[3j - 1], 4, dq[3j - 1], ord) + TaylorSeries.mul!(tmp4831[3i - 1], 3, dq[3i - 1], ord) + TaylorSeries.subst!(_4V_m_3Y[i, j], tmp4829[3j - 1], tmp4831[3i - 1], ord) + TaylorSeries.mul!(tmp4834[3j], 4, dq[3j], ord) + TaylorSeries.mul!(tmp4836[3i], 3, dq[3i], ord) + TaylorSeries.subst!(_4W_m_3Z[i, j], tmp4834[3j], tmp4836[3i], ord) TaylorSeries.mul!(pn2x[i, j], X[i, j], _4U_m_3X[i, j], ord) TaylorSeries.mul!(pn2y[i, j], Y[i, j], _4V_m_3Y[i, j], ord) TaylorSeries.mul!(pn2z[i, j], Z[i, j], _4W_m_3Z[i, j], ord) TaylorSeries.mul!(UU[i, j], dq[3i - 2], dq[3j - 2], ord) TaylorSeries.mul!(VV[i, j], dq[3i - 1], dq[3j - 1], ord) TaylorSeries.mul!(WW[i, j], dq[3i], dq[3j], ord) - TaylorSeries.add!(tmp4791[i, j], UU[i, j], VV[i, j], ord) - TaylorSeries.add!(vi_dot_vj[i, j], tmp4791[i, j], WW[i, j], ord) - TaylorSeries.pow!(tmp4794[i, j], X[i, j], 2, ord) - TaylorSeries.pow!(tmp4796[i, j], Y[i, j], 2, ord) - TaylorSeries.add!(tmp4797[i, j], tmp4794[i, j], tmp4796[i, j], ord) - TaylorSeries.pow!(tmp4799[i, j], Z[i, j], 2, ord) - TaylorSeries.add!(r_p2[i, j], tmp4797[i, j], tmp4799[i, j], ord) + TaylorSeries.add!(tmp4844[i, j], UU[i, j], VV[i, j], ord) + TaylorSeries.add!(vi_dot_vj[i, j], tmp4844[i, j], WW[i, j], ord) + TaylorSeries.pow!(tmp4847[i, j], X[i, j], 2, ord) + TaylorSeries.pow!(tmp4849[i, j], Y[i, j], 2, ord) + TaylorSeries.add!(tmp4850[i, j], tmp4847[i, j], tmp4849[i, j], ord) + TaylorSeries.pow!(tmp4852[i, j], Z[i, j], 2, ord) + TaylorSeries.add!(r_p2[i, j], tmp4850[i, j], tmp4852[i, j], ord) TaylorSeries.sqrt!(r_p1d2[i, j], r_p2[i, j], ord) TaylorSeries.pow!(r_p3d2[i, j], r_p2[i, j], 1.5, ord) TaylorSeries.pow!(r_p7d2[i, j], r_p2[i, j], 3.5, ord) TaylorSeries.div!(newtonianCoeff[i, j], μ[i], r_p3d2[i, j], ord) - TaylorSeries.add!(tmp4807[i, j], pn2x[i, j], pn2y[i, j], ord) - TaylorSeries.add!(tmp4808[i, j], tmp4807[i, j], pn2z[i, j], ord) - TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp4808[i, j], ord) + TaylorSeries.add!(tmp4860[i, j], pn2x[i, j], pn2y[i, j], ord) + TaylorSeries.add!(tmp4861[i, j], tmp4860[i, j], pn2z[i, j], ord) + TaylorSeries.mul!(pn2[i, j], newtonianCoeff[i, j], tmp4861[i, j], ord) TaylorSeries.mul!(newton_acc_X[i, j], X[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Y[i, j], Y[i, j], newtonianCoeff[i, j], ord) TaylorSeries.mul!(newton_acc_Z[i, j], Z[i, j], newtonianCoeff[i, j], ord) @@ -6512,41 +14690,41 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(U_t_pn2[i, j], pn2[i, j], U[i, j], ord) TaylorSeries.mul!(V_t_pn2[i, j], pn2[i, j], V[i, j], ord) TaylorSeries.mul!(W_t_pn2[i, j], pn2[i, j], W[i, j], ord) - TaylorSeries.mul!(tmp4819[i, j], X[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp4819[i, j], ord) + TaylorSeries.mul!(tmp4872[i, j], X[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_001[i, j], newtonX[j], tmp4872[i, j], ord) TaylorSeries.identity!(newtonX[j], temp_001[i, j], ord) - TaylorSeries.mul!(tmp4821[i, j], Y[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp4821[i, j], ord) + TaylorSeries.mul!(tmp4874[i, j], Y[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_002[i, j], newtonY[j], tmp4874[i, j], ord) TaylorSeries.identity!(newtonY[j], temp_002[i, j], ord) - TaylorSeries.mul!(tmp4823[i, j], Z[i, j], newtonianCoeff[i, j], ord) - TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp4823[i, j], ord) + TaylorSeries.mul!(tmp4876[i, j], Z[i, j], newtonianCoeff[i, j], ord) + TaylorSeries.add!(temp_003[i, j], newtonZ[j], tmp4876[i, j], ord) TaylorSeries.identity!(newtonZ[j], temp_003[i, j], ord) TaylorSeries.add!(temp_004[i, j], newtonianNb_Potential[j], newtonian1b_Potential[i, j], ord) TaylorSeries.identity!(newtonianNb_Potential[j], temp_004[i, j], ord) end end - TaylorSeries.pow!(tmp4827[3j - 2], dq[3j - 2], 2, ord) - TaylorSeries.pow!(tmp4829[3j - 1], dq[3j - 1], 2, ord) - TaylorSeries.add!(tmp4830[3j - 2], tmp4827[3j - 2], tmp4829[3j - 1], ord) - TaylorSeries.pow!(tmp4832[3j], dq[3j], 2, ord) - TaylorSeries.add!(v2[j], tmp4830[3j - 2], tmp4832[3j], ord) + TaylorSeries.pow!(tmp4880[3j - 2], dq[3j - 2], 2, ord) + TaylorSeries.pow!(tmp4882[3j - 1], dq[3j - 1], 2, ord) + TaylorSeries.add!(tmp4883[3j - 2], tmp4880[3j - 2], tmp4882[3j - 1], ord) + TaylorSeries.pow!(tmp4885[3j], dq[3j], 2, ord) + TaylorSeries.add!(v2[j], tmp4883[3j - 2], tmp4885[3j], ord) end - TaylorSeries.add!(tmp4834, I_M_t[1, 1], I_M_t[2, 2], ord) - TaylorSeries.div!(tmp4836, tmp4834, 2, ord) - TaylorSeries.subst!(tmp4837, I_M_t[3, 3], tmp4836, ord) - TaylorSeries.div!(J2M_t, tmp4837, μ[mo], ord) - TaylorSeries.subst!(tmp4839, I_M_t[2, 2], I_M_t[1, 1], ord) - TaylorSeries.div!(tmp4840, tmp4839, μ[mo], ord) - TaylorSeries.div!(C22M_t, tmp4840, 4, ord) - TaylorSeries.subst!(tmp4843, I_M_t[1, 3], ord) - TaylorSeries.div!(C21M_t, tmp4843, μ[mo], ord) - TaylorSeries.subst!(tmp4845, I_M_t[3, 2], ord) - TaylorSeries.div!(S21M_t, tmp4845, μ[mo], ord) - TaylorSeries.subst!(tmp4847, I_M_t[2, 1], ord) - TaylorSeries.div!(tmp4848, tmp4847, μ[mo], ord) - TaylorSeries.div!(S22M_t, tmp4848, 2, ord) + TaylorSeries.add!(tmp4887, I_M_t[1, 1], I_M_t[2, 2], ord) + TaylorSeries.div!(tmp4889, tmp4887, 2, ord) + TaylorSeries.subst!(tmp4890, I_M_t[3, 3], tmp4889, ord) + TaylorSeries.div!(J2M_t, tmp4890, μ[mo], ord) + TaylorSeries.subst!(tmp4892, I_M_t[2, 2], I_M_t[1, 1], ord) + TaylorSeries.div!(tmp4893, tmp4892, μ[mo], ord) + TaylorSeries.div!(C22M_t, tmp4893, 4, ord) + TaylorSeries.subst!(tmp4896, I_M_t[1, 3], ord) + TaylorSeries.div!(C21M_t, tmp4896, μ[mo], ord) + TaylorSeries.subst!(tmp4898, I_M_t[3, 2], ord) + TaylorSeries.div!(S21M_t, tmp4898, μ[mo], ord) + TaylorSeries.subst!(tmp4900, I_M_t[2, 1], ord) + TaylorSeries.div!(tmp4901, tmp4900, μ[mo], ord) + TaylorSeries.div!(S22M_t, tmp4901, 2, ord) TaylorSeries.identity!(J2_t[mo], J2M_t, ord) - #= REPL[19]:474 =# Threads.@threads for j = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:467 =# Threads.@threads for j = 1:N_ext for i = 1:N_ext if i == j continue @@ -6561,17 +14739,17 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(Z_bf_1[i, j], X[i, j], RotM[3, 1, j], ord) TaylorSeries.mul!(Z_bf_2[i, j], Y[i, j], RotM[3, 2, j], ord) TaylorSeries.mul!(Z_bf_3[i, j], Z[i, j], RotM[3, 3, j], ord) - TaylorSeries.add!(tmp4860[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) - TaylorSeries.add!(X_bf[i, j], tmp4860[i, j], X_bf_3[i, j], ord) - TaylorSeries.add!(tmp4862[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) - TaylorSeries.add!(Y_bf[i, j], tmp4862[i, j], Y_bf_3[i, j], ord) - TaylorSeries.add!(tmp4864[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) - TaylorSeries.add!(Z_bf[i, j], tmp4864[i, j], Z_bf_3[i, j], ord) + TaylorSeries.add!(tmp4913[i, j], X_bf_1[i, j], X_bf_2[i, j], ord) + TaylorSeries.add!(X_bf[i, j], tmp4913[i, j], X_bf_3[i, j], ord) + TaylorSeries.add!(tmp4915[i, j], Y_bf_1[i, j], Y_bf_2[i, j], ord) + TaylorSeries.add!(Y_bf[i, j], tmp4915[i, j], Y_bf_3[i, j], ord) + TaylorSeries.add!(tmp4917[i, j], Z_bf_1[i, j], Z_bf_2[i, j], ord) + TaylorSeries.add!(Z_bf[i, j], tmp4917[i, j], Z_bf_3[i, j], ord) TaylorSeries.div!(sin_ϕ[i, j], Z_bf[i, j], r_p1d2[i, j], ord) - TaylorSeries.pow!(tmp4868[i, j], X_bf[i, j], 2, ord) - TaylorSeries.pow!(tmp4870[i, j], Y_bf[i, j], 2, ord) - TaylorSeries.add!(tmp4871[i, j], tmp4868[i, j], tmp4870[i, j], ord) - TaylorSeries.sqrt!(r_xy[i, j], tmp4871[i, j], ord) + TaylorSeries.pow!(tmp4921[i, j], X_bf[i, j], 2, ord) + TaylorSeries.pow!(tmp4923[i, j], Y_bf[i, j], 2, ord) + TaylorSeries.add!(tmp4924[i, j], tmp4921[i, j], tmp4923[i, j], ord) + TaylorSeries.sqrt!(r_xy[i, j], tmp4924[i, j], ord) TaylorSeries.div!(cos_ϕ[i, j], r_xy[i, j], r_p1d2[i, j], ord) TaylorSeries.div!(sin_λ[i, j], Y_bf[i, j], r_xy[i, j], ord) TaylorSeries.div!(cos_λ[i, j], X_bf[i, j], r_xy[i, j], ord) @@ -6580,35 +14758,35 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(dP_n[i, j, 1], zero_q_1, ord) TaylorSeries.identity!(dP_n[i, j, 2], one_t, ord) for n = 2:n1SEM[j] - TaylorSeries.mul!(tmp4876[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4877[i, j, n], tmp4876[i, j, n], fact1_jsem[n], ord) - TaylorSeries.mul!(tmp4878[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) - TaylorSeries.subst!(P_n[i, j, n + 1], tmp4877[i, j, n], tmp4878[i, j, n - 1], ord) - TaylorSeries.mul!(tmp4880[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4881[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) - TaylorSeries.add!(dP_n[i, j, n + 1], tmp4880[i, j, n], tmp4881[i, j, n], ord) + TaylorSeries.mul!(tmp4929[i, j, n], P_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp4930[i, j, n], tmp4929[i, j, n], fact1_jsem[n], ord) + TaylorSeries.mul!(tmp4931[i, j, n - 1], P_n[i, j, n - 1], fact2_jsem[n], ord) + TaylorSeries.subst!(P_n[i, j, n + 1], tmp4930[i, j, n], tmp4931[i, j, n - 1], ord) + TaylorSeries.mul!(tmp4933[i, j, n], dP_n[i, j, n], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp4934[i, j, n], P_n[i, j, n], fact3_jsem[n], ord) + TaylorSeries.add!(dP_n[i, j, n + 1], tmp4933[i, j, n], tmp4934[i, j, n], ord) TaylorSeries.pow!(temp_rn[i, j, n], r_p1d2[i, j], fact5_jsem[n], ord) end TaylorSeries.pow!(r_p4[i, j], r_p2[i, j], 2, ord) - TaylorSeries.mul!(tmp4886[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) - TaylorSeries.mul!(tmp4887[i, j, 3], tmp4886[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ξ[i, j], tmp4887[i, j, 3], r_p4[i, j], ord) - TaylorSeries.subst!(tmp4889[i, j, 3], dP_n[i, j, 3], ord) - TaylorSeries.mul!(tmp4890[i, j, 3], tmp4889[i, j, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4891[i, j, 3], tmp4890[i, j, 3], J2_t[j], ord) - TaylorSeries.div!(F_J_ζ[i, j], tmp4891[i, j, 3], r_p4[i, j], ord) + TaylorSeries.mul!(tmp4939[i, j, 3], P_n[i, j, 3], fact4_jsem[2], ord) + TaylorSeries.mul!(tmp4940[i, j, 3], tmp4939[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ξ[i, j], tmp4940[i, j, 3], r_p4[i, j], ord) + TaylorSeries.subst!(tmp4942[i, j, 3], dP_n[i, j, 3], ord) + TaylorSeries.mul!(tmp4943[i, j, 3], tmp4942[i, j, 3], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp4944[i, j, 3], tmp4943[i, j, 3], J2_t[j], ord) + TaylorSeries.div!(F_J_ζ[i, j], tmp4944[i, j, 3], r_p4[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_J_ζ_36[i, j], zero_q_1, ord) for n = 3:n1SEM[j] - TaylorSeries.mul!(tmp4893[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) - TaylorSeries.mul!(tmp4894[i, j, n + 1], tmp4893[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp4895[i, j, n + 1], tmp4894[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjξ[i, j, n], tmp4895[i, j, n + 1], F_J_ξ_36[i, j], ord) - TaylorSeries.subst!(tmp4897[i, j, n + 1], dP_n[i, j, n + 1], ord) - TaylorSeries.mul!(tmp4898[i, j, n + 1], tmp4897[i, j, n + 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4899[i, j, n + 1], tmp4898[i, j, n + 1], JSEM[j, n], ord) - TaylorSeries.div!(tmp4900[i, j, n + 1], tmp4899[i, j, n + 1], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_fjζ[i, j, n], tmp4900[i, j, n + 1], F_J_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp4946[i, j, n + 1], P_n[i, j, n + 1], fact4_jsem[n], ord) + TaylorSeries.mul!(tmp4947[i, j, n + 1], tmp4946[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp4948[i, j, n + 1], tmp4947[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjξ[i, j, n], tmp4948[i, j, n + 1], F_J_ξ_36[i, j], ord) + TaylorSeries.subst!(tmp4950[i, j, n + 1], dP_n[i, j, n + 1], ord) + TaylorSeries.mul!(tmp4951[i, j, n + 1], tmp4950[i, j, n + 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(tmp4952[i, j, n + 1], tmp4951[i, j, n + 1], JSEM[j, n], ord) + TaylorSeries.div!(tmp4953[i, j, n + 1], tmp4952[i, j, n + 1], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_fjζ[i, j, n], tmp4953[i, j, n + 1], F_J_ζ_36[i, j], ord) TaylorSeries.identity!(F_J_ξ_36[i, j], temp_fjξ[i, j, n], ord) TaylorSeries.identity!(F_J_ζ_36[i, j], temp_fjζ[i, j, n], ord) end @@ -6621,69 +14799,69 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(P_nm[i, j, 1, 1], cos_ϕ[i, j], ord) TaylorSeries.mul!(cosϕ_dP_nm[i, j, 1, 1], sin_ϕ[i, j], lnm3[1], ord) else - TaylorSeries.mul!(tmp4903[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp4904[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.add!(sin_mλ[i, j, m], tmp4903[i, j, m - 1], tmp4904[i, j, m - 1], ord) - TaylorSeries.mul!(tmp4906[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp4907[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(cos_mλ[i, j, m], tmp4906[i, j, m - 1], tmp4907[i, j, m - 1], ord) - TaylorSeries.mul!(tmp4909[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp4909[i, j, m - 1, m - 1], lnm5[m], ord) + TaylorSeries.mul!(tmp4956[i, j, m - 1], cos_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp4957[i, j, m - 1], sin_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.add!(sin_mλ[i, j, m], tmp4956[i, j, m - 1], tmp4957[i, j, m - 1], ord) + TaylorSeries.mul!(tmp4959[i, j, m - 1], cos_mλ[i, j, m - 1], cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp4960[i, j, m - 1], sin_mλ[i, j, m - 1], sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(cos_mλ[i, j, m], tmp4959[i, j, m - 1], tmp4960[i, j, m - 1], ord) + TaylorSeries.mul!(tmp4962[i, j, m - 1, m - 1], secϕ_P_nm[i, j, m - 1, m - 1], cos_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, m, m], tmp4962[i, j, m - 1, m - 1], lnm5[m], ord) TaylorSeries.mul!(P_nm[i, j, m, m], secϕ_P_nm[i, j, m, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4912[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp4912[i, j, m, m], lnm3[m], ord) + TaylorSeries.mul!(tmp4965[i, j, m, m], secϕ_P_nm[i, j, m, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(cosϕ_dP_nm[i, j, m, m], tmp4965[i, j, m, m], lnm3[m], ord) end for n = m + 1:n1SEM[mo] if n == m + 1 - TaylorSeries.mul!(tmp4914[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp4914[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp4967[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(secϕ_P_nm[i, j, n, m], tmp4967[i, j, n - 1, m], lnm1[n, m], ord) else - TaylorSeries.mul!(tmp4916[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4917[i, j, n - 1, m], tmp4916[i, j, n - 1, m], lnm1[n, m], ord) - TaylorSeries.mul!(tmp4918[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) - TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp4917[i, j, n - 1, m], tmp4918[i, j, n - 2, m], ord) + TaylorSeries.mul!(tmp4969[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp4970[i, j, n - 1, m], tmp4969[i, j, n - 1, m], lnm1[n, m], ord) + TaylorSeries.mul!(tmp4971[i, j, n - 2, m], secϕ_P_nm[i, j, n - 2, m], lnm2[n, m], ord) + TaylorSeries.add!(secϕ_P_nm[i, j, n, m], tmp4970[i, j, n - 1, m], tmp4971[i, j, n - 2, m], ord) end TaylorSeries.mul!(P_nm[i, j, n, m], secϕ_P_nm[i, j, n, m], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4921[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4922[i, j, n, m], tmp4921[i, j, n, m], lnm3[n], ord) - TaylorSeries.mul!(tmp4923[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) - TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp4922[i, j, n, m], tmp4923[i, j, n - 1, m], ord) + TaylorSeries.mul!(tmp4974[i, j, n, m], secϕ_P_nm[i, j, n, m], sin_ϕ[i, j], ord) + TaylorSeries.mul!(tmp4975[i, j, n, m], tmp4974[i, j, n, m], lnm3[n], ord) + TaylorSeries.mul!(tmp4976[i, j, n - 1, m], secϕ_P_nm[i, j, n - 1, m], lnm4[n, m], ord) + TaylorSeries.add!(cosϕ_dP_nm[i, j, n, m], tmp4975[i, j, n, m], tmp4976[i, j, n - 1, m], ord) end end - TaylorSeries.mul!(tmp4925[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) - TaylorSeries.mul!(tmp4926[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp4927[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp4928[i, j, 1], tmp4926[i, j, 1], tmp4927[i, j, 1], ord) - TaylorSeries.mul!(tmp4929[i, j, 2, 1], tmp4925[i, j, 2, 1], tmp4928[i, j, 1], ord) - TaylorSeries.mul!(tmp4930[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) - TaylorSeries.mul!(tmp4931[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp4932[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp4933[i, j, 2], tmp4931[i, j, 2], tmp4932[i, j, 2], ord) - TaylorSeries.mul!(tmp4934[i, j, 2, 2], tmp4930[i, j, 2, 2], tmp4933[i, j, 2], ord) - TaylorSeries.add!(tmp4935[i, j, 2, 1], tmp4929[i, j, 2, 1], tmp4934[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ξ[i, j], tmp4935[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp4937[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) - TaylorSeries.mul!(tmp4938[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp4939[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.subst!(tmp4940[i, j, 1], tmp4938[i, j, 1], tmp4939[i, j, 1], ord) - TaylorSeries.mul!(tmp4941[i, j, 2, 1], tmp4937[i, j, 2, 1], tmp4940[i, j, 1], ord) - TaylorSeries.mul!(tmp4942[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) - TaylorSeries.mul!(tmp4943[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp4944[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.subst!(tmp4945[i, j, 2], tmp4943[i, j, 2], tmp4944[i, j, 2], ord) - TaylorSeries.mul!(tmp4946[i, j, 2, 2], tmp4942[i, j, 2, 2], tmp4945[i, j, 2], ord) - TaylorSeries.add!(tmp4947[i, j, 2, 1], tmp4941[i, j, 2, 1], tmp4946[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_η[i, j], tmp4947[i, j, 2, 1], r_p4[i, j], ord) - TaylorSeries.mul!(tmp4949[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) - TaylorSeries.mul!(tmp4950[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) - TaylorSeries.add!(tmp4951[i, j, 1], tmp4949[i, j, 1], tmp4950[i, j, 1], ord) - TaylorSeries.mul!(tmp4952[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp4951[i, j, 1], ord) - TaylorSeries.mul!(tmp4953[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) - TaylorSeries.mul!(tmp4954[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) - TaylorSeries.add!(tmp4955[i, j, 2], tmp4953[i, j, 2], tmp4954[i, j, 2], ord) - TaylorSeries.mul!