-
Notifications
You must be signed in to change notification settings - Fork 77
/
AlligatorStrat.py
112 lines (88 loc) · 3.42 KB
/
AlligatorStrat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# --- Do not remove these libs ---
from freqtrade.strategy.interface import IStrategy
from pandas import DataFrame