(tmp4956[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp4955[i, j, 2], ord) - TaylorSeries.add!(tmp4957[i, j, 2, 1], tmp4952[i, j, 2, 1], tmp4956[i, j, 2, 2], ord) - TaylorSeries.div!(F_CS_ζ[i, j], tmp4957[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp4978[i, j, 2, 1], P_nm[i, j, 2, 1], lnm6[2], ord) + TaylorSeries.mul!(tmp4979[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp4980[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp4981[i, j, 1], tmp4979[i, j, 1], tmp4980[i, j, 1], ord) + TaylorSeries.mul!(tmp4982[i, j, 2, 1], tmp4978[i, j, 2, 1], tmp4981[i, j, 1], ord) + TaylorSeries.mul!(tmp4983[i, j, 2, 2], P_nm[i, j, 2, 2], lnm6[2], ord) + TaylorSeries.mul!(tmp4984[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp4985[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp4986[i, j, 2], tmp4984[i, j, 2], tmp4985[i, j, 2], ord) + TaylorSeries.mul!(tmp4987[i, j, 2, 2], tmp4983[i, j, 2, 2], tmp4986[i, j, 2], ord) + TaylorSeries.add!(tmp4988[i, j, 2, 1], tmp4982[i, j, 2, 1], tmp4987[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ξ[i, j], tmp4988[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp4990[i, j, 2, 1], secϕ_P_nm[i, j, 2, 1], lnm7[1], ord) + TaylorSeries.mul!(tmp4991[i, j, 1], S21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp4992[i, j, 1], C21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.subst!(tmp4993[i, j, 1], tmp4991[i, j, 1], tmp4992[i, j, 1], ord) + TaylorSeries.mul!(tmp4994[i, j, 2, 1], tmp4990[i, j, 2, 1], tmp4993[i, j, 1], ord) + TaylorSeries.mul!(tmp4995[i, j, 2, 2], secϕ_P_nm[i, j, 2, 2], lnm7[2], ord) + TaylorSeries.mul!(tmp4996[i, j, 2], S22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp4997[i, j, 2], C22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.subst!(tmp4998[i, j, 2], tmp4996[i, j, 2], tmp4997[i, j, 2], ord) + TaylorSeries.mul!(tmp4999[i, j, 2, 2], tmp4995[i, j, 2, 2], tmp4998[i, j, 2], ord) + TaylorSeries.add!(tmp5000[i, j, 2, 1], tmp4994[i, j, 2, 1], tmp4999[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_η[i, j], tmp5000[i, j, 2, 1], r_p4[i, j], ord) + TaylorSeries.mul!(tmp5002[i, j, 1], C21M_t, cos_mλ[i, j, 1], ord) + TaylorSeries.mul!(tmp5003[i, j, 1], S21M_t, sin_mλ[i, j, 1], ord) + TaylorSeries.add!(tmp5004[i, j, 1], tmp5002[i, j, 1], tmp5003[i, j, 1], ord) + TaylorSeries.mul!(tmp5005[i, j, 2, 1], cosϕ_dP_nm[i, j, 2, 1], tmp5004[i, j, 1], ord) + TaylorSeries.mul!(tmp5006[i, j, 2], C22M_t, cos_mλ[i, j, 2], ord) + TaylorSeries.mul!(tmp5007[i, j, 2], S22M_t, sin_mλ[i, j, 2], ord) + TaylorSeries.add!(tmp5008[i, j, 2], tmp5006[i, j, 2], tmp5007[i, j, 2], ord) + TaylorSeries.mul!(tmp5009[i, j, 2, 2], cosϕ_dP_nm[i, j, 2, 2], tmp5008[i, j, 2], ord) + TaylorSeries.add!(tmp5010[i, j, 2, 1], tmp5005[i, j, 2, 1], tmp5009[i, j, 2, 2], ord) + TaylorSeries.div!(F_CS_ζ[i, j], tmp5010[i, j, 2, 1], r_p4[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_η_36[i, j], zero_q_1, ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], zero_q_1, ord) @@ -6693,32 +14871,32 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(Cnm_sinmλ[i, j, n, m], CM[n, m], sin_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_cosmλ[i, j, n, m], SM[n, m], cos_mλ[i, j, m], ord) TaylorSeries.mul!(Snm_sinmλ[i, j, n, m], SM[n, m], sin_mλ[i, j, m], ord) - TaylorSeries.mul!(tmp4963[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) - TaylorSeries.add!(tmp4964[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp4965[i, j, n, m], tmp4963[i, j, n, m], tmp4964[i, j, n, m], ord) - TaylorSeries.div!(tmp4966[i, j, n, m], tmp4965[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp4966[i, j, n, m], F_CS_ξ_36[i, j], ord) - TaylorSeries.mul!(tmp4968[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) - TaylorSeries.subst!(tmp4969[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp4970[i, j, n, m], tmp4968[i, j, n, m], tmp4969[i, j, n, m], ord) - TaylorSeries.div!(tmp4971[i, j, n, m], tmp4970[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp4971[i, j, n, m], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp4973[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) - TaylorSeries.mul!(tmp4974[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp4973[i, j, n, m], ord) - TaylorSeries.div!(tmp4975[i, j, n, m], tmp4974[i, j, n, m], temp_rn[i, j, n], ord) - TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp4975[i, j, n, m], F_CS_ζ_36[i, j], ord) + TaylorSeries.mul!(tmp5016[i, j, n, m], P_nm[i, j, n, m], lnm6[n], ord) + TaylorSeries.add!(tmp5017[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp5018[i, j, n, m], tmp5016[i, j, n, m], tmp5017[i, j, n, m], ord) + TaylorSeries.div!(tmp5019[i, j, n, m], tmp5018[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ξ[i, j, n, m], tmp5019[i, j, n, m], F_CS_ξ_36[i, j], ord) + TaylorSeries.mul!(tmp5021[i, j, n, m], secϕ_P_nm[i, j, n, m], lnm7[m], ord) + TaylorSeries.subst!(tmp5022[i, j, n, m], Snm_cosmλ[i, j, n, m], Cnm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp5023[i, j, n, m], tmp5021[i, j, n, m], tmp5022[i, j, n, m], ord) + TaylorSeries.div!(tmp5024[i, j, n, m], tmp5023[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_η[i, j, n, m], tmp5024[i, j, n, m], F_CS_η_36[i, j], ord) + TaylorSeries.add!(tmp5026[i, j, n, m], Cnm_cosmλ[i, j, n, m], Snm_sinmλ[i, j, n, m], ord) + TaylorSeries.mul!(tmp5027[i, j, n, m], cosϕ_dP_nm[i, j, n, m], tmp5026[i, j, n, m], ord) + TaylorSeries.div!(tmp5028[i, j, n, m], tmp5027[i, j, n, m], temp_rn[i, j, n], ord) + TaylorSeries.add!(temp_CS_ζ[i, j, n, m], tmp5028[i, j, n, m], F_CS_ζ_36[i, j], ord) TaylorSeries.identity!(F_CS_ξ_36[i, j], temp_CS_ξ[i, j, n, m], ord) TaylorSeries.identity!(F_CS_η_36[i, j], temp_CS_η[i, j, n, m], ord) TaylorSeries.identity!(F_CS_ζ_36[i, j], temp_CS_ζ[i, j, n, m], ord) end end - TaylorSeries.add!(tmp4977[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) - TaylorSeries.add!(tmp4978[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ξ[i, j], tmp4977[i, j], tmp4978[i, j], ord) + TaylorSeries.add!(tmp5030[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) + TaylorSeries.add!(tmp5031[i, j], F_CS_ξ[i, j], F_CS_ξ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ξ[i, j], tmp5030[i, j], tmp5031[i, j], ord) TaylorSeries.add!(F_JCS_η[i, j], F_CS_η[i, j], F_CS_η_36[i, j], ord) - TaylorSeries.add!(tmp4981[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) - TaylorSeries.add!(tmp4982[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) - TaylorSeries.add!(F_JCS_ζ[i, j], tmp4981[i, j], tmp4982[i, j], ord) + TaylorSeries.add!(tmp5034[i, j], F_J_ζ[i, j], F_J_ζ_36[i, j], ord) + TaylorSeries.add!(tmp5035[i, j], F_CS_ζ[i, j], F_CS_ζ_36[i, j], ord) + TaylorSeries.add!(F_JCS_ζ[i, j], tmp5034[i, j], tmp5035[i, j], ord) else TaylorSeries.add!(F_JCS_ξ[i, j], F_J_ξ[i, j], F_J_ξ_36[i, j], ord) TaylorSeries.identity!(F_JCS_η[i, j], zero_q_1, ord) @@ -6726,75 +14904,75 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end TaylorSeries.mul!(Rb2p[i, j, 1, 1], cos_ϕ[i, j], cos_λ[i, j], ord) TaylorSeries.subst!(Rb2p[i, j, 2, 1], sin_λ[i, j], ord) - TaylorSeries.subst!(tmp4988[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp4988[i, j], cos_λ[i, j], ord) + TaylorSeries.subst!(tmp5041[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 1], tmp5041[i, j], cos_λ[i, j], ord) TaylorSeries.mul!(Rb2p[i, j, 1, 2], cos_ϕ[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 2], cos_λ[i, j], ord) - TaylorSeries.subst!(tmp4991[i, j], sin_ϕ[i, j], ord) - TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp4991[i, j], sin_λ[i, j], ord) + TaylorSeries.subst!(tmp5044[i, j], sin_ϕ[i, j], ord) + TaylorSeries.mul!(Rb2p[i, j, 3, 2], tmp5044[i, j], sin_λ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 1, 3], sin_ϕ[i, j], ord) TaylorSeries.identity!(Rb2p[i, j, 2, 3], zero_q_1, ord) TaylorSeries.identity!(Rb2p[i, j, 3, 3], cos_ϕ[i, j], ord) - TaylorSeries.mul!(tmp4993[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp4994[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp4995[i, j, 1, 1], tmp4993[i, j, 1, 1], tmp4994[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp4996[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp4995[i, j, 1, 1], tmp4996[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp4998[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp4999[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp5000[i, j, 2, 1], tmp4998[i, j, 2, 1], tmp4999[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp5001[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp5000[i, j, 2, 1], tmp5001[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp5003[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) - TaylorSeries.mul!(tmp5004[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) - TaylorSeries.add!(tmp5005[i, j, 3, 1], tmp5003[i, j, 3, 1], tmp5004[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp5006[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp5005[i, j, 3, 1], tmp5006[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp5008[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp5009[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp5010[i, j, 1, 1], tmp5008[i, j, 1, 1], tmp5009[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp5011[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp5010[i, j, 1, 1], tmp5011[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp5013[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp5014[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp5015[i, j, 2, 1], tmp5013[i, j, 2, 1], tmp5014[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp5016[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp5015[i, j, 2, 1], tmp5016[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp5018[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) - TaylorSeries.mul!(tmp5019[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) - TaylorSeries.add!(tmp5020[i, j, 3, 1], tmp5018[i, j, 3, 1], tmp5019[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp5021[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp5020[i, j, 3, 1], tmp5021[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp5023[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp5024[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp5025[i, j, 1, 1], tmp5023[i, j, 1, 1], tmp5024[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp5026[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp5025[i, j, 1, 1], tmp5026[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp5028[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp5029[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp5030[i, j, 2, 1], tmp5028[i, j, 2, 1], tmp5029[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp5031[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp5030[i, j, 2, 1], tmp5031[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp5033[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) - TaylorSeries.mul!(tmp5034[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) - TaylorSeries.add!(tmp5035[i, j, 3, 1], tmp5033[i, j, 3, 1], tmp5034[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp5036[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) - TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp5035[i, j, 3, 1], tmp5036[i, j, 3, 3], ord) - TaylorSeries.mul!(tmp5038[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) - TaylorSeries.mul!(tmp5039[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) - TaylorSeries.add!(tmp5040[i, j, 1, 1], tmp5038[i, j, 1, 1], tmp5039[i, j, 2, 1], ord) - TaylorSeries.mul!(tmp5041[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) - TaylorSeries.add!(F_JCS_x[i, j], tmp5040[i, j, 1, 1], tmp5041[i, j, 3, 1], ord) - TaylorSeries.mul!(tmp5043[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) - TaylorSeries.mul!(tmp5044[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) - TaylorSeries.add!(tmp5045[i, j, 1, 2], tmp5043[i, j, 1, 2], tmp5044[i, j, 2, 2], ord) - TaylorSeries.mul!(tmp5046[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) - TaylorSeries.add!(F_JCS_y[i, j], tmp5045[i, j, 1, 2], tmp5046[i, j, 3, 2], ord) - TaylorSeries.mul!(tmp5048[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) - TaylorSeries.mul!(tmp5049[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) - TaylorSeries.add!(tmp5050[i, j, 1, 3], tmp5048[i, j, 1, 3], tmp5049[i, j, 2, 3], ord) - TaylorSeries.mul!(tmp5051[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) - TaylorSeries.add!(F_JCS_z[i, j], tmp5050[i, j, 1, 3], tmp5051[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp5046[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp5047[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp5048[i, j, 1, 1], tmp5046[i, j, 1, 1], tmp5047[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp5049[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 1], tmp5048[i, j, 1, 1], tmp5049[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp5051[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp5052[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp5053[i, j, 2, 1], tmp5051[i, j, 2, 1], tmp5052[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp5054[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 1], tmp5053[i, j, 2, 1], tmp5054[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp5056[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 1, j], ord) + TaylorSeries.mul!(tmp5057[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 1, j], ord) + TaylorSeries.add!(tmp5058[i, j, 3, 1], tmp5056[i, j, 3, 1], tmp5057[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp5059[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 1, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 1], tmp5058[i, j, 3, 1], tmp5059[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp5061[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp5062[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp5063[i, j, 1, 1], tmp5061[i, j, 1, 1], tmp5062[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp5064[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 2], tmp5063[i, j, 1, 1], tmp5064[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp5066[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp5067[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp5068[i, j, 2, 1], tmp5066[i, j, 2, 1], tmp5067[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp5069[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 2], tmp5068[i, j, 2, 1], tmp5069[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp5071[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 2, j], ord) + TaylorSeries.mul!(tmp5072[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 2, j], ord) + TaylorSeries.add!(tmp5073[i, j, 3, 1], tmp5071[i, j, 3, 1], tmp5072[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp5074[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 2, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 2], tmp5073[i, j, 3, 1], tmp5074[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp5076[i, j, 1, 1], Rb2p[i, j, 1, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp5077[i, j, 1, 2], Rb2p[i, j, 1, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp5078[i, j, 1, 1], tmp5076[i, j, 1, 1], tmp5077[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp5079[i, j, 1, 3], Rb2p[i, j, 1, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 1, 3], tmp5078[i, j, 1, 1], tmp5079[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp5081[i, j, 2, 1], Rb2p[i, j, 2, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp5082[i, j, 2, 2], Rb2p[i, j, 2, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp5083[i, j, 2, 1], tmp5081[i, j, 2, 1], tmp5082[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp5084[i, j, 2, 3], Rb2p[i, j, 2, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 2, 3], tmp5083[i, j, 2, 1], tmp5084[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp5086[i, j, 3, 1], Rb2p[i, j, 3, 1], RotM[1, 3, j], ord) + TaylorSeries.mul!(tmp5087[i, j, 3, 2], Rb2p[i, j, 3, 2], RotM[2, 3, j], ord) + TaylorSeries.add!(tmp5088[i, j, 3, 1], tmp5086[i, j, 3, 1], tmp5087[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp5089[i, j, 3, 3], Rb2p[i, j, 3, 3], RotM[3, 3, j], ord) + TaylorSeries.add!(Gc2p[i, j, 3, 3], tmp5088[i, j, 3, 1], tmp5089[i, j, 3, 3], ord) + TaylorSeries.mul!(tmp5091[i, j, 1, 1], F_JCS_ξ[i, j], Gc2p[i, j, 1, 1], ord) + TaylorSeries.mul!(tmp5092[i, j, 2, 1], F_JCS_η[i, j], Gc2p[i, j, 2, 1], ord) + TaylorSeries.add!(tmp5093[i, j, 1, 1], tmp5091[i, j, 1, 1], tmp5092[i, j, 2, 1], ord) + TaylorSeries.mul!(tmp5094[i, j, 3, 1], F_JCS_ζ[i, j], Gc2p[i, j, 3, 1], ord) + TaylorSeries.add!(F_JCS_x[i, j], tmp5093[i, j, 1, 1], tmp5094[i, j, 3, 1], ord) + TaylorSeries.mul!(tmp5096[i, j, 1, 2], F_JCS_ξ[i, j], Gc2p[i, j, 1, 2], ord) + TaylorSeries.mul!(tmp5097[i, j, 2, 2], F_JCS_η[i, j], Gc2p[i, j, 2, 2], ord) + TaylorSeries.add!(tmp5098[i, j, 1, 2], tmp5096[i, j, 1, 2], tmp5097[i, j, 2, 2], ord) + TaylorSeries.mul!(tmp5099[i, j, 3, 2], F_JCS_ζ[i, j], Gc2p[i, j, 3, 2], ord) + TaylorSeries.add!(F_JCS_y[i, j], tmp5098[i, j, 1, 2], tmp5099[i, j, 3, 2], ord) + TaylorSeries.mul!(tmp5101[i, j, 1, 3], F_JCS_ξ[i, j], Gc2p[i, j, 1, 3], ord) + TaylorSeries.mul!(tmp5102[i, j, 2, 3], F_JCS_η[i, j], Gc2p[i, j, 2, 3], ord) + TaylorSeries.add!(tmp5103[i, j, 1, 3], tmp5101[i, j, 1, 3], tmp5102[i, j, 2, 3], ord) + TaylorSeries.mul!(tmp5104[i, j, 3, 3], F_JCS_ζ[i, j], Gc2p[i, j, 3, 3], ord) + TaylorSeries.add!(F_JCS_z[i, j], tmp5103[i, j, 1, 3], tmp5104[i, j, 3, 3], ord) end end end @@ -6805,37 +14983,37 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract continue else if UJ_interaction[i, j] - TaylorSeries.mul!(tmp5053[i, j], μ[i], F_JCS_x[i, j], ord) - TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp5053[i, j], ord) + TaylorSeries.mul!(tmp5106[i, j], μ[i], F_JCS_x[i, j], ord) + TaylorSeries.subst!(temp_accX_j[i, j], accX[j], tmp5106[i, j], ord) TaylorSeries.identity!(accX[j], temp_accX_j[i, j], ord) - TaylorSeries.mul!(tmp5055[i, j], μ[i], F_JCS_y[i, j], ord) - TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp5055[i, j], ord) + TaylorSeries.mul!(tmp5108[i, j], μ[i], F_JCS_y[i, j], ord) + TaylorSeries.subst!(temp_accY_j[i, j], accY[j], tmp5108[i, j], ord) TaylorSeries.identity!(accY[j], temp_accY_j[i, j], ord) - TaylorSeries.mul!(tmp5057[i, j], μ[i], F_JCS_z[i, j], ord) - TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp5057[i, j], ord) + TaylorSeries.mul!(tmp5110[i, j], μ[i], F_JCS_z[i, j], ord) + TaylorSeries.subst!(temp_accZ_j[i, j], accZ[j], tmp5110[i, j], ord) TaylorSeries.identity!(accZ[j], temp_accZ_j[i, j], ord) - TaylorSeries.mul!(tmp5059[i, j], μ[j], F_JCS_x[i, j], ord) - TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp5059[i, j], ord) + TaylorSeries.mul!(tmp5112[i, j], μ[j], F_JCS_x[i, j], ord) + TaylorSeries.add!(temp_accX_i[i, j], accX[i], tmp5112[i, j], ord) TaylorSeries.identity!(accX[i], temp_accX_i[i, j], ord) - TaylorSeries.mul!(tmp5061[i, j], μ[j], F_JCS_y[i, j], ord) - TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp5061[i, j], ord) + TaylorSeries.mul!(tmp5114[i, j], μ[j], F_JCS_y[i, j], ord) + TaylorSeries.add!(temp_accY_i[i, j], accY[i], tmp5114[i, j], ord) TaylorSeries.identity!(accY[i], temp_accY_i[i, j], ord) - TaylorSeries.mul!(tmp5063[i, j], μ[j], F_JCS_z[i, j], ord) - TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp5063[i, j], ord) + TaylorSeries.mul!(tmp5116[i, j], μ[j], F_JCS_z[i, j], ord) + TaylorSeries.add!(temp_accZ_i[i, j], accZ[i], tmp5116[i, j], ord) TaylorSeries.identity!(accZ[i], temp_accZ_i[i, j], ord) if j == mo - TaylorSeries.mul!(tmp5065[i, j], Y[i, j], F_JCS_z[i, j], ord) - TaylorSeries.mul!(tmp5066[i, j], Z[i, j], F_JCS_y[i, j], ord) - TaylorSeries.subst!(tmp5067[i, j], tmp5065[i, j], tmp5066[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp5067[i, j], ord) - TaylorSeries.mul!(tmp5069[i, j], Z[i, j], F_JCS_x[i, j], ord) - TaylorSeries.mul!(tmp5070[i, j], X[i, j], F_JCS_z[i, j], ord) - TaylorSeries.subst!(tmp5071[i, j], tmp5069[i, j], tmp5070[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp5071[i, j], ord) - TaylorSeries.mul!(tmp5073[i, j], X[i, j], F_JCS_y[i, j], ord) - TaylorSeries.mul!(tmp5074[i, j], Y[i, j], F_JCS_x[i, j], ord) - TaylorSeries.subst!(tmp5075[i, j], tmp5073[i, j], tmp5074[i, j], ord) - TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp5075[i, j], ord) + TaylorSeries.mul!(tmp5118[i, j], Y[i, j], F_JCS_z[i, j], ord) + TaylorSeries.mul!(tmp5119[i, j], Z[i, j], F_JCS_y[i, j], ord) + TaylorSeries.subst!(tmp5120[i, j], tmp5118[i, j], tmp5119[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_x[i], μ[i], tmp5120[i, j], ord) + TaylorSeries.mul!(tmp5122[i, j], Z[i, j], F_JCS_x[i, j], ord) + TaylorSeries.mul!(tmp5123[i, j], X[i, j], F_JCS_z[i, j], ord) + TaylorSeries.subst!(tmp5124[i, j], tmp5122[i, j], tmp5123[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_y[i], μ[i], tmp5124[i, j], ord) + TaylorSeries.mul!(tmp5126[i, j], X[i, j], F_JCS_y[i, j], ord) + TaylorSeries.mul!(tmp5127[i, j], Y[i, j], F_JCS_x[i, j], ord) + TaylorSeries.subst!(tmp5128[i, j], tmp5126[i, j], tmp5127[i, j], ord) + TaylorSeries.mul!(N_MfigM_pmA_z[i], μ[i], tmp5128[i, j], ord) TaylorSeries.subst!(temp_N_M_x[i], N_MfigM[1], N_MfigM_pmA_x[i], ord) TaylorSeries.identity!(N_MfigM[1], temp_N_M_x[i], ord) TaylorSeries.subst!(temp_N_M_y[i], N_MfigM[2], N_MfigM_pmA_y[i], ord) @@ -6847,7 +15025,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract end end end - #= REPL[19]:713 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:706 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -6856,18 +15034,18 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.add!(ϕi_plus_4ϕj[i, j], newtonianNb_Potential[i], _4ϕj[i, j], ord) TaylorSeries.mul!(_2v2[i, j], 2, v2[i], ord) TaylorSeries.add!(sj2_plus_2si2[i, j], v2[j], _2v2[i, j], ord) - TaylorSeries.mul!(tmp5087[i, j], 4, vi_dot_vj[i, j], ord) - TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp5087[i, j], ord) + TaylorSeries.mul!(tmp5140[i, j], 4, vi_dot_vj[i, j], ord) + TaylorSeries.subst!(sj2_plus_2si2_minus_4vivj[i, j], sj2_plus_2si2[i, j], tmp5140[i, j], ord) TaylorSeries.subst!(ϕs_and_vs[i, j], sj2_plus_2si2_minus_4vivj[i, j], ϕi_plus_4ϕj[i, j], ord) TaylorSeries.mul!(Xij_t_Ui[i, j], X[i, j], dq[3i - 2], ord) TaylorSeries.mul!(Yij_t_Vi[i, j], Y[i, j], dq[3i - 1], ord) TaylorSeries.mul!(Zij_t_Wi[i, j], Z[i, j], dq[3i], ord) - TaylorSeries.add!(tmp5093[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) - TaylorSeries.add!(Rij_dot_Vi[i, j], tmp5093[i, j], Zij_t_Wi[i, j], ord) - TaylorSeries.pow!(tmp5096[i, j], Rij_dot_Vi[i, j], 2, ord) - TaylorSeries.div!(pn1t7[i, j], tmp5096[i, j], r_p2[i, j], ord) - TaylorSeries.mul!(tmp5099[i, j], 1.5, pn1t7[i, j], ord) - TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp5099[i, j], ord) + TaylorSeries.add!(tmp5146[i, j], Xij_t_Ui[i, j], Yij_t_Vi[i, j], ord) + TaylorSeries.add!(Rij_dot_Vi[i, j], tmp5146[i, j], Zij_t_Wi[i, j], ord) + TaylorSeries.pow!(tmp5149[i, j], Rij_dot_Vi[i, j], 2, ord) + TaylorSeries.div!(pn1t7[i, j], tmp5149[i, j], r_p2[i, j], ord) + TaylorSeries.mul!(tmp5152[i, j], 1.5, pn1t7[i, j], ord) + TaylorSeries.subst!(pn1t2_7[i, j], ϕs_and_vs[i, j], tmp5152[i, j], ord) TaylorSeries.add!(pn1t1_7[i, j], c_p2, pn1t2_7[i, j], ord) end end @@ -6875,7 +15053,7 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(pntempY[j], zero_q_1, ord) TaylorSeries.identity!(pntempZ[j], zero_q_1, ord) end - #= REPL[19]:752 =# Threads.@threads for j = 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:745 =# Threads.@threads for j = 1:N for i = 1:N if i == j continue @@ -6883,26 +15061,26 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.mul!(pNX_t_X[i, j], newtonX[i], X[i, j], ord) TaylorSeries.mul!(pNY_t_Y[i, j], newtonY[i], Y[i, j], ord) TaylorSeries.mul!(pNZ_t_Z[i, j], newtonZ[i], Z[i, j], ord) - TaylorSeries.add!(tmp5106[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) - TaylorSeries.add!(tmp5107[i, j], tmp5106[i, j], pNZ_t_Z[i, j], ord) - TaylorSeries.mul!(tmp5108[i, j], 0.5, tmp5107[i, j], ord) - TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp5108[i, j], ord) + TaylorSeries.add!(tmp5159[i, j], pNX_t_X[i, j], pNY_t_Y[i, j], ord) + TaylorSeries.add!(tmp5160[i, j], tmp5159[i, j], pNZ_t_Z[i, j], ord) + TaylorSeries.mul!(tmp5161[i, j], 0.5, tmp5160[i, j], ord) + TaylorSeries.add!(pn1[i, j], pn1t1_7[i, j], tmp5161[i, j], ord) TaylorSeries.mul!(X_t_pn1[i, j], newton_acc_X[i, j], pn1[i, j], ord) TaylorSeries.mul!(Y_t_pn1[i, j], newton_acc_Y[i, j], pn1[i, j], ord) TaylorSeries.mul!(Z_t_pn1[i, j], newton_acc_Z[i, j], pn1[i, j], ord) TaylorSeries.mul!(pNX_t_pn3[i, j], newtonX[i], pn3[i, j], ord) TaylorSeries.mul!(pNY_t_pn3[i, j], newtonY[i], pn3[i, j], ord) TaylorSeries.mul!(pNZ_t_pn3[i, j], newtonZ[i], pn3[i, j], ord) - TaylorSeries.add!(tmp5116[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) - TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp5116[i, j], ord) + TaylorSeries.add!(tmp5169[i, j], U_t_pn2[i, j], pNX_t_pn3[i, j], ord) + TaylorSeries.add!(termpnx[i, j], X_t_pn1[i, j], tmp5169[i, j], ord) TaylorSeries.add!(sumpnx[i, j], pntempX[j], termpnx[i, j], ord) TaylorSeries.identity!(pntempX[j], sumpnx[i, j], ord) - TaylorSeries.add!(tmp5119[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) - TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp5119[i, j], ord) + TaylorSeries.add!(tmp5172[i, j], V_t_pn2[i, j], pNY_t_pn3[i, j], ord) + TaylorSeries.add!(termpny[i, j], Y_t_pn1[i, j], tmp5172[i, j], ord) TaylorSeries.add!(sumpny[i, j], pntempY[j], termpny[i, j], ord) TaylorSeries.identity!(pntempY[j], sumpny[i, j], ord) - TaylorSeries.add!(tmp5122[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) - TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp5122[i, j], ord) + TaylorSeries.add!(tmp5175[i, j], W_t_pn2[i, j], pNZ_t_pn3[i, j], ord) + TaylorSeries.add!(termpnz[i, j], Z_t_pn1[i, j], tmp5175[i, j], ord) TaylorSeries.add!(sumpnz[i, j], pntempZ[j], termpnz[i, j], ord) TaylorSeries.identity!(pntempZ[j], sumpnz[i, j], ord) end @@ -6914,9 +15092,9 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x0s_M, r_star_M_0[1], ord) TaylorSeries.identity!(y0s_M, r_star_M_0[2], ord) TaylorSeries.identity!(z0s_M, r_star_M_0[3], ord) - TaylorSeries.pow!(tmp5129, x0s_M, 2, ord) - TaylorSeries.pow!(tmp5131, y0s_M, 2, ord) - TaylorSeries.add!(ρ0s2_M, tmp5129, tmp5131, ord) + TaylorSeries.pow!(tmp5182, x0s_M, 2, ord) + TaylorSeries.pow!(tmp5184, y0s_M, 2, ord) + TaylorSeries.add!(ρ0s2_M, tmp5182, tmp5184, ord) TaylorSeries.sqrt!(ρ0s_M, ρ0s2_M, ord) TaylorSeries.pow!(z0s2_M, z0s_M, 2, ord) TaylorSeries.add!(r0s2_M, ρ0s2_M, z0s2_M, ord) @@ -6925,60 +15103,60 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x0s_S, r_star_S_0[1], ord) TaylorSeries.identity!(y0s_S, r_star_S_0[2], ord) TaylorSeries.identity!(z0s_S, r_star_S_0[3], ord) - TaylorSeries.pow!(tmp5141, x0s_S, 2, ord) - TaylorSeries.pow!(tmp5143, y0s_S, 2, ord) - TaylorSeries.add!(ρ0s2_S, tmp5141, tmp5143, ord) + TaylorSeries.pow!(tmp5194, x0s_S, 2, ord) + TaylorSeries.pow!(tmp5196, y0s_S, 2, ord) + TaylorSeries.add!(ρ0s2_S, tmp5194, tmp5196, ord) TaylorSeries.sqrt!(ρ0s_S, ρ0s2_S, ord) TaylorSeries.pow!(z0s2_S, z0s_S, 2, ord) TaylorSeries.add!(r0s2_S, ρ0s2_S, z0s2_S, ord) TaylorSeries.sqrt!(r0s_S, r0s2_S, ord) TaylorSeries.pow!(r0s5_S, r0s_S, 5, ord) - TaylorSeries.mul!(tmp5153, Z_bf[mo, ea], r_star_M_0[3], ord) - TaylorSeries.pow!(tmp5155, tmp5153, 2, ord) - TaylorSeries.mul!(tmp5157, r_xy[mo, ea], ρ0s_M, ord) - TaylorSeries.pow!(tmp5159, tmp5157, 2, ord) - TaylorSeries.mul!(tmp5160, 0.5, tmp5159, ord) - TaylorSeries.add!(tmp5161, tmp5155, tmp5160, ord) - TaylorSeries.div!(tmp5162, tmp5161, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp5163, 5, tmp5162, ord) - TaylorSeries.subst!(coeff0_M, r0s2_M, tmp5163, ord) - TaylorSeries.mul!(tmp5166, Z_bf[mo, ea], r_star_S_0[3], ord) - TaylorSeries.pow!(tmp5168, tmp5166, 2, ord) - TaylorSeries.mul!(tmp5170, r_xy[mo, ea], ρ0s_S, ord) - TaylorSeries.pow!(tmp5172, tmp5170, 2, ord) - TaylorSeries.mul!(tmp5173, 0.5, tmp5172, ord) - TaylorSeries.add!(tmp5174, tmp5168, tmp5173, ord) - TaylorSeries.div!(tmp5175, tmp5174, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp5176, 5, tmp5175, ord) - TaylorSeries.subst!(coeff0_S, r0s2_S, tmp5176, ord) + TaylorSeries.mul!(tmp5206, Z_bf[mo, ea], r_star_M_0[3], ord) + TaylorSeries.pow!(tmp5208, tmp5206, 2, ord) + TaylorSeries.mul!(tmp5210, r_xy[mo, ea], ρ0s_M, ord) + TaylorSeries.pow!(tmp5212, tmp5210, 2, ord) + TaylorSeries.mul!(tmp5213, 0.5, tmp5212, ord) + TaylorSeries.add!(tmp5214, tmp5208, tmp5213, ord) + TaylorSeries.div!(tmp5215, tmp5214, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp5216, 5, tmp5215, ord) + TaylorSeries.subst!(coeff0_M, r0s2_M, tmp5216, ord) + TaylorSeries.mul!(tmp5219, Z_bf[mo, ea], r_star_S_0[3], ord) + TaylorSeries.pow!(tmp5221, tmp5219, 2, ord) + TaylorSeries.mul!(tmp5223, r_xy[mo, ea], ρ0s_S, ord) + TaylorSeries.pow!(tmp5225, tmp5223, 2, ord) + TaylorSeries.mul!(tmp5226, 0.5, tmp5225, ord) + TaylorSeries.add!(tmp5227, tmp5221, tmp5226, ord) + TaylorSeries.div!(tmp5228, tmp5227, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp5229, 5, tmp5228, ord) + TaylorSeries.subst!(coeff0_S, r0s2_S, tmp5229, ord) TaylorSeries.div!(k_20E_div_r0s5_M, k_20E, r0s5_M, ord) TaylorSeries.div!(k_20E_div_r0s5_S, k_20E, r0s5_S, ord) - TaylorSeries.add!(tmp5180, ρ0s2_M, coeff0_M, ord) - TaylorSeries.mul!(tmp5181, k_20E_div_r0s5_M, tmp5180, ord) - TaylorSeries.mul!(a_tid_0_M_x, tmp5181, X_bf[mo, ea], ord) - TaylorSeries.add!(tmp5183, ρ0s2_M, coeff0_M, ord) - TaylorSeries.mul!(tmp5184, k_20E_div_r0s5_M, tmp5183, ord) - TaylorSeries.mul!(a_tid_0_M_y, tmp5184, Y_bf[mo, ea], ord) - TaylorSeries.mul!(tmp5187, 2, z0s2_M, ord) - TaylorSeries.add!(tmp5188, tmp5187, coeff0_M, ord) - TaylorSeries.mul!(tmp5189, k_20E_div_r0s5_M, tmp5188, ord) - TaylorSeries.mul!(a_tid_0_M_z, tmp5189, Z_bf[mo, ea], ord) - TaylorSeries.add!(tmp5191, ρ0s2_S, coeff0_S, ord) - TaylorSeries.mul!(tmp5192, k_20E_div_r0s5_S, tmp5191, ord) - TaylorSeries.mul!(a_tid_0_S_x, tmp5192, X_bf[mo, ea], ord) - TaylorSeries.add!(tmp5194, ρ0s2_S, coeff0_S, ord) - TaylorSeries.mul!(tmp5195, k_20E_div_r0s5_S, tmp5194, ord) - TaylorSeries.mul!(a_tid_0_S_y, tmp5195, Y_bf[mo, ea], ord) - TaylorSeries.mul!(tmp5198, 2, z0s2_S, ord) - TaylorSeries.add!(tmp5199, tmp5198, coeff0_S, ord) - TaylorSeries.mul!(tmp5200, k_20E_div_r0s5_S, tmp5199, ord) - TaylorSeries.mul!(a_tid_0_S_z, tmp5200, Z_bf[mo, ea], ord) + TaylorSeries.add!(tmp5233, ρ0s2_M, coeff0_M, ord) + TaylorSeries.mul!(tmp5234, k_20E_div_r0s5_M, tmp5233, ord) + TaylorSeries.mul!(a_tid_0_M_x, tmp5234, X_bf[mo, ea], ord) + TaylorSeries.add!(tmp5236, ρ0s2_M, coeff0_M, ord) + TaylorSeries.mul!(tmp5237, k_20E_div_r0s5_M, tmp5236, ord) + TaylorSeries.mul!(a_tid_0_M_y, tmp5237, Y_bf[mo, ea], ord) + TaylorSeries.mul!(tmp5240, 2, z0s2_M, ord) + TaylorSeries.add!(tmp5241, tmp5240, coeff0_M, ord) + TaylorSeries.mul!(tmp5242, k_20E_div_r0s5_M, tmp5241, ord) + TaylorSeries.mul!(a_tid_0_M_z, tmp5242, Z_bf[mo, ea], ord) + TaylorSeries.add!(tmp5244, ρ0s2_S, coeff0_S, ord) + TaylorSeries.mul!(tmp5245, k_20E_div_r0s5_S, tmp5244, ord) + TaylorSeries.mul!(a_tid_0_S_x, tmp5245, X_bf[mo, ea], ord) + TaylorSeries.add!(tmp5247, ρ0s2_S, coeff0_S, ord) + TaylorSeries.mul!(tmp5248, k_20E_div_r0s5_S, tmp5247, ord) + TaylorSeries.mul!(a_tid_0_S_y, tmp5248, Y_bf[mo, ea], ord) + TaylorSeries.mul!(tmp5251, 2, z0s2_S, ord) + TaylorSeries.add!(tmp5252, tmp5251, coeff0_S, ord) + TaylorSeries.mul!(tmp5253, k_20E_div_r0s5_S, tmp5252, ord) + TaylorSeries.mul!(a_tid_0_S_z, tmp5253, Z_bf[mo, ea], ord) TaylorSeries.identity!(x1s_M, r_star_M_1[1], ord) TaylorSeries.identity!(y1s_M, r_star_M_1[2], ord) TaylorSeries.identity!(z1s_M, r_star_M_1[3], ord) - TaylorSeries.pow!(tmp5203, x1s_M, 2, ord) - TaylorSeries.pow!(tmp5205, y1s_M, 2, ord) - TaylorSeries.add!(ρ1s2_M, tmp5203, tmp5205, ord) + TaylorSeries.pow!(tmp5256, x1s_M, 2, ord) + TaylorSeries.pow!(tmp5258, y1s_M, 2, ord) + TaylorSeries.add!(ρ1s2_M, tmp5256, tmp5258, ord) TaylorSeries.sqrt!(ρ1s_M, ρ1s2_M, ord) TaylorSeries.pow!(z1s2_M, z1s_M, 2, ord) TaylorSeries.add!(r1s2_M, ρ1s2_M, z1s2_M, ord) @@ -6987,66 +15165,66 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x1s_S, r_star_S_1[1], ord) TaylorSeries.identity!(y1s_S, r_star_S_1[2], ord) TaylorSeries.identity!(z1s_S, r_star_S_1[3], ord) - TaylorSeries.pow!(tmp5215, x1s_S, 2, ord) - TaylorSeries.pow!(tmp5217, y1s_S, 2, ord) - TaylorSeries.add!(ρ1s2_S, tmp5215, tmp5217, ord) + TaylorSeries.pow!(tmp5268, x1s_S, 2, ord) + TaylorSeries.pow!(tmp5270, y1s_S, 2, ord) + TaylorSeries.add!(ρ1s2_S, tmp5268, tmp5270, ord) TaylorSeries.sqrt!(ρ1s_S, ρ1s2_S, ord) TaylorSeries.pow!(z1s2_S, z1s_S, 2, ord) TaylorSeries.add!(r1s2_S, ρ1s2_S, z1s2_S, ord) TaylorSeries.sqrt!(r1s_S, r1s2_S, ord) TaylorSeries.pow!(r1s5_S, r1s_S, 5, ord) - TaylorSeries.mul!(tmp5226, X_bf[mo, ea], r_star_M_1[1], ord) - TaylorSeries.mul!(tmp5227, Y_bf[mo, ea], r_star_M_1[2], ord) - TaylorSeries.add!(coeff1_1_M, tmp5226, tmp5227, ord) - TaylorSeries.mul!(tmp5229, X_bf[mo, ea], r_star_S_1[1], ord) - TaylorSeries.mul!(tmp5230, Y_bf[mo, ea], r_star_S_1[2], ord) - TaylorSeries.add!(coeff1_1_S, tmp5229, tmp5230, ord) + TaylorSeries.mul!(tmp5279, X_bf[mo, ea], r_star_M_1[1], ord) + TaylorSeries.mul!(tmp5280, Y_bf[mo, ea], r_star_M_1[2], ord) + TaylorSeries.add!(coeff1_1_M, tmp5279, tmp5280, ord) + TaylorSeries.mul!(tmp5282, X_bf[mo, ea], r_star_S_1[1], ord) + TaylorSeries.mul!(tmp5283, Y_bf[mo, ea], r_star_S_1[2], ord) + TaylorSeries.add!(coeff1_1_S, tmp5282, tmp5283, ord) TaylorSeries.mul!(coeff2_1_M, Z_bf[mo, ea], r_star_M_1[3], ord) TaylorSeries.mul!(coeff2_1_S, Z_bf[mo, ea], r_star_S_1[3], ord) - TaylorSeries.mul!(tmp5235, 10, coeff1_1_M, ord) - TaylorSeries.mul!(tmp5236, tmp5235, coeff2_1_M, ord) - TaylorSeries.div!(coeff3_1_M, tmp5236, r_p2[mo, ea], ord) - TaylorSeries.mul!(tmp5239, 10, coeff1_1_S, ord) - TaylorSeries.mul!(tmp5240, tmp5239, coeff2_1_S, ord) - TaylorSeries.div!(coeff3_1_S, tmp5240, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp5288, 10, coeff1_1_M, ord) + TaylorSeries.mul!(tmp5289, tmp5288, coeff2_1_M, ord) + TaylorSeries.div!(coeff3_1_M, tmp5289, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp5292, 10, coeff1_1_S, ord) + TaylorSeries.mul!(tmp5293, tmp5292, coeff2_1_S, ord) + TaylorSeries.div!(coeff3_1_S, tmp5293, r_p2[mo, ea], ord) TaylorSeries.div!(k_21E_div_r1s5_M, k_21E, r1s5_M, ord) TaylorSeries.div!(k_21E_div_r1s5_S, k_21E, r1s5_S, ord) - TaylorSeries.mul!(tmp5245, 2, coeff2_1_M, ord) - TaylorSeries.mul!(tmp5246, tmp5245, r_star_M_1[1], ord) - TaylorSeries.mul!(tmp5247, coeff3_1_M, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5248, tmp5246, tmp5247, ord) - TaylorSeries.mul!(a_tid_1_M_x, k_21E_div_r1s5_M, tmp5248, ord) - TaylorSeries.mul!(tmp5251, 2, coeff2_1_M, ord) - TaylorSeries.mul!(tmp5252, tmp5251, r_star_M_1[2], ord) - TaylorSeries.mul!(tmp5253, coeff3_1_M, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5254, tmp5252, tmp5253, ord) - TaylorSeries.mul!(a_tid_1_M_y, k_21E_div_r1s5_M, tmp5254, ord) - TaylorSeries.mul!(tmp5257, 2, coeff1_1_M, ord) - TaylorSeries.mul!(tmp5258, tmp5257, r_star_M_1[3], ord) - TaylorSeries.mul!(tmp5259, coeff3_1_M, Z_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5260, tmp5258, tmp5259, ord) - TaylorSeries.mul!(a_tid_1_M_z, k_21E_div_r1s5_M, tmp5260, ord) - TaylorSeries.mul!(tmp5263, 2, coeff2_1_S, ord) - TaylorSeries.mul!(tmp5264, tmp5263, r_star_S_1[1], ord) - TaylorSeries.mul!(tmp5265, coeff3_1_S, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5266, tmp5264, tmp5265, ord) - TaylorSeries.mul!(a_tid_1_S_x, k_21E_div_r1s5_S, tmp5266, ord) - TaylorSeries.mul!(tmp5269, 2, coeff2_1_S, ord) - TaylorSeries.mul!(tmp5270, tmp5269, r_star_S_1[2], ord) - TaylorSeries.mul!(tmp5271, coeff3_1_S, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5272, tmp5270, tmp5271, ord) - TaylorSeries.mul!(a_tid_1_S_y, k_21E_div_r1s5_S, tmp5272, ord) - TaylorSeries.mul!(tmp5275, 2, coeff1_1_S, ord) - TaylorSeries.mul!(tmp5276, tmp5275, r_star_S_1[3], ord) - TaylorSeries.mul!(tmp5277, coeff3_1_S, Z_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5278, tmp5276, tmp5277, ord) - TaylorSeries.mul!(a_tid_1_S_z, k_21E_div_r1s5_S, tmp5278, ord) + TaylorSeries.mul!(tmp5298, 2, coeff2_1_M, ord) + TaylorSeries.mul!(tmp5299, tmp5298, r_star_M_1[1], ord) + TaylorSeries.mul!(tmp5300, coeff3_1_M, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5301, tmp5299, tmp5300, ord) + TaylorSeries.mul!(a_tid_1_M_x, k_21E_div_r1s5_M, tmp5301, ord) + TaylorSeries.mul!(tmp5304, 2, coeff2_1_M, ord) + TaylorSeries.mul!(tmp5305, tmp5304, r_star_M_1[2], ord) + TaylorSeries.mul!(tmp5306, coeff3_1_M, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5307, tmp5305, tmp5306, ord) + TaylorSeries.mul!(a_tid_1_M_y, k_21E_div_r1s5_M, tmp5307, ord) + TaylorSeries.mul!(tmp5310, 2, coeff1_1_M, ord) + TaylorSeries.mul!(tmp5311, tmp5310, r_star_M_1[3], ord) + TaylorSeries.mul!(tmp5312, coeff3_1_M, Z_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5313, tmp5311, tmp5312, ord) + TaylorSeries.mul!(a_tid_1_M_z, k_21E_div_r1s5_M, tmp5313, ord) + TaylorSeries.mul!(tmp5316, 2, coeff2_1_S, ord) + TaylorSeries.mul!(tmp5317, tmp5316, r_star_S_1[1], ord) + TaylorSeries.mul!(tmp5318, coeff3_1_S, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5319, tmp5317, tmp5318, ord) + TaylorSeries.mul!(a_tid_1_S_x, k_21E_div_r1s5_S, tmp5319, ord) + TaylorSeries.mul!(tmp5322, 2, coeff2_1_S, ord) + TaylorSeries.mul!(tmp5323, tmp5322, r_star_S_1[2], ord) + TaylorSeries.mul!(tmp5324, coeff3_1_S, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5325, tmp5323, tmp5324, ord) + TaylorSeries.mul!(a_tid_1_S_y, k_21E_div_r1s5_S, tmp5325, ord) + TaylorSeries.mul!(tmp5328, 2, coeff1_1_S, ord) + TaylorSeries.mul!(tmp5329, tmp5328, r_star_S_1[3], ord) + TaylorSeries.mul!(tmp5330, coeff3_1_S, Z_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5331, tmp5329, tmp5330, ord) + TaylorSeries.mul!(a_tid_1_S_z, k_21E_div_r1s5_S, tmp5331, ord) TaylorSeries.identity!(x2s_M, r_star_M_2[1], ord) TaylorSeries.identity!(y2s_M, r_star_M_2[2], ord) TaylorSeries.identity!(z2s_M, r_star_M_2[3], ord) - TaylorSeries.pow!(tmp5281, x2s_M, 2, ord) - TaylorSeries.pow!(tmp5283, y2s_M, 2, ord) - TaylorSeries.add!(ρ2s2_M, tmp5281, tmp5283, ord) + TaylorSeries.pow!(tmp5334, x2s_M, 2, ord) + TaylorSeries.pow!(tmp5336, y2s_M, 2, ord) + TaylorSeries.add!(ρ2s2_M, tmp5334, tmp5336, ord) TaylorSeries.sqrt!(ρ2s_M, ρ2s2_M, ord) TaylorSeries.pow!(z2s2_M, z2s_M, 2, ord) TaylorSeries.add!(r2s2_M, ρ2s2_M, z2s2_M, ord) @@ -7055,384 +15233,384 @@ function TaylorIntegration.jetcoeffs!(::Val{DE430!}, t::Taylor1{_T}, q::Abstract TaylorSeries.identity!(x2s_S, r_star_S_2[1], ord) TaylorSeries.identity!(y2s_S, r_star_S_2[2], ord) TaylorSeries.identity!(z2s_S, r_star_S_2[3], ord) - TaylorSeries.pow!(tmp5293, x2s_S, 2, ord) - TaylorSeries.pow!(tmp5295, y2s_S, 2, ord) - TaylorSeries.add!(ρ2s2_S, tmp5293, tmp5295, ord) + TaylorSeries.pow!(tmp5346, x2s_S, 2, ord) + TaylorSeries.pow!(tmp5348, y2s_S, 2, ord) + TaylorSeries.add!(ρ2s2_S, tmp5346, tmp5348, ord) TaylorSeries.sqrt!(ρ2s_S, ρ2s2_S, ord) TaylorSeries.pow!(z2s2_S, z2s_S, 2, ord) TaylorSeries.add!(r2s2_S, ρ2s2_S, z2s2_S, ord) TaylorSeries.sqrt!(r2s_S, r2s2_S, ord) TaylorSeries.pow!(r2s5_S, r2s_S, 5, ord) - TaylorSeries.mul!(tmp5304, X_bf[mo, ea], r_star_M_2[1], ord) - TaylorSeries.mul!(tmp5305, Y_bf[mo, ea], r_star_M_2[2], ord) - TaylorSeries.add!(coeff1_2_M, tmp5304, tmp5305, ord) - TaylorSeries.mul!(tmp5307, X_bf[mo, ea], r_star_S_2[1], ord) - TaylorSeries.mul!(tmp5308, Y_bf[mo, ea], r_star_S_2[2], ord) - TaylorSeries.add!(coeff1_2_S, tmp5307, tmp5308, ord) - TaylorSeries.pow!(tmp5312, coeff1_2_M, 2, ord) - TaylorSeries.pow!(tmp5315, r_xy[mo, ea], 2, ord) - TaylorSeries.mul!(tmp5316, 0.5, tmp5315, ord) - TaylorSeries.mul!(tmp5317, tmp5316, ρ2s2_M, ord) - TaylorSeries.subst!(tmp5318, tmp5312, tmp5317, ord) - TaylorSeries.mul!(tmp5319, 5, tmp5318, ord) - TaylorSeries.div!(coeff3_2_M, tmp5319, r_p2[mo, ea], ord) - TaylorSeries.pow!(tmp5323, coeff1_2_S, 2, ord) - TaylorSeries.pow!(tmp5326, r_xy[mo, ea], 2, ord) - TaylorSeries.mul!(tmp5327, 0.5, tmp5326, ord) - TaylorSeries.mul!(tmp5328, tmp5327, ρ2s2_S, ord) - TaylorSeries.subst!(tmp5329, tmp5323, tmp5328, ord) - TaylorSeries.mul!(tmp5330, 5, tmp5329, ord) - TaylorSeries.div!(coeff3_2_S, tmp5330, r_p2[mo, ea], ord) + TaylorSeries.mul!(tmp5357, X_bf[mo, ea], r_star_M_2[1], ord) + TaylorSeries.mul!(tmp5358, Y_bf[mo, ea], r_star_M_2[2], ord) + TaylorSeries.add!(coeff1_2_M, tmp5357, tmp5358, ord) + TaylorSeries.mul!(tmp5360, X_bf[mo, ea], r_star_S_2[1], ord) + TaylorSeries.mul!(tmp5361, Y_bf[mo, ea], r_star_S_2[2], ord) + TaylorSeries.add!(coeff1_2_S, tmp5360, tmp5361, ord) + TaylorSeries.pow!(tmp5365, coeff1_2_M, 2, ord) + TaylorSeries.pow!(tmp5368, r_xy[mo, ea], 2, ord) + TaylorSeries.mul!(tmp5369, 0.5, tmp5368, ord) + TaylorSeries.mul!(tmp5370, tmp5369, ρ2s2_M, ord) + TaylorSeries.subst!(tmp5371, tmp5365, tmp5370, ord) + TaylorSeries.mul!(tmp5372, 5, tmp5371, ord) + TaylorSeries.div!(coeff3_2_M, tmp5372, r_p2[mo, ea], ord) + TaylorSeries.pow!(tmp5376, coeff1_2_S, 2, ord) + TaylorSeries.pow!(tmp5379, r_xy[mo, ea], 2, ord) + TaylorSeries.mul!(tmp5380, 0.5, tmp5379, ord) + TaylorSeries.mul!(tmp5381, tmp5380, ρ2s2_S, ord) + TaylorSeries.subst!(tmp5382, tmp5376, tmp5381, ord) + TaylorSeries.mul!(tmp5383, 5, tmp5382, ord) + TaylorSeries.div!(coeff3_2_S, tmp5383, r_p2[mo, ea], ord) TaylorSeries.div!(k_22E_div_r2s5_M, k_22E, r2s5_M, ord) TaylorSeries.div!(k_22E_div_r2s5_S, k_22E, r2s5_S, ord) - TaylorSeries.mul!(tmp5335, 2, coeff1_2_M, ord) - TaylorSeries.mul!(tmp5336, tmp5335, r_star_M_2[1], ord) - TaylorSeries.add!(tmp5337, ρ2s2_M, coeff3_2_M, ord) - TaylorSeries.mul!(tmp5338, tmp5337, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5339, tmp5336, tmp5338, ord) - TaylorSeries.mul!(a_tid_2_M_x, k_22E_div_r2s5_M, tmp5339, ord) - TaylorSeries.mul!(tmp5342, 2, coeff1_2_M, ord) - TaylorSeries.mul!(tmp5343, tmp5342, r_star_M_2[2], ord) - TaylorSeries.add!(tmp5344, ρ2s2_M, coeff3_2_M, ord) - TaylorSeries.mul!(tmp5345, tmp5344, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5346, tmp5343, tmp5345, ord) - TaylorSeries.mul!(a_tid_2_M_y, k_22E_div_r2s5_M, tmp5346, ord) - TaylorSeries.subst!(tmp5348, coeff3_2_M, ord) - TaylorSeries.mul!(tmp5349, k_22E_div_r2s5_M, tmp5348, ord) - TaylorSeries.mul!(a_tid_2_M_z, tmp5349, Z_bf[mo, ea], ord) - TaylorSeries.mul!(tmp5352, 2, coeff1_2_S, ord) - TaylorSeries.mul!(tmp5353, tmp5352, r_star_S_2[1], ord) - TaylorSeries.add!(tmp5354, ρ2s2_S, coeff3_2_S, ord) - TaylorSeries.mul!(tmp5355, tmp5354, X_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5356, tmp5353, tmp5355, ord) - TaylorSeries.mul!(a_tid_2_S_x, k_22E_div_r2s5_S, tmp5356, ord) - TaylorSeries.mul!(tmp5359, 2, coeff1_2_S, ord) - TaylorSeries.mul!(tmp5360, tmp5359, r_star_S_2[2], ord) - TaylorSeries.add!(tmp5361, ρ2s2_S, coeff3_2_S, ord) - TaylorSeries.mul!(tmp5362, tmp5361, Y_bf[mo, ea], ord) - TaylorSeries.subst!(tmp5363, tmp5360, tmp5362, ord) - TaylorSeries.mul!(a_tid_2_S_y, k_22E_div_r2s5_S, tmp5363, ord) - TaylorSeries.subst!(tmp5365, coeff3_2_S, ord) - TaylorSeries.mul!(tmp5366, k_22E_div_r2s5_S, tmp5365, ord) - TaylorSeries.mul!(a_tid_2_S_z, tmp5366, Z_bf[mo, ea], ord) - TaylorSeries.div!(tmp5368, RE_au, r_p1d2[mo, ea], ord) - TaylorSeries.pow!(RE_div_r_p5, tmp5368, 5, ord) + TaylorSeries.mul!(tmp5388, 2, coeff1_2_M, ord) + TaylorSeries.mul!(tmp5389, tmp5388, r_star_M_2[1], ord) + TaylorSeries.add!(tmp5390, ρ2s2_M, coeff3_2_M, ord) + TaylorSeries.mul!(tmp5391, tmp5390, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5392, tmp5389, tmp5391, ord) + TaylorSeries.mul!(a_tid_2_M_x, k_22E_div_r2s5_M, tmp5392, ord) + TaylorSeries.mul!(tmp5395, 2, coeff1_2_M, ord) + TaylorSeries.mul!(tmp5396, tmp5395, r_star_M_2[2], ord) + TaylorSeries.add!(tmp5397, ρ2s2_M, coeff3_2_M, ord) + TaylorSeries.mul!(tmp5398, tmp5397, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5399, tmp5396, tmp5398, ord) + TaylorSeries.mul!(a_tid_2_M_y, k_22E_div_r2s5_M, tmp5399, ord) + TaylorSeries.subst!(tmp5401, coeff3_2_M, ord) + TaylorSeries.mul!(tmp5402, k_22E_div_r2s5_M, tmp5401, ord) + TaylorSeries.mul!(a_tid_2_M_z, tmp5402, Z_bf[mo, ea], ord) + TaylorSeries.mul!(tmp5405, 2, coeff1_2_S, ord) + TaylorSeries.mul!(tmp5406, tmp5405, r_star_S_2[1], ord) + TaylorSeries.add!(tmp5407, ρ2s2_S, coeff3_2_S, ord) + TaylorSeries.mul!(tmp5408, tmp5407, X_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5409, tmp5406, tmp5408, ord) + TaylorSeries.mul!(a_tid_2_S_x, k_22E_div_r2s5_S, tmp5409, ord) + TaylorSeries.mul!(tmp5412, 2, coeff1_2_S, ord) + TaylorSeries.mul!(tmp5413, tmp5412, r_star_S_2[2], ord) + TaylorSeries.add!(tmp5414, ρ2s2_S, coeff3_2_S, ord) + TaylorSeries.mul!(tmp5415, tmp5414, Y_bf[mo, ea], ord) + TaylorSeries.subst!(tmp5416, tmp5413, tmp5415, ord) + TaylorSeries.mul!(a_tid_2_S_y, k_22E_div_r2s5_S, tmp5416, ord) + TaylorSeries.subst!(tmp5418, coeff3_2_S, ord) + TaylorSeries.mul!(tmp5419, k_22E_div_r2s5_S, tmp5418, ord) + TaylorSeries.mul!(a_tid_2_S_z, tmp5419, Z_bf[mo, ea], ord) + TaylorSeries.div!(tmp5421, RE_au, r_p1d2[mo, ea], ord) + TaylorSeries.pow!(RE_div_r_p5, tmp5421, 5, ord) TaylorSeries.mul!(aux_tidacc, tid_num_coeff, RE_div_r_p5, ord) TaylorSeries.mul!(a_tidal_coeff_M, μ[mo], aux_tidacc, ord) TaylorSeries.mul!(a_tidal_coeff_S, μ[su], aux_tidacc, ord) - TaylorSeries.add!(tmp5374, a_tid_0_M_x, a_tid_1_M_x, ord) - TaylorSeries.add!(tmp5375, tmp5374, a_tid_2_M_x, ord) - TaylorSeries.mul!(tmp5376, a_tidal_coeff_M, tmp5375, ord) - TaylorSeries.add!(tmp5377, a_tid_0_S_x, a_tid_1_S_x, ord) - TaylorSeries.add!(tmp5378, tmp5377, a_tid_2_S_x, ord) - TaylorSeries.mul!(tmp5379, a_tidal_coeff_S, tmp5378, ord) - TaylorSeries.add!(a_tidal_tod_x, tmp5376, tmp5379, ord) - TaylorSeries.add!(tmp5381, a_tid_0_M_y, a_tid_1_M_y, ord) - TaylorSeries.add!(tmp5382, tmp5381, a_tid_2_M_y, ord) - TaylorSeries.mul!(tmp5383, a_tidal_coeff_M, tmp5382, ord) - TaylorSeries.add!(tmp5384, a_tid_0_S_y, a_tid_1_S_y, ord) - TaylorSeries.add!(tmp5385, tmp5384, a_tid_2_S_y, ord) - TaylorSeries.mul!(tmp5386, a_tidal_coeff_S, tmp5385, ord) - TaylorSeries.add!(a_tidal_tod_y, tmp5383, tmp5386, ord) - TaylorSeries.add!(tmp5388, a_tid_0_M_z, a_tid_1_M_z, ord) - TaylorSeries.add!(tmp5389, tmp5388, a_tid_2_M_z, ord) - TaylorSeries.mul!(tmp5390, a_tidal_coeff_M, tmp5389, ord) - TaylorSeries.add!(tmp5391, a_tid_0_S_z, a_tid_1_S_z, ord) - TaylorSeries.add!(tmp5392, tmp5391, a_tid_2_S_z, ord) - TaylorSeries.mul!(tmp5393, a_tidal_coeff_S, tmp5392, ord) - TaylorSeries.add!(a_tidal_tod_z, tmp5390, tmp5393, ord) - TaylorSeries.mul!(tmp5395, RotM[1, 1, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp5396, RotM[2, 1, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp5397, tmp5395, tmp5396, ord) - TaylorSeries.mul!(tmp5398, RotM[3, 1, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_x, tmp5397, tmp5398, ord) - TaylorSeries.mul!(tmp5400, RotM[1, 2, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp5401, RotM[2, 2, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp5402, tmp5400, tmp5401, ord) - TaylorSeries.mul!(tmp5403, RotM[3, 2, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_y, tmp5402, tmp5403, ord) - TaylorSeries.mul!(tmp5405, RotM[1, 3, ea], a_tidal_tod_x, ord) - TaylorSeries.mul!(tmp5406, RotM[2, 3, ea], a_tidal_tod_y, ord) - TaylorSeries.add!(tmp5407, tmp5405, tmp5406, ord) - TaylorSeries.mul!(tmp5408, RotM[3, 3, ea], a_tidal_tod_z, ord) - TaylorSeries.add!(a_tidal_z, tmp5407, tmp5408, ord) + TaylorSeries.add!(tmp5427, a_tid_0_M_x, a_tid_1_M_x, ord) + TaylorSeries.add!(tmp5428, tmp5427, a_tid_2_M_x, ord) + TaylorSeries.mul!(tmp5429, a_tidal_coeff_M, tmp5428, ord) + TaylorSeries.add!(tmp5430, a_tid_0_S_x, a_tid_1_S_x, ord) + TaylorSeries.add!(tmp5431, tmp5430, a_tid_2_S_x, ord) + TaylorSeries.mul!(tmp5432, a_tidal_coeff_S, tmp5431, ord) + TaylorSeries.add!(a_tidal_tod_x, tmp5429, tmp5432, ord) + TaylorSeries.add!(tmp5434, a_tid_0_M_y, a_tid_1_M_y, ord) + TaylorSeries.add!(tmp5435, tmp5434, a_tid_2_M_y, ord) + TaylorSeries.mul!(tmp5436, a_tidal_coeff_M, tmp5435, ord) + TaylorSeries.add!(tmp5437, a_tid_0_S_y, a_tid_1_S_y, ord) + TaylorSeries.add!(tmp5438, tmp5437, a_tid_2_S_y, ord) + TaylorSeries.mul!(tmp5439, a_tidal_coeff_S, tmp5438, ord) + TaylorSeries.add!(a_tidal_tod_y, tmp5436, tmp5439, ord) + TaylorSeries.add!(tmp5441, a_tid_0_M_z, a_tid_1_M_z, ord) + TaylorSeries.add!(tmp5442, tmp5441, a_tid_2_M_z, ord) + TaylorSeries.mul!(tmp5443, a_tidal_coeff_M, tmp5442, ord) + TaylorSeries.add!(tmp5444, a_tid_0_S_z, a_tid_1_S_z, ord) + TaylorSeries.add!(tmp5445, tmp5444, a_tid_2_S_z, ord) + TaylorSeries.mul!(tmp5446, a_tidal_coeff_S, tmp5445, ord) + TaylorSeries.add!(a_tidal_tod_z, tmp5443, tmp5446, ord) + TaylorSeries.mul!(tmp5448, RotM[1, 1, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp5449, RotM[2, 1, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp5450, tmp5448, tmp5449, ord) + TaylorSeries.mul!(tmp5451, RotM[3, 1, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_x, tmp5450, tmp5451, ord) + TaylorSeries.mul!(tmp5453, RotM[1, 2, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp5454, RotM[2, 2, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp5455, tmp5453, tmp5454, ord) + TaylorSeries.mul!(tmp5456, RotM[3, 2, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_y, tmp5455, tmp5456, ord) + TaylorSeries.mul!(tmp5458, RotM[1, 3, ea], a_tidal_tod_x, ord) + TaylorSeries.mul!(tmp5459, RotM[2, 3, ea], a_tidal_tod_y, ord) + TaylorSeries.add!(tmp5460, tmp5458, tmp5459, ord) + TaylorSeries.mul!(tmp5461, RotM[3, 3, ea], a_tidal_tod_z, ord) + TaylorSeries.add!(a_tidal_z, tmp5460, tmp5461, ord) TaylorSeries.add!(accX_mo_tides, accX[mo], a_tidal_x, ord) TaylorSeries.add!(accY_mo_tides, accY[mo], a_tidal_y, ord) TaylorSeries.add!(accZ_mo_tides, accZ[mo], a_tidal_z, ord) TaylorSeries.identity!(accX[mo], accX_mo_tides, ord) TaylorSeries.identity!(accY[mo], accY_mo_tides, ord) TaylorSeries.identity!(accZ[mo], accZ_mo_tides, ord) - #= REPL[19]:991 =# Threads.@threads for i = 1:N_ext + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:984 =# Threads.@threads for i = 1:N_ext TaylorSeries.add!(dq[3 * (N + i) - 2], postNewtonX[i], accX[i], ord) TaylorSeries.add!(dq[3 * (N + i) - 1], postNewtonY[i], accY[i], ord) TaylorSeries.add!(dq[3 * (N + i)], postNewtonZ[i], accZ[i], ord) end - #= REPL[19]:996 =# Threads.@threads for i = N_ext + 1:N + #= C:\Users\luisi\UNAM\Fisica\Servicio Social\PlanetaryEphemeris.jl\src\ex.jl:989 =# Threads.@threads for i = N_ext + 1:N TaylorSeries.identity!(dq[3 * (N + i) - 2], postNewtonX[i], ord) TaylorSeries.identity!(dq[3 * (N + i) - 1], postNewtonY[i], ord) TaylorSeries.identity!(dq[3 * (N + i)], postNewtonZ[i], ord) end - TaylorSeries.mul!(tmp5416, I_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp5417, I_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp5418, I_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp5419, tmp5417, tmp5418, ord) - TaylorSeries.add!(Iω_x, tmp5416, tmp5419, ord) - TaylorSeries.mul!(tmp5421, I_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp5422, I_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp5423, I_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp5424, tmp5422, tmp5423, ord) - TaylorSeries.add!(Iω_y, tmp5421, tmp5424, ord) - TaylorSeries.mul!(tmp5426, I_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp5427, I_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp5428, I_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp5429, tmp5427, tmp5428, ord) - TaylorSeries.add!(Iω_z, tmp5426, tmp5429, ord) - TaylorSeries.mul!(tmp5431, q[6N + 5], Iω_z, ord) - TaylorSeries.mul!(tmp5432, q[6N + 6], Iω_y, ord) - TaylorSeries.subst!(ωxIω_x, tmp5431, tmp5432, ord) - TaylorSeries.mul!(tmp5434, q[6N + 6], Iω_x, ord) - TaylorSeries.mul!(tmp5435, q[6N + 4], Iω_z, ord) - TaylorSeries.subst!(ωxIω_y, tmp5434, tmp5435, ord) - TaylorSeries.mul!(tmp5437, q[6N + 4], Iω_y, ord) - TaylorSeries.mul!(tmp5438, q[6N + 5], Iω_x, ord) - TaylorSeries.subst!(ωxIω_z, tmp5437, tmp5438, ord) - TaylorSeries.mul!(tmp5440, dI_m_t[1, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp5441, dI_m_t[1, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp5442, dI_m_t[1, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp5443, tmp5441, tmp5442, ord) - TaylorSeries.add!(dIω_x, tmp5440, tmp5443, ord) - TaylorSeries.mul!(tmp5445, dI_m_t[2, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp5446, dI_m_t[2, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp5447, dI_m_t[2, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp5448, tmp5446, tmp5447, ord) - TaylorSeries.add!(dIω_y, tmp5445, tmp5448, ord) - TaylorSeries.mul!(tmp5450, dI_m_t[3, 1], q[6N + 4], ord) - TaylorSeries.mul!(tmp5451, dI_m_t[3, 2], q[6N + 5], ord) - TaylorSeries.mul!(tmp5452, dI_m_t[3, 3], q[6N + 6], ord) - TaylorSeries.add!(tmp5453, tmp5451, tmp5452, ord) - TaylorSeries.add!(dIω_z, tmp5450, tmp5453, ord) + TaylorSeries.mul!(tmp5469, I_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp5470, I_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp5471, I_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp5472, tmp5470, tmp5471, ord) + TaylorSeries.add!(Iω_x, tmp5469, tmp5472, ord) + TaylorSeries.mul!(tmp5474, I_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp5475, I_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp5476, I_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp5477, tmp5475, tmp5476, ord) + TaylorSeries.add!(Iω_y, tmp5474, tmp5477, ord) + TaylorSeries.mul!(tmp5479, I_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp5480, I_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp5481, I_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp5482, tmp5480, tmp5481, ord) + TaylorSeries.add!(Iω_z, tmp5479, tmp5482, ord) + TaylorSeries.mul!(tmp5484, q[6N + 5], Iω_z, ord) + TaylorSeries.mul!(tmp5485, q[6N + 6], Iω_y, ord) + TaylorSeries.subst!(ωxIω_x, tmp5484, tmp5485, ord) + TaylorSeries.mul!(tmp5487, q[6N + 6], Iω_x, ord) + TaylorSeries.mul!(tmp5488, q[6N + 4], Iω_z, ord) + TaylorSeries.subst!(ωxIω_y, tmp5487, tmp5488, ord) + TaylorSeries.mul!(tmp5490, q[6N + 4], Iω_y, ord) + TaylorSeries.mul!(tmp5491, q[6N + 5], Iω_x, ord) + TaylorSeries.subst!(ωxIω_z, tmp5490, tmp5491, ord) + TaylorSeries.mul!(tmp5493, dI_m_t[1, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp5494, dI_m_t[1, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp5495, dI_m_t[1, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp5496, tmp5494, tmp5495, ord) + TaylorSeries.add!(dIω_x, tmp5493, tmp5496, ord) + TaylorSeries.mul!(tmp5498, dI_m_t[2, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp5499, dI_m_t[2, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp5500, dI_m_t[2, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp5501, tmp5499, tmp5500, ord) + TaylorSeries.add!(dIω_y, tmp5498, tmp5501, ord) + TaylorSeries.mul!(tmp5503, dI_m_t[3, 1], q[6N + 4], ord) + TaylorSeries.mul!(tmp5504, dI_m_t[3, 2], q[6N + 5], ord) + TaylorSeries.mul!(tmp5505, dI_m_t[3, 3], q[6N + 6], ord) + TaylorSeries.add!(tmp5506, tmp5504, tmp5505, ord) + TaylorSeries.add!(dIω_z, tmp5503, tmp5506, ord) TaylorSeries.div!(er_EM_I_1, X[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_2, Y[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.div!(er_EM_I_3, Z[ea, mo], r_p1d2[ea, mo], ord) TaylorSeries.identity!(p_E_I_1, RotM[3, 1, ea], ord) TaylorSeries.identity!(p_E_I_2, RotM[3, 2, ea], ord) TaylorSeries.identity!(p_E_I_3, RotM[3, 3, ea], ord) - TaylorSeries.mul!(tmp5458, RotM[1, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp5459, RotM[1, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp5460, RotM[1, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp5461, tmp5459, tmp5460, ord) - TaylorSeries.add!(er_EM_1, tmp5458, tmp5461, ord) - TaylorSeries.mul!(tmp5463, RotM[2, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp5464, RotM[2, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp5465, RotM[2, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp5466, tmp5464, tmp5465, ord) - TaylorSeries.add!(er_EM_2, tmp5463, tmp5466, ord) - TaylorSeries.mul!(tmp5468, RotM[3, 1, mo], er_EM_I_1, ord) - TaylorSeries.mul!(tmp5469, RotM[3, 2, mo], er_EM_I_2, ord) - TaylorSeries.mul!(tmp5470, RotM[3, 3, mo], er_EM_I_3, ord) - TaylorSeries.add!(tmp5471, tmp5469, tmp5470, ord) - TaylorSeries.add!(er_EM_3, tmp5468, tmp5471, ord) - TaylorSeries.mul!(tmp5473, RotM[1, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp5474, RotM[1, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp5475, RotM[1, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp5476, tmp5474, tmp5475, ord) - TaylorSeries.add!(p_E_1, tmp5473, tmp5476, ord) - TaylorSeries.mul!(tmp5478, RotM[2, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp5479, RotM[2, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp5480, RotM[2, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp5481, tmp5479, tmp5480, ord) - TaylorSeries.add!(p_E_2, tmp5478, tmp5481, ord) - TaylorSeries.mul!(tmp5483, RotM[3, 1, mo], p_E_I_1, ord) - TaylorSeries.mul!(tmp5484, RotM[3, 2, mo], p_E_I_2, ord) - TaylorSeries.mul!(tmp5485, RotM[3, 3, mo], p_E_I_3, ord) - TaylorSeries.add!(tmp5486, tmp5484, tmp5485, ord) - TaylorSeries.add!(p_E_3, tmp5483, tmp5486, ord) - TaylorSeries.mul!(tmp5488, I_m_t[1, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp5489, I_m_t[1, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp5490, I_m_t[1, 3], er_EM_3, ord) - TaylorSeries.add!(tmp5491, tmp5489, tmp5490, ord) - TaylorSeries.add!(I_er_EM_1, tmp5488, tmp5491, ord) - TaylorSeries.mul!(tmp5493, I_m_t[2, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp5494, I_m_t[2, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp5495, I_m_t[2, 3], er_EM_3, ord) - TaylorSeries.add!(tmp5496, tmp5494, tmp5495, ord) - TaylorSeries.add!(I_er_EM_2, tmp5493, tmp5496, ord) - TaylorSeries.mul!(tmp5498, I_m_t[3, 1], er_EM_1, ord) - TaylorSeries.mul!(tmp5499, I_m_t[3, 2], er_EM_2, ord) - TaylorSeries.mul!(tmp5500, I_m_t[3, 3], er_EM_3, ord) - TaylorSeries.add!(tmp5501, tmp5499, tmp5500, ord) - TaylorSeries.add!(I_er_EM_3, tmp5498, tmp5501, ord) - TaylorSeries.mul!(tmp5503, I_m_t[1, 1], p_E_1, ord) - TaylorSeries.mul!(tmp5504, I_m_t[1, 2], p_E_2, ord) - TaylorSeries.mul!(tmp5505, I_m_t[1, 3], p_E_3, ord) - TaylorSeries.add!(tmp5506, tmp5504, tmp5505, ord) - TaylorSeries.add!(I_p_E_1, tmp5503, tmp5506, ord) - TaylorSeries.mul!(tmp5508, I_m_t[2, 1], p_E_1, ord) - TaylorSeries.mul!(tmp5509, I_m_t[2, 2], p_E_2, ord) - TaylorSeries.mul!(tmp5510, I_m_t[2, 3], p_E_3, ord) - TaylorSeries.add!(tmp5511, tmp5509, tmp5510, ord) - TaylorSeries.add!(I_p_E_2, tmp5508, tmp5511, ord) - TaylorSeries.mul!(tmp5513, I_m_t[3, 1], p_E_1, ord) - TaylorSeries.mul!(tmp5514, I_m_t[3, 2], p_E_2, ord) - TaylorSeries.mul!(tmp5515, I_m_t[3, 3], p_E_3, ord) - TaylorSeries.add!(tmp5516, tmp5514, tmp5515, ord) - TaylorSeries.add!(I_p_E_3, tmp5513, tmp5516, ord) - TaylorSeries.mul!(tmp5518, er_EM_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp5519, er_EM_3, I_er_EM_2, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp5518, tmp5519, ord) - TaylorSeries.mul!(tmp5521, er_EM_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp5522, er_EM_1, I_er_EM_3, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp5521, tmp5522, ord) - TaylorSeries.mul!(tmp5524, er_EM_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp5525, er_EM_2, I_er_EM_1, ord) - TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp5524, tmp5525, ord) - TaylorSeries.mul!(tmp5527, er_EM_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp5528, er_EM_3, I_p_E_2, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp5527, tmp5528, ord) - TaylorSeries.mul!(tmp5530, er_EM_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp5531, er_EM_1, I_p_E_3, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp5530, tmp5531, ord) - TaylorSeries.mul!(tmp5533, er_EM_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp5534, er_EM_2, I_p_E_1, ord) - TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp5533, tmp5534, ord) - TaylorSeries.mul!(tmp5536, p_E_2, I_er_EM_3, ord) - TaylorSeries.mul!(tmp5537, p_E_3, I_er_EM_2, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp5536, tmp5537, ord) - TaylorSeries.mul!(tmp5539, p_E_3, I_er_EM_1, ord) - TaylorSeries.mul!(tmp5540, p_E_1, I_er_EM_3, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp5539, tmp5540, ord) - TaylorSeries.mul!(tmp5542, p_E_1, I_er_EM_2, ord) - TaylorSeries.mul!(tmp5543, p_E_2, I_er_EM_1, ord) - TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp5542, tmp5543, ord) - TaylorSeries.mul!(tmp5545, p_E_2, I_p_E_3, ord) - TaylorSeries.mul!(tmp5546, p_E_3, I_p_E_2, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp5545, tmp5546, ord) - TaylorSeries.mul!(tmp5548, p_E_3, I_p_E_1, ord) - TaylorSeries.mul!(tmp5549, p_E_1, I_p_E_3, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp5548, tmp5549, ord) - TaylorSeries.mul!(tmp5551, p_E_1, I_p_E_2, ord) - TaylorSeries.mul!(tmp5552, p_E_2, I_p_E_1, ord) - TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp5551, tmp5552, ord) - TaylorSeries.pow!(tmp5556, sin_ϕ[ea, mo], 2, ord) - TaylorSeries.mul!(tmp5557, 7, tmp5556, ord) - TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp5557, ord) + TaylorSeries.mul!(tmp5511, RotM[1, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp5512, RotM[1, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp5513, RotM[1, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp5514, tmp5512, tmp5513, ord) + TaylorSeries.add!(er_EM_1, tmp5511, tmp5514, ord) + TaylorSeries.mul!(tmp5516, RotM[2, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp5517, RotM[2, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp5518, RotM[2, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp5519, tmp5517, tmp5518, ord) + TaylorSeries.add!(er_EM_2, tmp5516, tmp5519, ord) + TaylorSeries.mul!(tmp5521, RotM[3, 1, mo], er_EM_I_1, ord) + TaylorSeries.mul!(tmp5522, RotM[3, 2, mo], er_EM_I_2, ord) + TaylorSeries.mul!(tmp5523, RotM[3, 3, mo], er_EM_I_3, ord) + TaylorSeries.add!(tmp5524, tmp5522, tmp5523, ord) + TaylorSeries.add!(er_EM_3, tmp5521, tmp5524, ord) + TaylorSeries.mul!(tmp5526, RotM[1, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp5527, RotM[1, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp5528, RotM[1, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp5529, tmp5527, tmp5528, ord) + TaylorSeries.add!(p_E_1, tmp5526, tmp5529, ord) + TaylorSeries.mul!(tmp5531, RotM[2, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp5532, RotM[2, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp5533, RotM[2, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp5534, tmp5532, tmp5533, ord) + TaylorSeries.add!(p_E_2, tmp5531, tmp5534, ord) + TaylorSeries.mul!(tmp5536, RotM[3, 1, mo], p_E_I_1, ord) + TaylorSeries.mul!(tmp5537, RotM[3, 2, mo], p_E_I_2, ord) + TaylorSeries.mul!(tmp5538, RotM[3, 3, mo], p_E_I_3, ord) + TaylorSeries.add!(tmp5539, tmp5537, tmp5538, ord) + TaylorSeries.add!(p_E_3, tmp5536, tmp5539, ord) + TaylorSeries.mul!(tmp5541, I_m_t[1, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp5542, I_m_t[1, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp5543, I_m_t[1, 3], er_EM_3, ord) + TaylorSeries.add!(tmp5544, tmp5542, tmp5543, ord) + TaylorSeries.add!(I_er_EM_1, tmp5541, tmp5544, ord) + TaylorSeries.mul!(tmp5546, I_m_t[2, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp5547, I_m_t[2, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp5548, I_m_t[2, 3], er_EM_3, ord) + TaylorSeries.add!(tmp5549, tmp5547, tmp5548, ord) + TaylorSeries.add!(I_er_EM_2, tmp5546, tmp5549, ord) + TaylorSeries.mul!(tmp5551, I_m_t[3, 1], er_EM_1, ord) + TaylorSeries.mul!(tmp5552, I_m_t[3, 2], er_EM_2, ord) + TaylorSeries.mul!(tmp5553, I_m_t[3, 3], er_EM_3, ord) + TaylorSeries.add!(tmp5554, tmp5552, tmp5553, ord) + TaylorSeries.add!(I_er_EM_3, tmp5551, tmp5554, ord) + TaylorSeries.mul!(tmp5556, I_m_t[1, 1], p_E_1, ord) + TaylorSeries.mul!(tmp5557, I_m_t[1, 2], p_E_2, ord) + TaylorSeries.mul!(tmp5558, I_m_t[1, 3], p_E_3, ord) + TaylorSeries.add!(tmp5559, tmp5557, tmp5558, ord) + TaylorSeries.add!(I_p_E_1, tmp5556, tmp5559, ord) + TaylorSeries.mul!(tmp5561, I_m_t[2, 1], p_E_1, ord) + TaylorSeries.mul!(tmp5562, I_m_t[2, 2], p_E_2, ord) + TaylorSeries.mul!(tmp5563, I_m_t[2, 3], p_E_3, ord) + TaylorSeries.add!(tmp5564, tmp5562, tmp5563, ord) + TaylorSeries.add!(I_p_E_2, tmp5561, tmp5564, ord) + TaylorSeries.mul!(tmp5566, I_m_t[3, 1], p_E_1, ord) + TaylorSeries.mul!(tmp5567, I_m_t[3, 2], p_E_2, ord) + TaylorSeries.mul!(tmp5568, I_m_t[3, 3], p_E_3, ord) + TaylorSeries.add!(tmp5569, tmp5567, tmp5568, ord) + TaylorSeries.add!(I_p_E_3, tmp5566, tmp5569, ord) + TaylorSeries.mul!(tmp5571, er_EM_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp5572, er_EM_3, I_er_EM_2, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_1, tmp5571, tmp5572, ord) + TaylorSeries.mul!(tmp5574, er_EM_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp5575, er_EM_1, I_er_EM_3, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_2, tmp5574, tmp5575, ord) + TaylorSeries.mul!(tmp5577, er_EM_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp5578, er_EM_2, I_er_EM_1, ord) + TaylorSeries.subst!(er_EM_cross_I_er_EM_3, tmp5577, tmp5578, ord) + TaylorSeries.mul!(tmp5580, er_EM_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp5581, er_EM_3, I_p_E_2, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_1, tmp5580, tmp5581, ord) + TaylorSeries.mul!(tmp5583, er_EM_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp5584, er_EM_1, I_p_E_3, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_2, tmp5583, tmp5584, ord) + TaylorSeries.mul!(tmp5586, er_EM_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp5587, er_EM_2, I_p_E_1, ord) + TaylorSeries.subst!(er_EM_cross_I_p_E_3, tmp5586, tmp5587, ord) + TaylorSeries.mul!(tmp5589, p_E_2, I_er_EM_3, ord) + TaylorSeries.mul!(tmp5590, p_E_3, I_er_EM_2, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_1, tmp5589, tmp5590, ord) + TaylorSeries.mul!(tmp5592, p_E_3, I_er_EM_1, ord) + TaylorSeries.mul!(tmp5593, p_E_1, I_er_EM_3, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_2, tmp5592, tmp5593, ord) + TaylorSeries.mul!(tmp5595, p_E_1, I_er_EM_2, ord) + TaylorSeries.mul!(tmp5596, p_E_2, I_er_EM_1, ord) + TaylorSeries.subst!(p_E_cross_I_er_EM_3, tmp5595, tmp5596, ord) + TaylorSeries.mul!(tmp5598, p_E_2, I_p_E_3, ord) + TaylorSeries.mul!(tmp5599, p_E_3, I_p_E_2, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_1, tmp5598, tmp5599, ord) + TaylorSeries.mul!(tmp5601, p_E_3, I_p_E_1, ord) + TaylorSeries.mul!(tmp5602, p_E_1, I_p_E_3, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_2, tmp5601, tmp5602, ord) + TaylorSeries.mul!(tmp5604, p_E_1, I_p_E_2, ord) + TaylorSeries.mul!(tmp5605, p_E_2, I_p_E_1, ord) + TaylorSeries.subst!(p_E_cross_I_p_E_3, tmp5604, tmp5605, ord) + TaylorSeries.pow!(tmp5609, sin_ϕ[ea, mo], 2, ord) + TaylorSeries.mul!(tmp5610, 7, tmp5609, ord) + TaylorSeries.subst!(one_minus_7sin2ϕEM, one_t, tmp5610, ord) TaylorSeries.mul!(two_sinϕEM, 2, sin_ϕ[ea, mo], ord) - TaylorSeries.pow!(tmp5562, r_p1d2[mo, ea], 5, ord) - TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp5562, ord) - TaylorSeries.mul!(tmp5564, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) - TaylorSeries.add!(tmp5565, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) - TaylorSeries.mul!(tmp5566, two_sinϕEM, tmp5565, ord) - TaylorSeries.add!(tmp5567, tmp5564, tmp5566, ord) - TaylorSeries.mul!(tmp5569, 0.4, p_E_cross_I_p_E_1, ord) - TaylorSeries.subst!(tmp5570, tmp5567, tmp5569, ord) - TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp5570, ord) - TaylorSeries.mul!(tmp5572, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) - TaylorSeries.add!(tmp5573, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) - TaylorSeries.mul!(tmp5574, two_sinϕEM, tmp5573, ord) - TaylorSeries.add!(tmp5575, tmp5572, tmp5574, ord) - TaylorSeries.mul!(tmp5577, 0.4, p_E_cross_I_p_E_2, ord) - TaylorSeries.subst!(tmp5578, tmp5575, tmp5577, ord) - TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp5578, ord) - TaylorSeries.mul!(tmp5580, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) - TaylorSeries.add!(tmp5581, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) - TaylorSeries.mul!(tmp5582, two_sinϕEM, tmp5581, ord) - TaylorSeries.add!(tmp5583, tmp5580, tmp5582, ord) - TaylorSeries.mul!(tmp5585, 0.4, p_E_cross_I_p_E_3, ord) - TaylorSeries.subst!(tmp5586, tmp5583, tmp5585, ord) - TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp5586, ord) - TaylorSeries.mul!(tmp5588, RotM[1, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp5589, RotM[1, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp5590, RotM[1, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp5591, tmp5589, tmp5590, ord) - TaylorSeries.add!(N_1_LMF, tmp5588, tmp5591, ord) - TaylorSeries.mul!(tmp5593, RotM[2, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp5594, RotM[2, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp5595, RotM[2, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp5596, tmp5594, tmp5595, ord) - TaylorSeries.add!(N_2_LMF, tmp5593, tmp5596, ord) - TaylorSeries.mul!(tmp5598, RotM[3, 1, mo], N_MfigM[1], ord) - TaylorSeries.mul!(tmp5599, RotM[3, 2, mo], N_MfigM[2], ord) - TaylorSeries.mul!(tmp5600, RotM[3, 3, mo], N_MfigM[3], ord) - TaylorSeries.add!(tmp5601, tmp5599, tmp5600, ord) - TaylorSeries.add!(N_3_LMF, tmp5598, tmp5601, ord) - TaylorSeries.subst!(tmp5603, q[6N + 10], q[6N + 4], ord) - TaylorSeries.mul!(tmp5604, k_ν, tmp5603, ord) - TaylorSeries.mul!(tmp5605, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp5606, tmp5605, q[6N + 11], ord) - TaylorSeries.subst!(N_cmb_1, tmp5604, tmp5606, ord) - TaylorSeries.subst!(tmp5608, q[6N + 11], q[6N + 5], ord) - TaylorSeries.mul!(tmp5609, k_ν, tmp5608, ord) - TaylorSeries.mul!(tmp5610, C_c_m_A_c, q[6N + 12], ord) - TaylorSeries.mul!(tmp5611, tmp5610, q[6N + 10], ord) - TaylorSeries.add!(N_cmb_2, tmp5609, tmp5611, ord) - TaylorSeries.subst!(tmp5613, q[6N + 12], q[6N + 6], ord) - TaylorSeries.mul!(N_cmb_3, k_ν, tmp5613, ord) - TaylorSeries.mul!(tmp5615, μ[mo], N_1_LMF, ord) - TaylorSeries.add!(tmp5616, N_MfigM_figE_1, tmp5615, ord) - TaylorSeries.add!(tmp5617, tmp5616, N_cmb_1, ord) - TaylorSeries.add!(tmp5618, dIω_x, ωxIω_x, ord) - TaylorSeries.subst!(I_dω_1, tmp5617, tmp5618, ord) - TaylorSeries.mul!(tmp5620, μ[mo], N_2_LMF, ord) - TaylorSeries.add!(tmp5621, N_MfigM_figE_2, tmp5620, ord) - TaylorSeries.add!(tmp5622, tmp5621, N_cmb_2, ord) - TaylorSeries.add!(tmp5623, dIω_y, ωxIω_y, ord) - TaylorSeries.subst!(I_dω_2, tmp5622, tmp5623, ord) - TaylorSeries.mul!(tmp5625, μ[mo], N_3_LMF, ord) - TaylorSeries.add!(tmp5626, N_MfigM_figE_3, tmp5625, ord) - TaylorSeries.add!(tmp5627, tmp5626, N_cmb_3, ord) - TaylorSeries.add!(tmp5628, dIω_z, ωxIω_z, ord) - TaylorSeries.subst!(I_dω_3, tmp5627, tmp5628, ord) + TaylorSeries.pow!(tmp5615, r_p1d2[mo, ea], 5, ord) + TaylorSeries.div!(N_MfigM_figE_factor_div_rEMp5, N_MfigM_figE_factor, tmp5615, ord) + TaylorSeries.mul!(tmp5617, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_1, ord) + TaylorSeries.add!(tmp5618, er_EM_cross_I_p_E_1, p_E_cross_I_er_EM_1, ord) + TaylorSeries.mul!(tmp5619, two_sinϕEM, tmp5618, ord) + TaylorSeries.add!(tmp5620, tmp5617, tmp5619, ord) + TaylorSeries.mul!(tmp5622, 0.4, p_E_cross_I_p_E_1, ord) + TaylorSeries.subst!(tmp5623, tmp5620, tmp5622, ord) + TaylorSeries.mul!(N_MfigM_figE_1, N_MfigM_figE_factor_div_rEMp5, tmp5623, ord) + TaylorSeries.mul!(tmp5625, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_2, ord) + TaylorSeries.add!(tmp5626, er_EM_cross_I_p_E_2, p_E_cross_I_er_EM_2, ord) + TaylorSeries.mul!(tmp5627, two_sinϕEM, tmp5626, ord) + TaylorSeries.add!(tmp5628, tmp5625, tmp5627, ord) + TaylorSeries.mul!(tmp5630, 0.4, p_E_cross_I_p_E_2, ord) + TaylorSeries.subst!(tmp5631, tmp5628, tmp5630, ord) + TaylorSeries.mul!(N_MfigM_figE_2, N_MfigM_figE_factor_div_rEMp5, tmp5631, ord) + TaylorSeries.mul!(tmp5633, one_minus_7sin2ϕEM, er_EM_cross_I_er_EM_3, ord) + TaylorSeries.add!(tmp5634, er_EM_cross_I_p_E_3, p_E_cross_I_er_EM_3, ord) + TaylorSeries.mul!(tmp5635, two_sinϕEM, tmp5634, ord) + TaylorSeries.add!(tmp5636, tmp5633, tmp5635, ord) + TaylorSeries.mul!(tmp5638, 0.4, p_E_cross_I_p_E_3, ord) + TaylorSeries.subst!(tmp5639, tmp5636, tmp5638, ord) + TaylorSeries.mul!(N_MfigM_figE_3, N_MfigM_figE_factor_div_rEMp5, tmp5639, ord) + TaylorSeries.mul!(tmp5641, RotM[1, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp5642, RotM[1, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp5643, RotM[1, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp5644, tmp5642, tmp5643, ord) + TaylorSeries.add!(N_1_LMF, tmp5641, tmp5644, ord) + TaylorSeries.mul!(tmp5646, RotM[2, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp5647, RotM[2, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp5648, RotM[2, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp5649, tmp5647, tmp5648, ord) + TaylorSeries.add!(N_2_LMF, tmp5646, tmp5649, ord) + TaylorSeries.mul!(tmp5651, RotM[3, 1, mo], N_MfigM[1], ord) + TaylorSeries.mul!(tmp5652, RotM[3, 2, mo], N_MfigM[2], ord) + TaylorSeries.mul!(tmp5653, RotM[3, 3, mo], N_MfigM[3], ord) + TaylorSeries.add!(tmp5654, tmp5652, tmp5653, ord) + TaylorSeries.add!(N_3_LMF, tmp5651, tmp5654, ord) + TaylorSeries.subst!(tmp5656, q[6N + 10], q[6N + 4], ord) + TaylorSeries.mul!(tmp5657, k_ν, tmp5656, ord) + TaylorSeries.mul!(tmp5658, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp5659, tmp5658, q[6N + 11], ord) + TaylorSeries.subst!(N_cmb_1, tmp5657, tmp5659, ord) + TaylorSeries.subst!(tmp5661, q[6N + 11], q[6N + 5], ord) + TaylorSeries.mul!(tmp5662, k_ν, tmp5661, ord) + TaylorSeries.mul!(tmp5663, C_c_m_A_c, q[6N + 12], ord) + TaylorSeries.mul!(tmp5664, tmp5663, q[6N + 10], ord) + TaylorSeries.add!(N_cmb_2, tmp5662, tmp5664, ord) + TaylorSeries.subst!(tmp5666, q[6N + 12], q[6N + 6], ord) + TaylorSeries.mul!(N_cmb_3, k_ν, tmp5666, ord) + TaylorSeries.mul!(tmp5668, μ[mo], N_1_LMF, ord) + TaylorSeries.add!(tmp5669, N_MfigM_figE_1, tmp5668, ord) + TaylorSeries.add!(tmp5670, tmp5669, N_cmb_1, ord) + TaylorSeries.add!(tmp5671, dIω_x, ωxIω_x, ord) + TaylorSeries.subst!(I_dω_1, tmp5670, tmp5671, ord) + TaylorSeries.mul!(tmp5673, μ[mo], N_2_LMF, ord) + TaylorSeries.add!(tmp5674, N_MfigM_figE_2, tmp5673, ord) + TaylorSeries.add!(tmp5675, tmp5674, N_cmb_2, ord) + TaylorSeries.add!(tmp5676, dIω_y, ωxIω_y, ord) + TaylorSeries.subst!(I_dω_2, tmp5675, tmp5676, ord) + TaylorSeries.mul!(tmp5678, μ[mo], N_3_LMF, ord) + TaylorSeries.add!(tmp5679, N_MfigM_figE_3, tmp5678, ord) + TaylorSeries.add!(tmp5680, tmp5679, N_cmb_3, ord) + TaylorSeries.add!(tmp5681, dIω_z, ωxIω_z, ord) + TaylorSeries.subst!(I_dω_3, tmp5680, tmp5681, ord) TaylorSeries.mul!(Ic_ωc_1, I_c_t[1, 1], q[6N + 10], ord) TaylorSeries.mul!(Ic_ωc_2, I_c_t[2, 2], q[6N + 11], ord) TaylorSeries.mul!(Ic_ωc_3, I_c_t[3, 3], q[6N + 12], ord) - TaylorSeries.mul!(tmp5633, q[6N + 6], Ic_ωc_2, ord) - TaylorSeries.mul!(tmp5634, q[6N + 5], Ic_ωc_3, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp5633, tmp5634, ord) - TaylorSeries.mul!(tmp5636, q[6N + 4], Ic_ωc_3, ord) - TaylorSeries.mul!(tmp5637, q[6N + 6], Ic_ωc_1, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp5636, tmp5637, ord) - TaylorSeries.mul!(tmp5639, q[6N + 5], Ic_ωc_1, ord) - TaylorSeries.mul!(tmp5640, q[6N + 4], Ic_ωc_2, ord) - TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp5639, tmp5640, ord) + TaylorSeries.mul!(tmp5686, q[6N + 6], Ic_ωc_2, ord) + TaylorSeries.mul!(tmp5687, q[6N + 5], Ic_ωc_3, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_1, tmp5686, tmp5687, ord) + TaylorSeries.mul!(tmp5689, q[6N + 4], Ic_ωc_3, ord) + TaylorSeries.mul!(tmp5690, q[6N + 6], Ic_ωc_1, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_2, tmp5689, tmp5690, ord) + TaylorSeries.mul!(tmp5692, q[6N + 5], Ic_ωc_1, ord) + TaylorSeries.mul!(tmp5693, q[6N + 4], Ic_ωc_2, ord) + TaylorSeries.subst!(m_ωm_x_Icωc_3, tmp5692, tmp5693, ord) TaylorSeries.subst!(Ic_dωc_1, m_ωm_x_Icωc_1, N_cmb_1, ord) TaylorSeries.subst!(Ic_dωc_2, m_ωm_x_Icωc_2, N_cmb_2, ord) TaylorSeries.subst!(Ic_dωc_3, m_ωm_x_Icωc_3, N_cmb_3, ord) - TaylorSeries.sincos!(tmp5645, tmp5725, q[6N + 3], ord) - TaylorSeries.mul!(tmp5646, q[6N + 4], tmp5645, ord) - TaylorSeries.sincos!(tmp5726, tmp5647, q[6N + 3], ord) - TaylorSeries.mul!(tmp5648, q[6N + 5], tmp5647, ord) - TaylorSeries.add!(tmp5649, tmp5646, tmp5648, ord) - TaylorSeries.sincos!(tmp5650, tmp5727, q[6N + 2], ord) - TaylorSeries.div!(dq[6N + 1], tmp5649, tmp5650, ord) - TaylorSeries.sincos!(tmp5728, tmp5652, q[6N + 3], ord) - TaylorSeries.mul!(tmp5653, q[6N + 4], tmp5652, ord) - TaylorSeries.sincos!(tmp5654, tmp5729, q[6N + 3], ord) - TaylorSeries.mul!(tmp5655, q[6N + 5], tmp5654, ord) - TaylorSeries.subst!(dq[6N + 2], tmp5653, tmp5655, ord) - TaylorSeries.sincos!(tmp5730, tmp5657, q[6N + 2], ord) - TaylorSeries.mul!(tmp5658, dq[6N + 1], tmp5657, ord) - TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp5658, ord) - TaylorSeries.mul!(tmp5660, inv_I_m_t[1, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp5661, inv_I_m_t[1, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp5662, inv_I_m_t[1, 3], I_dω_3, ord) - TaylorSeries.add!(tmp5663, tmp5661, tmp5662, ord) - TaylorSeries.add!(dq[6N + 4], tmp5660, tmp5663, ord) - TaylorSeries.mul!(tmp5665, inv_I_m_t[2, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp5666, inv_I_m_t[2, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp5667, inv_I_m_t[2, 3], I_dω_3, ord) - TaylorSeries.add!(tmp5668, tmp5666, tmp5667, ord) - TaylorSeries.add!(dq[6N + 5], tmp5665, tmp5668, ord) - TaylorSeries.mul!(tmp5670, inv_I_m_t[3, 1], I_dω_1, ord) - TaylorSeries.mul!(tmp5671, inv_I_m_t[3, 2], I_dω_2, ord) - TaylorSeries.mul!(tmp5672, inv_I_m_t[3, 3], I_dω_3, ord) - TaylorSeries.add!(tmp5673, tmp5671, tmp5672, ord) - TaylorSeries.add!(dq[6N + 6], tmp5670, tmp5673, ord) - TaylorSeries.sincos!(tmp5675, tmp5731, q[6N + 8], ord) - TaylorSeries.div!(tmp5676, ω_c_CE_2, tmp5675, ord) - TaylorSeries.subst!(dq[6N + 9], tmp5676, ord) - TaylorSeries.sincos!(tmp5732, tmp5678, q[6N + 8], ord) - TaylorSeries.mul!(tmp5679, dq[6N + 9], tmp5678, ord) - TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp5679, ord) + TaylorSeries.sincos!(tmp5698, tmp5778, q[6N + 3], ord) + TaylorSeries.mul!(tmp5699, q[6N + 4], tmp5698, ord) + TaylorSeries.sincos!(tmp5779, tmp5700, q[6N + 3], ord) + TaylorSeries.mul!(tmp5701, q[6N + 5], tmp5700, ord) + TaylorSeries.add!(tmp5702, tmp5699, tmp5701, ord) + TaylorSeries.sincos!(tmp5703, tmp5780, q[6N + 2], ord) + TaylorSeries.div!(dq[6N + 1], tmp5702, tmp5703, ord) + TaylorSeries.sincos!(tmp5781, tmp5705, q[6N + 3], ord) + TaylorSeries.mul!(tmp5706, q[6N + 4], tmp5705, ord) + TaylorSeries.sincos!(tmp5707, tmp5782, q[6N + 3], ord) + TaylorSeries.mul!(tmp5708, q[6N + 5], tmp5707, ord) + TaylorSeries.subst!(dq[6N + 2], tmp5706, tmp5708, ord) + TaylorSeries.sincos!(tmp5783, tmp5710, q[6N + 2], ord) + TaylorSeries.mul!(tmp5711, dq[6N + 1], tmp5710, ord) + TaylorSeries.subst!(dq[6N + 3], q[6N + 6], tmp5711, ord) + TaylorSeries.mul!(tmp5713, inv_I_m_t[1, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp5714, inv_I_m_t[1, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp5715, inv_I_m_t[1, 3], I_dω_3, ord) + TaylorSeries.add!(tmp5716, tmp5714, tmp5715, ord) + TaylorSeries.add!(dq[6N + 4], tmp5713, tmp5716, ord) + TaylorSeries.mul!(tmp5718, inv_I_m_t[2, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp5719, inv_I_m_t[2, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp5720, inv_I_m_t[2, 3], I_dω_3, ord) + TaylorSeries.add!(tmp5721, tmp5719, tmp5720, ord) + TaylorSeries.add!(dq[6N + 5], tmp5718, tmp5721, ord) + TaylorSeries.mul!(tmp5723, inv_I_m_t[3, 1], I_dω_1, ord) + TaylorSeries.mul!(tmp5724, inv_I_m_t[3, 2], I_dω_2, ord) + TaylorSeries.mul!(tmp5725, inv_I_m_t[3, 3], I_dω_3, ord) + TaylorSeries.add!(tmp5726, tmp5724, tmp5725, ord) + TaylorSeries.add!(dq[6N + 6], tmp5723, tmp5726, ord) + TaylorSeries.sincos!(tmp5728, tmp5784, q[6N + 8], ord) + TaylorSeries.div!(tmp5729, ω_c_CE_2, tmp5728, ord) + TaylorSeries.subst!(dq[6N + 9], tmp5729, ord) + TaylorSeries.sincos!(tmp5785, tmp5731, q[6N + 8], ord) + TaylorSeries.mul!(tmp5732, dq[6N + 9], tmp5731, ord) + TaylorSeries.subst!(dq[6N + 7], ω_c_CE_3, tmp5732, ord) TaylorSeries.identity!(dq[6N + 8], ω_c_CE_1, ord) TaylorSeries.mul!(dq[6N + 10], inv_I_c_t[1, 1], Ic_dωc_1, ord) TaylorSeries.mul!(dq[6N + 11], inv_I_c_t[2, 2], Ic_dωc_2, ord) diff --git a/src/jpl-de-430-431-earth-orientation-model.jl b/src/jpl-de-430-431-earth-orientation-model.jl index f49b4f1..fd2db31 100644 --- a/src/jpl-de-430-431-earth-orientation-model.jl +++ b/src/jpl-de-430-431-earth-orientation-model.jl @@ -7,12 +7,10 @@ # an estimated linear correction and on a modified IAU 1980 nutation model \* including # only terms with a period of 18.6 years. -export t2c_jpl_de430, c2t_jpl_de430, pole_rotation - @doc raw""" Ω(t) -Returns the longitude (in radians) of the mean ascending node of the lunar orbit on the +Return the longitude (in radians) of the mean ascending node of the lunar orbit on the ecliptic, measured from the mean equinox of date ```math \Omega(t) = 125^\circ 02' 40''.280 - \left(1934^\circ 8' 10''.539\right) T + 7''.455 T^2 + 0''.008 T^3, @@ -26,7 +24,7 @@ See equation (5-64) in page 5-27 of https://doi.org/10.1002/0471728470. @doc raw""" Delta_psi(t) -Returns the nutation in longitude (in radians) +Return the nutation in longitude (in radians) ```math \Delta\psi(t) = -17''.1996 \sin\Omega, ``` @@ -42,7 +40,7 @@ Delta_psi(t) = deg2rad( (-17.1996/3600)*sin(Ω(t)) ) @doc raw""" Delta_epsilon(t) -Returns the nutation in obliquity (in radians) +Return the nutation in obliquity (in radians) ```math \Delta\epsilon(t) = 9''.2025 \cos\Omega, ``` @@ -58,7 +56,7 @@ Delta_epsilon(t) = deg2rad( (9.2025/3600)*cos(Ω(t)) ) @doc raw""" pole_date(t) -Returns the true pole of date unit vector ``\mathbf{p}_\mathrm{d}``, computed by rotating the Earth-fixed pole vector by the effect of the 18.6-year nutation term. ``t`` is the TDB time in Julian days from J2000.0. +Return the true pole of date unit vector ``\mathbf{p}_\mathrm{d}``, computed by rotating the Earth-fixed pole vector by the effect of the 18.6-year nutation term. ``t`` is the TDB time in Julian days from J2000.0. See equation (23) in page 11 of https://ui.adsabs.harvard.edu/abs/2014IPNPR.196C...1F%2F/abstract. @@ -80,7 +78,7 @@ end @doc raw""" ϵ̄(t) -Returns the mean obliquity (in radians) +Return the mean obliquity (in radians) ```math \bar{\epsilon}(t) = 84,381''.448 - 46''.8150 T - 0''.00059 T^2 + 0''.001813 T^3, ``` @@ -93,7 +91,7 @@ See equation (5-153) in page 5-61 of https://doi.org/10.1002/0471728470. @doc raw""" pole_frame(t) -Returns the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}``, computed by +Return the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}``, computed by precessing the pole of date with an estimated linear correction ```math \mathbf{p}_\mathrm{E} = R_z(\zeta_A)R_y(-\theta_A)R_z(z_A)R_x(-\phi_x)R_y(-\phi_y)\mathbf{p}_\mathrm{d}, @@ -121,7 +119,7 @@ end @doc raw""" phi_x(t) -Returns the X-axis linear correction to precession (in radians) +Return the X-axis linear correction to precession (in radians) ```math \phi_x = \phi_{x0} + 100T\times \frac{d\phi_x}{dt}, ``` @@ -135,13 +133,13 @@ See also [`pole_frame`](@ref). """ phi_x(t) = deg2rad( (phi_x0 + (t/yr)*Dt_phi_x)/3600 ) -phi_x0 = 5.6754203322893470E-03 # x-axis rotation at J2000.0 (arcseconds) -Dt_phi_x = 2.7689915574483550E-04 # Negative obliquity rate correction (arcseconds/year) +const phi_x0 = 5.6754203322893470E-03 # x-axis rotation at J2000.0 (arcseconds) +const Dt_phi_x = 2.7689915574483550E-04 # Negative obliquity rate correction (arcseconds/year) @doc raw""" phi_y(t) -Returns the Y-axis linear correction to precession (in radians) +Return the Y-axis linear correction to precession (in radians) ```math \phi_y = \phi_{y0} + 100T\times \frac{d\phi_y}{dt}, ``` @@ -155,13 +153,13 @@ See also [`pole_frame`](@ref). """ phi_y(t) = deg2rad( (phi_y0 + (t/yr)*Dt_phi_y)/3600 ) -phi_y0 = -1.7022656914989530E-02 # y-axis rotation at J2000.0 (arcseconds) -Dt_phi_y = -1.2118591216559240E-03 # Precession rate correction times sine of obliquity (arcseconds/year) +const phi_y0 = -1.7022656914989530E-02 # y-axis rotation at J2000.0 (arcseconds) +const Dt_phi_y = -1.2118591216559240E-03 # Precession rate correction times sine of obliquity (arcseconds/year) @doc raw""" Zeta(t) -Returns the ``\zeta_A`` equatorial precession angle (in radians) +Return the ``\zeta_A`` equatorial precession angle (in radians) ```math \zeta_A(t) = 2306''.2181 T + 0''.30188 T^2 + 0''.017998 T^3, ``` @@ -182,7 +180,7 @@ end @doc raw""" Theta(t) -Returns the ``\theta_A`` equatorial precession angle (in radians) +Return the ``\theta_A`` equatorial precession angle (in radians) ```math \theta_A(t) = 2004''.3109 T - 0''.42665 T^2 - 0''.041833 T^3, ``` @@ -203,7 +201,7 @@ end @doc raw""" zeta(t) -Returns the ``z_A`` equatorial precession angle (in radians) +Return the ``z_A`` equatorial precession angle (in radians) ```math z_A(t) = 2306''.2181 T + 1''.09468 T^2 + 0''.018203 T^3, ``` @@ -226,7 +224,7 @@ end @doc raw""" Rx(alpha::T) where {T<:Number} -Returns the rotation matrix around the x-axis +Return the rotation matrix around the x-axis ```math R_x(\alpha) = \left[ @@ -267,7 +265,7 @@ end @doc raw""" Ry(alpha::T) where {T<:Number} -Returns the rotation matrix around the y-axis +Return the rotation matrix around the y-axis ```math R_y(\alpha) = \left[ @@ -313,7 +311,7 @@ end @doc raw""" Rz(alpha::T) where {T<:Number} -Returns the rotation matrix around the z-axis +Return the rotation matrix around the z-axis ```math R_z(\alpha) = \left[ @@ -357,7 +355,7 @@ end @doc raw""" pole_ra(t) -Returns the right ascension (in radians) of the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}(t)`` +Return the right ascension (in radians) of the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}(t)`` ```math \alpha = \arctan\left(\frac{p_\mathrm{Ey}(t)}{p_\mathrm{Ex}(t)}\right) + \pi, ``` @@ -373,7 +371,7 @@ end @doc raw""" pole_dec(t) -Returns the declination (in radians) of the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}(t)`` +Return the declination (in radians) of the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}(t)`` ```math \delta = \arctan\left(\frac{p_\mathrm{Ez}(t)}{\sqrt{p_\mathrm{Ex}^2(t) + p_\mathrm{Ey}^2(t)}}\right), ``` @@ -389,7 +387,7 @@ end @doc raw""" pole_radec(t) -Returns the right ascension and declination (both in radians) of the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}(t)`` +Return the right ascension and declination (both in radians) of the pole unit vector in the inertial frame ``\mathbf{p}_\mathrm{E}(t)`` ```math \begin{align*} \alpha & = \arctan\left(\frac{p_\mathrm{Ey}(t)}{p_\mathrm{Ex}(t)}\right) + \pi \\ @@ -410,7 +408,7 @@ end @doc raw""" pole_rotation(α::T, δ::T, W::T=zero(α)) where {T <: Number} -Returns the rotation matrix from the inertial frame to the frame with pole at right +Return the rotation matrix from the inertial frame to the frame with pole at right ascension ``\alpha``, declination ``\delta`` and prime meridian at ``W`` ```math A = R_z(W + \Delta W)R_x\left(\frac{\pi}{2} - \delta - \Delta\delta\right)R_z\left(\alpha + \Delta\alpha + \frac{\pi}{2}\right). @@ -430,7 +428,7 @@ end @doc raw""" earth_pole_rotation(t) -Returns the rotation matrix from inertial frame to Earth pole at time t (days) since J2000.0. +Return the rotation matrix from inertial frame to Earth pole at time t (days) since J2000.0. See also [`pole_radec`](@ref) and [`pole_rotation`](@ref). """ @@ -444,7 +442,7 @@ end @doc raw""" nutation_iau80(t) -Returns the IAU 1980 nutation matrix (Explanatory Supplement to the Astronomical Almanac 1992) +Return the IAU 1980 nutation matrix (Explanatory Supplement to the Astronomical Almanac 1992) ```math N = R_x(-\bar{\epsilon}(t) - \Delta\epsilon(t))R_z(-\Delta\psi(t))R_x(\bar{\epsilon}(t)), ``` @@ -467,7 +465,7 @@ end @doc raw""" t2c_jpl_de430(t) -Returns the matrix for terrestrial-to-celestial coordinate transformation, according to JPL DE 430/431 Earth orientation model +Return the matrix for terrestrial-to-celestial coordinate transformation, according to JPL DE 430/431 Earth orientation model ```math \texttt{t2c_jpl_de430}(t) = \texttt{c2t_jpl_de430}^T(t), ``` @@ -488,7 +486,7 @@ end @doc raw""" c2t_jpl_de430(t) -Returns the matrix for celestial-to-terrestrial coordinate transformation, according to +Return the matrix for celestial-to-terrestrial coordinate transformation, according to JPL DE 430/431 Earth orientation model ```math \texttt{c2t_jpl_de430}(t) = A\times C\times N, @@ -515,7 +513,7 @@ end @doc raw""" moon_omega(ϕ::Taylor1, θ::Taylor1, ψ::Taylor1) -Returns the Moon's angular velocity, computed by differentiating the Euler angles +Return the Moon's angular velocity, computed by differentiating the Euler angles ``(\phi, \theta, \psi)`` ```math \begin{align*} @@ -538,7 +536,7 @@ end @doc raw""" ITM1(x::T, y::T, z::T) where {T <: Number} -Returns the first term of the time-dependent part of lunar total moment of intertia +Return the first term of the time-dependent part of lunar total moment of intertia ```math -\frac{k_{2,M} m_E R_M^5}{r^5} \left[ @@ -579,7 +577,7 @@ end @doc raw""" ITM2(ωx::T, ωy::T, ωz::T) where {T <: Number} -Returns the second term of the time-dependent part of lunar total moment of intertia +Return the second term of the time-dependent part of lunar total moment of intertia ```math \frac{k_{2,M} R_M^5}{3G} \left[ @@ -626,7 +624,7 @@ end @doc raw""" ITM(q::Vector{T}, eulang::Vector{T}, ω_m::Vector{T}) where {T <: Number} -Returns lunar mantle inertia tensor +Return lunar mantle inertia tensor ```math \mathbf{I}_m(t) = \tilde{\mathbf{I}}_m - diff --git a/src/osculating.jl b/src/osculating.jl index 83d1791..f538d55 100644 --- a/src/osculating.jl +++ b/src/osculating.jl @@ -1,7 +1,7 @@ @doc raw""" semimajoraxis(x, y, z, u, v, w, m1, m2) -Calculates semimajor axis for the two body problem defined by the relative position +Calculate semimajor axis for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. """ function semimajoraxis(x, y, z, u, v, w, m1, m2) @@ -14,7 +14,7 @@ end @doc raw""" eccentricity(x, y, z, u, v, w, m1, m2) -Calculates eccentricity for the two body problem defined by the relative position +Calculate eccentricity for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. """ function eccentricity(x, y, z, u, v, w, m1, m2) @@ -29,7 +29,7 @@ end @doc raw""" inclination(x, y, z, u, v, w) -Calculates inclination for the two body problem defined by the relative position +Calculate inclination for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies.""" function inclination(x, y, z, u, v, w) # h: Angular momentum per unit mass @@ -41,7 +41,7 @@ end @doc raw""" aei(x, y, z, u, v, w, m1, m2) -Returns semimajor axis `a`, eccentricity `e` and inclination `inc` for the two-body +Return semimajor axis `a`, eccentricity `e` and inclination `inc` for the two-body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)`vectors between two bodies with masses `m1` and `m2`. @@ -66,7 +66,7 @@ end @doc """ ae(x, y, z, u, v, w) -Returns semimajor axis `a` and eccentricity `e` for the two-body problem defined +Return semimajor axis `a` and eccentricity `e` for the two-body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -87,7 +87,7 @@ end @doc raw""" longascnode(x, y, z, u, v, w) -Calculates longitude of ascending node for the two body problem defined by the relative +Calculate longitude of ascending node for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies. """ function longascnode(x, y, z, u, v, w) @@ -109,7 +109,7 @@ end @doc raw""" argperi(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) argument of pericentre for the two +Calculate the instantaneous (osculating) argument of pericentre for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. """ @@ -133,7 +133,7 @@ end @doc raw""" longperi(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) longitude of pericentre for the two +Calculate the instantaneous (osculating) longitude of pericentre for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. """ @@ -145,7 +145,7 @@ end @doc raw""" trueanomaly(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) true anomaly for the two +Calculate the instantaneous (osculating) true anomaly for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. """ @@ -182,7 +182,7 @@ end @doc raw""" ecanomaly(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) eccentric anomaly for the two +Calculate the instantaneous (osculating) eccentric anomaly for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -208,7 +208,7 @@ end @doc """ meananomaly(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) mean anomaly for the two +Calculate the instantaneous (osculating) mean anomaly for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -225,7 +225,7 @@ end @doc """ timeperipass(t, x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) time of pericentre passage, at time `t`, for the two +Calculate the instantaneous (osculating) time of pericentre passage, at time `t`, for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -243,7 +243,7 @@ end @doc """ rungelenzx(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) x-component of the Laplace-Runge-Lenz vector for the +Calculate the instantaneous (osculating) x-component of the Laplace-Runge-Lenz vector for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -266,7 +266,7 @@ end @doc raw""" rungelenzy(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) y-component of the Laplace-Runge-Lenz vector for the +Calculate the instantaneous (osculating) y-component of the Laplace-Runge-Lenz vector for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -289,7 +289,7 @@ end @doc raw""" rungelenzz(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) z-component of the Laplace-Runge-Lenz vector for the +Calculate the instantaneous (osculating) z-component of the Laplace-Runge-Lenz vector for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -312,7 +312,7 @@ end @doc raw""" rungelenzmag(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) magnitude of the Laplace-Runge-Lenz vector for the +Calculate the instantaneous (osculating) magnitude of the Laplace-Runge-Lenz vector for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. @@ -338,7 +338,7 @@ end @doc raw""" lrlvec(x, y, z, u, v, w, m1, m2) -Calculates the instantaneous (osculating) cartesian components of the Laplace-Runge-Lenz vector +Calculate the instantaneous (osculating) cartesian components of the Laplace-Runge-Lenz vector for the two body problem defined by the relative position `(x,y,z)` and velocity `(u,v,w)` vectors between two bodies with masses `m1` and `m2`. diff --git a/src/plephinteg.jl b/src/plephinteg.jl index d2a8c23..54e702d 100644 --- a/src/plephinteg.jl +++ b/src/plephinteg.jl @@ -1,29 +1,27 @@ @doc raw""" - evaluate_threads!(x::Array{Taylor1{T},1}, δt::T, - x0::Union{Array{T,1},SubArray{T,1}}) where {T<:Number} + evaluate_threads!(x::Vector{Taylor1{T}}, δt::T, x0::Vector{T}) where { T <: Number} Threaded version of `TaylorSeries.evaluate!`. See also [`TaylorSeries.evaluate!`](@ref). """ -function evaluate_threads!(x::Array{Taylor1{T},1}, δt::T, - x0::Union{Array{T,1},SubArray{T,1}}) where {T<:Number} - # @assert length(x) == length(x0) - Threads.@threads for i in eachindex(x, x0) +function evaluate_threads!(x::Vector{Taylor1{T}}, δt::T, x0::Vector{T}) where { T <: Number} + + Threads.@threads for i in eachindex(x) x0[i] = evaluate( x[i], δt ) end + nothing end @doc raw""" - stepsize_threads(q::AbstractArray{Taylor1{U},1}, epsilon::T) where {T<:Real, U<:Number} + stepsize_threads(q::Vector{Taylor1{U}}, epsilon::T) where {T <: Real, U <: Number} Threaded version of `TaylorIntegration.stepsize`. See also [`TaylorIntegration.stepsize`](@ref) and [`TaylorIntegration._second_stepsize`](@ref). """ -function stepsize_threads(q::AbstractArray{Taylor1{U},1}, epsilon::T) where - {T<:Real, U<:Number} +function stepsize_threads(q::Vector{Taylor1{U}}, epsilon::T) where {T <: Real, U <: Number} R = promote_type(typeof(norm(constant_term(q[1]), Inf)), T) h = convert(R, Inf) #= Threads.@threads =# for i in eachindex(q) @@ -90,111 +88,222 @@ end # end @doc raw""" - taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, - xaux::Vector{Taylor1{U}}, abstol::T, params, - parse_eqs::Bool=true) where {T<:Real, U<:Number} + taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, xaux::Vector{Taylor1{U}}, + abstol::T, params, parse_eqs::Bool=true) where {T<:Real, U<:Number} + taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, abstol::T, params, + rv::TaylorIntegration.RetAlloc{Taylor1{U}}) where {T<:Real, U<:Number} Threaded version of `TaylorIntegration.taylorstep`. See also [`stepsize_threads`](@ref) and [`TaylorIntegration.taylorstep`](@ref). """ -function taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, - dx::Vector{Taylor1{U}}, xaux::Vector{Taylor1{U}}, abstol::T, params, - parse_eqs::Bool=true) where {T<:Real, U<:Number} +function taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, xaux::Vector{Taylor1{U}}, + abstol::T, params) where {T<:Real, U<:Number} # Compute the Taylor coefficients - TaylorIntegration.__jetcoeffs!(Val(parse_eqs), f!, t, x, dx, xaux, params) - # @time TaylorIntegration.__jetcoeffs!(Val(parse_eqs), f!, t, x, dx, xaux, params) - # @time TaylorIntegration.__jetcoeffs!(Val(false), f!, t, x, dx, xaux, params) - # @time TaylorIntegration.__jetcoeffs!(Val(true), f!, t, x, dx, xaux, params) + TaylorIntegration.__jetcoeffs!(Val(false), f!, t, x, dx, xaux, params) + + # Compute the step-size of the integration using `abstol` + δt = stepsize_threads(x, abstol) + + return δt +end + +function taylorstep_threads!(f!, t::Taylor1{T}, x::Vector{Taylor1{U}}, dx::Vector{Taylor1{U}}, abstol::T, params, + rv::TaylorIntegration.RetAlloc{Taylor1{U}}) where {T<:Real, U<:Number} + + # Compute the Taylor coefficients + TaylorIntegration.__jetcoeffs!(Val(true), f!, t, x, dx, params, rv) # Compute the step-size of the integration using `abstol` δt = stepsize_threads(x, abstol) - # δt = stepsize_jz05(x, abstol) return δt end @doc raw""" - taylorinteg_threads(f!, q0::Array{U,1}, t0::T, tmax::T, order::Int, abstol::T, - params = nothing; maxsteps::Int=500, parse_eqs::Bool=true, - dense::Bool=false) where {T<:Real, U<:Number} + __determine_parsing!(parse_eqs::Bool, f, t, x, dx, params) -Threaded version of `TaylorIntegration.taylorinteg`. +Specialized method of `TaylorIntegration._determine_parsing!` to avoid invalidations. -See also [`TaylorIntegration.taylorinteg`](@ref). +See also [`TaylorIntegration._determine_parsing!`](@ref). """ -function taylorinteg_threads(f!, q0::Array{U,1}, t0::T, tmax::T, order::Int, abstol::T, - params = nothing; maxsteps::Int=500, parse_eqs::Bool=true, - dense::Bool=false) where {T<:Real, U<:Number} - - # Allocation - tv = Array{T}(undef, maxsteps+1) - dof = length(q0) - xv = Array{U}(undef, dof, maxsteps+1) - if dense - xv_interp = Array{Taylor1{U}}(undef, dof, maxsteps+1) +function __determine_parsing!(parse_eqs::Bool, f, t, x, dx, params) + + rv = TaylorIntegration._allocate_jetcoeffs!(t, x, dx, params) + + if parse_eqs + try + rv = TaylorIntegration._allocate_jetcoeffs!(Val(f), t, x, dx, params) + TaylorIntegration.jetcoeffs!(Val(f), t, x, dx, params, rv) + catch + @warn("""Unable to use the parsed method of `jetcoeffs!` for `$f`, + despite of having `parse_eqs=true`, due to some internal error. + Using `parse_eqs = false`.""") + parse_eqs = false + end end - # Initialize the vector of Taylor1 expansions - t = Taylor1(T, order) - x = Array{Taylor1{U}}(undef, dof) - dx = Array{Taylor1{U}}(undef, dof) - xaux = Array{Taylor1{U}}(undef, dof) - dx .= Taylor1.(zeros(U), order) - - # Initial conditions - @inbounds t[0] = t0 - x .= Taylor1.(q0, order) - x0 = deepcopy(q0) - @inbounds tv[1] = t0 - @inbounds xv[:,1] .= q0 - sign_tstep = copysign(1, tmax-t0) - - # Determine if specialized jetcoeffs! method exists - parse_eqs = TaylorIntegration._determine_parsing!(parse_eqs, f!, t, x, dx, params) - - @show parse_eqs - - # Integration - nsteps = 1 - while sign_tstep*t0 < sign_tstep*tmax - δt = taylorstep_threads!(f!, t, x, dx, xaux, abstol, params, parse_eqs) # δt is positive! - # δt = TaylorIntegration.taylorstep!(f!, t, x, dx, xaux, abstol, params, parse_eqs) # δt is positive! - # Below, δt has the proper sign according to the direction of the integration - δt = sign_tstep * min(δt, sign_tstep*(tmax-t0)) - evaluate_threads!(x, δt, x0) # new initial condition - # evaluate!(x, δt, x0) # new initial condition - t0 += δt - @inbounds t[0] = t0 - nsteps += 1 - @inbounds tv[nsteps] = t0 - if dense - # @inbounds xv_interp[:,nsteps-1] .= deepcopy(x) - Threads.@threads for i in eachindex(x0) - @inbounds xv_interp[i,nsteps-1] = deepcopy(x[i]) + return parse_eqs, rv +end + +@doc raw""" + taylorinteg_threads(f!, q0::Array{U,1}, t0::T, tmax::T, order::Int, abstol::T, Val(true/false), + params = nothing; maxsteps::Int=500, parse_eqs::Bool=true) where {T<:Real, U<:Number} + +Threaded version of `TaylorIntegration.taylorinteg`. + +See also [`TaylorIntegration.taylorinteg`](@ref). +""" taylorinteg_threads + +for V in (:(Val{true}), :(Val{false})) + @eval begin + + function taylorinteg_threads(f!, q0::Array{U, 1}, t0::T, tmax::T, order::Int, abstol::T, ::$V, params = nothing; + maxsteps::Int = 500, parse_eqs::Bool = true) where {T <: Real, U <: Number} + + # Initialize the vector of Taylor1 expansions + dof = length(q0) + t = t0 + Taylor1( T, order ) + x = Array{Taylor1{U}}(undef, dof) + dx = Array{Taylor1{U}}(undef, dof) + @inbounds for i in eachindex(q0) + @inbounds x[i] = Taylor1( q0[i], order ) + @inbounds dx[i] = Taylor1( zero(q0[i]), order ) end - else - # @inbounds xv[:,nsteps] .= x0 - Threads.@threads for i in eachindex(x0) - @inbounds xv[i,nsteps] = x0[i] + + # Determine if specialized jetcoeffs! method exists + parse_eqs, rv = __determine_parsing!(parse_eqs, f!, t, x, dx, params) + + if parse_eqs + # Re-initialize the Taylor1 expansions + t = t0 + Taylor1( T, order ) + x .= Taylor1.( q0, order ) + return _taylorinteg_threads!(f!, t, x, dx, q0, t0, tmax, abstol, rv, $V(), params, maxsteps = maxsteps) + else + return _taylorinteg_threads!(f!, t, x, dx, q0, t0, tmax, abstol, $V(), params, maxsteps = maxsteps) end + end - Threads.@threads for i in eachindex(x0) - @inbounds x[i][0] = x0[i] - @inbounds dx[i] = Taylor1( zero(x0[i]), order ) + + function _taylorinteg_threads!(f!, t::Taylor1{T}, x::Array{Taylor1{U}, 1}, dx::Array{Taylor1{U}, 1}, q0::Array{U, 1}, t0::T, + tmax::T, abstol::T, ::$V, params; maxsteps::Int = 500) where {T <: Real, U <: Number} + + # Initialize the vector of Taylor1 expansions + dof = length(q0) + + # Allocation + tv = Array{T}(undef, maxsteps+1) + xv = Array{U}(undef, dof, maxsteps+1) + if $V == Val{true} + polynV = Array{Taylor1{U}}(undef, dof, maxsteps+1) + end + xaux = Array{Taylor1{U}}(undef, dof) + + # Initial conditions + @inbounds t[0] = t0 + # x .= Taylor1.(q0, order) + x0 = deepcopy(q0) + @inbounds tv[1] = t0 + @inbounds xv[:,1] .= q0 + if $V == Val{true} + @inbounds polynV[:,1] .= deepcopy.(x) + end + sign_tstep = copysign(1, tmax-t0) + + # Integration + nsteps = 1 + while sign_tstep*t0 < sign_tstep*tmax + δt = taylorstep_threads!(f!, t, x, dx, xaux, abstol, params) # δt is positive! + # Below, δt has the proper sign according to the direction of the integration + δt = sign_tstep * min(δt, sign_tstep*(tmax-t0)) + evaluate_threads!(x, δt, x0) # new initial condition + if $V == Val{true} + # Store the Taylor polynomial solution + @inbounds polynV[:,nsteps+1] .= deepcopy.(x) + end + @inbounds Threads.@threads for i in eachindex(x0) + x[i][0] = x0[i] + dx[i][0] = zero(x0[i]) + end + t0 += δt + @inbounds t[0] = t0 + nsteps += 1 + @inbounds tv[nsteps] = t0 + @inbounds xv[:,nsteps] .= x0 + if nsteps > maxsteps + @warn(""" + Maximum number of integration steps reached; exiting. + """) + break + end + end + + if $V == Val{true} + return TaylorInterpolant(tv[1], view(tv.-tv[1],1:nsteps), view(transpose(view(polynV,:,2:nsteps)),1:nsteps-1,:)) + elseif $V == Val{false} + return view(tv,1:nsteps), view(transpose(view(xv,:,1:nsteps)),1:nsteps,:) + end end - if nsteps > maxsteps - @warn(""" - Maximum number of integration steps reached; exiting. - """) - break + + function _taylorinteg_threads!(f!, t::Taylor1{T}, x::Array{Taylor1{U}, 1}, dx::Array{Taylor1{U}, 1}, q0::Array{U, 1}, t0::T, + tmax::T, abstol::T, rv::TaylorIntegration.RetAlloc{Taylor1{U}}, ::$V, params; maxsteps::Int = 500) where {T <: Real, U <: Number} + + # Initialize the vector of Taylor1 expansions + dof = length(q0) + + # Allocation of output + tv = Array{T}(undef, maxsteps+1) + xv = Array{U}(undef, dof, maxsteps+1) + if $V == Val{true} + polynV = Array{Taylor1{U}}(undef, dof, maxsteps+1) + end + + # Initial conditions + @inbounds t[0] = t0 + x0 = deepcopy(q0) + @inbounds tv[1] = t0 + @inbounds xv[:,1] .= q0 + if $V == Val{true} + @inbounds polynV[:,1] .= deepcopy.(x) + end + sign_tstep = copysign(1, tmax-t0) + + # Integration + nsteps = 1 + while sign_tstep*t0 < sign_tstep*tmax + δt = taylorstep_threads!(f!, t, x, dx, abstol, params, rv) # δt is positive! + # Below, δt has the proper sign according to the direction of the integration + δt = sign_tstep * min(δt, sign_tstep*(tmax-t0)) + evaluate_threads!(x, δt, x0) # new initial condition + if $V == Val{true} + # Store the Taylor polynomial solution + @inbounds polynV[:,nsteps+1] .= deepcopy.(x) + end + + Threads.@threads for i in eachindex(x0) + x[i][0] = x0[i] + dx[i][0] = zero(x0[i]) + end + t0 += δt + @inbounds t[0] = t0 + nsteps += 1 + @inbounds tv[nsteps] = t0 + @inbounds xv[:,nsteps] .= x0 + if nsteps > maxsteps + @warn(""" + Maximum number of integration steps reached; exiting. + """) + break + end + end + + if $V == Val{true} + return TaylorInterpolant(tv[1], view(tv.-tv[1],1:nsteps), view(transpose(view(polynV,:,2:nsteps)),1:nsteps-1,:)) + elseif $V == Val{false} + return view(tv,1:nsteps), view(transpose(view(xv,:,1:nsteps)),1:nsteps,:) + end end - end - if dense - return TaylorInterpolant(tv[1], view(tv.-tv[1],1:nsteps), view(transpose(view(xv_interp,:,1:nsteps-1)),1:nsteps-1,:)) - else - return view(tv,1:nsteps), view(transpose(view(xv,:,1:nsteps)),1:nsteps,:) end end diff --git a/src/precompile.jl b/src/precompile.jl new file mode 100644 index 0000000..dcc929a --- /dev/null +++ b/src/precompile.jl @@ -0,0 +1,15 @@ +using SnoopPrecompile + +@info "SnoopPrecompile is analyzing PlanetaryEphemeris.jl code..." + +@precompile_setup begin + # Starting time of integration + jd0 = datetime2julian(DateTime(2000,1,1,12)) + # Number of years + nyears = 2031.0 - year(julian2datetime(jd0)) + + @precompile_all_calls begin + propagate(1, jd0, nyears, Val(false); dynamics = DE430!, order = 25, abstol = 1.0E-20) + propagate(1, jd0, nyears, Val(true); dynamics = DE430!, order = 25, abstol = 1.0E-20) + end +end \ No newline at end of file diff --git a/src/propagation.jl b/src/propagation.jl index 517e962..da13209 100644 --- a/src/propagation.jl +++ b/src/propagation.jl @@ -1,164 +1,229 @@ +@doc raw""" + Taylor1Serialization{T} + +Specialized struct to save `Taylor1{T}` objects to `.jld2` files. +""" +struct Taylor1Serialization{T} + x::Vector{T} +end + +# Tell JLD2 to save Taylor1{T} as Taylor1Serialization{T} +writeas(::Type{Taylor1{T}}) where {T} = Taylor1Serialization{T} +# Convert method to write .jld2 files +convert(::Type{Taylor1Serialization{T}}, a::Taylor1{T}) where {T} = Taylor1Serialization{T}(a.coeffs) +# Convert method to read .jld2 files +convert(::Type{Taylor1{T}}, a::Taylor1Serialization{T}) where {T} = Taylor1{T}(a.x, length(a.x) - 1) @doc raw""" - selecteph2jld(sseph::TaylorInterpolant, bodyind::AbstractVector{Int}, tspan::Number, N::Int) + selecteph2jld2(sseph::TaylorInterpolant, bodyind::T, tspan::S, N::Int) where {T <: AbstractVector{Int}, S <: Number} -Saves the ephemeris, contained in `sseph`, of the bodies with indexes `bodyind`, in a jld file -named as follows +Save the ephemeris, contained in `sseph`, of the bodies with indices `bodyind`, in a `.jld2` file named as follows - "sseph" * number of asteroids in sseph * "ast" * number of asteroids to be saved in file - * "p" (forward integration) or "m" (backward integration) * "y_et.jld" + "sseph" * number of asteroids in sseph * "ast" * number of asteroids to be saved in file * "_" + * "p" / "m" (forward / backward integration) * number of years in sseph * "y_et.jld2" # Arguments -- `sseph::TaylorInterpolant`: Ephemeris of all the bodies. -- `bodyind::AbstractVector{Int}`: Indexes of the bodies to be saved. -- `tspan::Number`: Time span of the integration (positive -> forward integration / negative -> backward integration). -- `N::Int`: Total number of bodies. +- `sseph::TaylorInterpolant`: ephemeris of all the bodies. +- `bodyind::T`: indices of the bodies to be saved. +- `tspan::S`: time span of the integration (positive -> forward integration / negative -> backward integration). +- `N::Int`: total number of bodies. """ -function selecteph2jld(sseph::TaylorInterpolant, bodyind::AbstractVector{Int}, tspan::Number, N::Int) - nast = N - 11 # Number of asteroids in sseph - indvec = nbodyind(N, bodyind) # Indexes of the positions and velocities of the bodies to be saved - nastout = length(bodyind) - 11 # Number of asteroids to be saved - @assert nastout <= nast - sgn_yrs = signbit(tspan) ? "m" : "p" # Prefix to distinguish between forward (p) / backward (m) integration - nyrs_int = Int(abs(tspan)) # Number of years +function selecteph2jld2(sseph::TaylorInterpolant, bodyind::T, tspan::S, N::Int) where {T <: AbstractVector{Int}, S <: Number} + + # Number of asteroids in sseph + nast = N - 11 + # indices of the positions and velocities of the bodies to be saved + indvec = nbodyind(N, bodyind) + # Number of asteroids to be saved + nastout = length(bodyind) - 11 + # Check nastout <= nast + @assert nastout <= nast "Cannot save $nastout asteroids from ephemeris with $nast asteroids" + # Prefix to distinguish between forward (p) / backward (m) integration + sgn_yrs = signbit(tspan) ? "m" : "p" + # Number of years + nyrs_int = Int(abs(tspan)) - # Write output to jld file + # Write output to .jld2 file # Name of the file - ss16ast_fname = "sseph$(lpad(nast,3,'0'))ast$(lpad(nastout,3,'0'))_"*sgn_yrs*"$(nyrs_int)y_et.jld" - # TaylorInterpolant with only the information of the bodies to be saved - # + Lunar orientation + TT-TDB + ss16ast_fname = "sseph$(lpad(nast,3,'0'))ast$(lpad(nastout,3,'0'))_" * sgn_yrs * "$(nyrs_int)y_et.jld2" + + # TaylorInterpolant with only the information of the bodies to be saved + Lunar orientation + TT-TDB ss16ast_eph = TaylorInterpolant(sseph.t0, sseph.t, sseph.x[:, union(indvec, 6N+1:6N+13)]) + + println("Saving solution to file: ", ss16ast_fname) + # Open file - jldopen(ss16ast_fname, "w") do file - addrequire(file, TaylorSeries) # Require TaylorSeries - addrequire(file, PlanetaryEphemeris) # Require PlanetaryEphemeris - write(file, "ss16ast_eph", ss16ast_eph) # Write the ephemeris to file + JLD2.jldopen(ss16ast_fname, "w") do file + # Write the ephemeris to file + write(file, "ss16ast_eph", ss16ast_eph) end # Check that written output is equal to original variable ss16ast_eph - recovered_sol_i = load(ss16ast_fname, "ss16ast_eph") - @show recovered_sol_i == ss16ast_eph + recovered_sol_i = JLD2.load(ss16ast_fname, "ss16ast_eph") + if recovered_sol_i == ss16ast_eph + println("Solution saved correctly") + else + println("Saved and recovered solution are not equal") + end + return nothing end @doc raw""" - propagate(maxsteps::Int, jd0::T, tspan::T; output::Bool=true, dense::Bool=false, - ephfile::String="sseph.jld", dynamics::Function=NBP_pN_A_J23E_J23M_J2S!, - nast::Int=343, quadmath::Bool=false, ss16ast::Bool=true, bodyind::AbstractVector{Int}=1:(11+nast), - order::Int=order, abstol::T=abstol, parse_eqs::Bool=true) where {T<:Real} + save2jld2andcheck(outfilename::String, sol) + +Save `sol` in `outfilename` (.jld2) and check that recovered solution equals `sol`. +""" +function save2jld2andcheck(outfilename::String, sol) + + println("Saving solution to file: ", outfilename) + + # Open file + JLD2.jldopen(outfilename, "w") do file + # Loop over solution variables + for ind in eachindex(sol) + # Name of the variable + varname = string(ind) + println("Saving variable: ", varname) + # Write the varaible + write(file, varname, sol[ind]) + end + end + + # Check that saved solution is equal to the original + println("Checking that all variables were saved correctly...") + + # Loop over solution variables + for ind in eachindex(sol) + # Name of the variable + varname = string(ind) + # Read varname from files and assign recovered variable to recovered_sol_i + recovered_sol_i = JLD2.load(outfilename, varname) + # Check that varname was recovered succesfully + if recovered_sol_i == sol[ind] + println("Variable ", varname, " saved correctly" ) + else + println("Recovered variable ", varname, " is not equal to the original" ) + end + end + + println("Saved solution") + + return nothing +end + +@doc raw""" + day2sec(x::Matrix{Taylor1{U}}) where {U <: Number} + +Convert `x` from days to seconds. +""" +function day2sec(x::Matrix{Taylor1{U}}) where {U <: Number} + + # Order of Taylor polynomials + order = x[1, 1].order + # Matrix dimensions + m, n = size(x) + # Taylor conversion variable + t = Taylor1(order) / daysec + # Allocate memory + res = Matrix{Taylor1{U}}(undef, m, n) + # Iterate over the matrix + for j in 1:n + for i in 1:m + @inbounds res[i, j] = x[i, j](t) + end + end + + return res +end + +@doc raw""" + propagate(maxsteps::Int, jd0::T, tspan::T, ::Val{false/true}; dynamics::Function = NBP_pN_A_J23E_J23M_J2S!, + nast::Int = 343, order::Int = order, abstol::T = abstol, parse_eqs::Bool = true) where {T <: Real} -Integrates the Solar System via the Taylor method. +Integrate the Solar System via the Taylor method. # Arguments - `maxsteps::Int`: maximum number of steps for the integration. - `jd0::T`: initial Julian date. - `tspan::T`: time span of the integration (in Julian days). +- `::Val{false/true}`: whether to save the Taylor polynomials at each step (`true`) or not (`false`). - `output::Bool`: whether to write the output to a file (`true`) or not. -- `dense::Bool`: whether to save the Taylor polynomials at each step (`true`) or not. -- `ephfile::String`: name of the file where to save the solution if `output` is `true` but one or both of `dense` and `ss16ast` is `false`. +- `ephfile::String`: name of the file where to save the solution if `ss16ast` is `false`. - `dynamics::Function`: dynamical model function. - `nast::Int`: number of asteroids to be considered in the integration. -- `quadmath::Bool`: whether to use quadruple precision (`true`) or not. -- `ss16ast::Bool`: wheter to save the solution using `selecteph2jld` (`true`) or not. -- `bodyind::AbstractVector{Int}`: indexes of the bodies to be saved. +- `ss16ast::Bool`: whether to save the solution using `selecteph2jld2` (`true`) or not. +- `bodyind::AbstractVector{Int}`: indices of the bodies to be saved. - `order::Int=order`: order of the Taylor expansions to be used in the integration. - `abstol::T`: absolute tolerance. - `parse_eqs::Bool`: whether to use the specialized method of `jetcoeffs!` (`true`) created with `@taylorize` or not. -""" -function propagate(maxsteps::Int, jd0::T, tspan::T; output::Bool=true, dense::Bool=false, - ephfile::String="sseph.jld", dynamics::Function=NBP_pN_A_J23E_J23M_J2S!, - nast::Int=343, quadmath::Bool=false, ss16ast::Bool=true, - bodyind::AbstractVector{Int}=1:(11+nast), order::Int=order, - abstol::T=abstol, parse_eqs::Bool=true) where {T<:Real} - - # Total number of bodies - N = 11+nast - # Get initial conditions (6N translational + 6 lunar mantle physical librations + 6 lunar core + TT-TDB) - _q0 = initialcond(N, jd0) # <--- length(_q0) == 6N+13 - # Set initial time equal to zero (improves accuracy in data reductions) - _t0 = zero(jd0) - # Final time (julian days) - @show _tmax = zero(_t0)+tspan*yr - - if quadmath - # Use quadruple precision - q0 = Float128.( _q0 ) - t0 = Float128(_t0) - tmax = Float128(_tmax) - _abstol = Float128(abstol) - _jd0 = Float128(jd0) - else - q0 = _q0 - t0 = _t0 - tmax = _tmax - _abstol = abstol - _jd0 = jd0 - end +""" propagate - # N: Total number of bodies - # jd0: Initial Julian date - params = (N, _jd0) - - # Do integration - if dense - # @time sol_ = taylorinteg(dynamics, q0, t0, tmax, order, _abstol, params, maxsteps=maxsteps, dense=dense) - @time sol_ = taylorinteg_threads(dynamics, q0, t0, tmax, order, _abstol, params, maxsteps=maxsteps, dense=dense, parse_eqs=parse_eqs) - # Parameters for TaylorInterpolant - if quadmath # with quadruple precision - # Initial time (seconds) - et0 = (jd0-J2000)*daysec - # Vector of times (seconds) - etv = Float64.( sol_.t[:]*daysec ) - # Vector of Taylor polynomials - sseph_x_et = map( x->x(Taylor1(order)/daysec), map(x->Taylor1(Float64.(x.coeffs)), sol_.x[:,:]) ) - else - # Initial time (seconds) - et0 = (jd0-J2000)*daysec - # Vector of times (seconds) - etv = sol_.t[:]*daysec - # Vector of Taylor polynomials - sseph_x_et = map(x->x(Taylor1(order)/daysec), sol_.x[:,:]) - end - # Save ephemeris in TaylorInterpolant object - sseph = TaylorInterpolant(et0, etv, sseph_x_et) - sol = (sseph=sseph,) - else - # @time sol_ = taylorinteg(dynamics, q0, t0, tmax, order, _abstol, params, maxsteps=maxsteps, dense=dense) - @time sol_ = taylorinteg_threads(dynamics, q0, t0, tmax, order, _abstol, params, maxsteps=maxsteps, dense=dense, parse_eqs=parse_eqs) - sol = (t=sol_[1][:], x=sol_[2][:,:]) - end +for V_dense in (:(Val{true}), :(Val{false})) + @eval begin + + function propagate(maxsteps::Int, jd0::T, tspan::T, ::$V_dense; dynamics::Function = NBP_pN_A_J23E_J23M_J2S!, + nast::Int = 343, order::Int = order, abstol::T = abstol, parse_eqs::Bool = true) where {T <: Real} + + # Total number of bodies (Sun + 8 planets + Moon + Pluto + Asteroid) + N = 11 + nast + + # Get 6N + 13 initial conditions (3N positions + 3N velocities + 6 lunar mantle angles + 6 lunar core angles + TT-TDB) + q0 = initialcond(N, jd0) + + # Set initial time equal to zero (improves accuracy in data reductions) + t0 = zero(T) + + # Parameters for dynamical function + params = (N, jd0) + + + # Final time of integration (days) + tmax = t0 + tspan*yr + + # Integration + sol_ = @time taylorinteg_threads(dynamics, q0, t0, tmax, order, abstol, $V_dense(), params, maxsteps = maxsteps, + parse_eqs = parse_eqs) + + if $V_dense == Val{true} + + # Parameters for TaylorInterpolant + + # Initial time [ days -> seconds ] + et0 = ( (jd0 - J2000) * daysec ) :: T + + # Vector of times [ days -> seconds ] + etv = (sol_.t * daysec) :: Vector{T} + + # Vector of Taylor polynomials [ days -> seconds ] + sseph_x_et = day2sec(sol_.x) :: Matrix{Taylor1{T}} + + # Save ephemeris in TaylorInterpolant object + sseph = TaylorInterpolant{T, T, 2}(et0, etv, sseph_x_et) + + return sseph + + else + + sol = (t = sol_[1][:], x = sol_[2][:, :]) + + return sol + + end + + end + + function propagate(maxsteps::Int, jd0::T1, tspan::T2, ::$V_dense; dynamics::Function = NBP_pN_A_J23E_J23M_J2S!, + nast::Int = 343, order::Int = order, abstol::T3 = abstol, parse_eqs::Bool = true) where {T1, T2, T3 <: Real} + + _jd0, _tspan, _abstol = promote(jd0, tspan, abstol) + + return propagate(maxsteps, _jd0, _tspan, $V_dense(); dynamics = dynamics, nast = nast, order = order, + abstol = abstol, parse_eqs = parse_eqs) + + end - # Write solution to .jld files - if output - if dense && ss16ast - selecteph2jld(sseph, bodyind, tspan, N) - else - println("Saving solution to file: $ephfile") - # Open file - jldopen(ephfile, "w") do file - addrequire(file, TaylorSeries) # Require TaylorSeries - addrequire(file, PlanetaryEphemeris) # Require PlanetaryEphemeris - # Write variables to jld file - for ind in eachindex(sol) - varname = string(ind) - println("Saving variable: ", varname) - write(file, varname, sol[ind]) - end - end - # Check that recovered variables are equal to original variables - for ind in eachindex(sol) - varname = string(ind) - # Read varname from jld file and assign recovered variable to recovered_sol_i - recovered_sol_i = load(ephfile, varname) - # Check that recovered variable is equal to original variable - @show recovered_sol_i == sol[ind] - end - end - println("Saved solution") - return nothing - else - return sol end -end +end diff --git a/test/propagation.jl b/test/propagation.jl new file mode 100644 index 0000000..13a807b --- /dev/null +++ b/test/propagation.jl @@ -0,0 +1,122 @@ +# This file is part of the PlanetaryEphemeris.jl package; MIT licensed + +using PlanetaryEphemeris +using Dates +using Quadmath +using TaylorIntegration +using TaylorSeries +using JLD2 +using Test + +using PlanetaryEphemeris: initialcond + +@testset "Initial conditions" begin + + # Special method of julian2datetime for Float128 + local date = DateTime( rand(1950:2050), rand(1:12), rand(1:28) ) + local jd0 = datetime2julian(date) + local jd1 = convert(Float128, jd0) + + @test jd0 == jd1 + @test julian2datetime(jd0) == julian2datetime(jd1) + + # initialcond + local N = 11 + 343 + + for jd0 in datetime2julian.( ( DateTime(1969,6,28,0,0,0), DateTime(2000,1,1,12) ) ) + + q0_64 = initialcond(N, jd0) + q0_128 = initialcond(N, convert(Float128, jd0) ) + + @test isa(q0_64, Vector{Float64}) + @test isa(q0_128, Vector{Float128}) + @test q0_64 == q0_128 + + end + +end + +@testset "Interpolation" begin + + # Kepler problem + local order = 28 + + @taylorize function kepler1!(dq, q, p, t) + local μ = -1.0 + r = sqrt(q[1]^2+q[2]^2) + r_p3d2 = r^3 + + dq[1] = q[3] + dq[2] = q[4] + dq[3] = μ * q[1] / r_p3d2 + dq[4] = μ * q[2] / r_p3d2 + + return nothing + end + + # Float64 + local abstol_64 = 1.0e-20 + local t0_64 = 0.0 + local tf_64 = 2π*100.0 + + q0_64 = [0.2, 0.0, 0.0, 3.0] + + tv_f64, xv_f64, polynV_f64 = taylorinteg(kepler1!, q0_64, t0_64, tf_64, order, abstol_64, Val(true), maxsteps = 500000, + parse_eqs = false) + interp_f64 = TaylorInterpolant(tv_f64[1], tv_f64[:], polynV_f64[2:end, :]) + + @test isa(interp_f64, TaylorInterpolant{Float64, Float64, 2}) + + tv_t64, xv_t64, polynV_t64 = taylorinteg(kepler1!, q0_64, t0_64, tf_64, order, abstol_64, Val(true), maxsteps = 500000, + parse_eqs = true) + interp_t64 = TaylorInterpolant(tv_t64[1], tv_t64[:], polynV_t64[2:end, :]) + + @test isa(interp_t64, TaylorInterpolant{Float64, Float64, 2}) + + @test interp_f64 == interp_t64 + + # Float128 + local abstol_128 = Float128(1.0e-20) + local t0_128 = Float128(0.0) + local tf_128 = Float128(2π*100.0) + + q0_128 = Float128.([0.2, 0.0, 0.0, 3.0]) + + tv_f128, xv_f128, polynV_f128 = taylorinteg(kepler1!, q0_128, t0_128, tf_128, order, abstol_128, Val(true), maxsteps = 500000, + parse_eqs = false) + interp_f128 = TaylorInterpolant(tv_f128[1], tv_f128[:], polynV_f128[2:end, :]) + + @test isa(interp_f128, TaylorInterpolant{Float128, Float128, 2}) + + tv_t128, xv_t128, polynV_t128 = taylorinteg(kepler1!, q0_128, t0_128, tf_128, order, abstol_128, Val(true), maxsteps = 500000, + parse_eqs = true) + interp_t128 = TaylorInterpolant(tv_t128[1], tv_t128[:], polynV_t128[2:end, :]) + + @test isa(interp_t128, TaylorInterpolant{Float128, Float128, 2}) + + @test interp_f128 == interp_t128 + + # Crossed tests + @test typeof(convert(Float128, interp_t64)) == typeof(interp_t128) + @test typeof(convert(Float128, interp_f64)) == typeof(interp_f128) + + @test typeof(convert(Float64, interp_t128)) == typeof(interp_t64) + @test typeof(convert(Float64, interp_f128)) == typeof(interp_f64) + +end + +@testset "Read/write .jld2 files" begin + + # Create a matrix of random Taylor series + M = Matrix{Taylor1{Float64}}(undef, 100, 100) + for i in eachindex(M) + M[i] = Taylor1(rand(25), 25) + end + + JLD2.save("test.jld2", "M", M) + recovered_M = JLD2.load("test.jld2", "M") + rm("test.jld2") + + @test M == recovered_M + +end diff --git a/test/runtests.jl b/test/runtests.jl new file mode 100644 index 0000000..3ea2da0 --- /dev/null +++ b/test/runtests.jl @@ -0,0 +1,9 @@ +# This file is part of the PlanetaryEphemeris.jl package; MIT licensed + +testfiles = ( + "propagation.jl", + ) + +for file in testfiles + include(file) +end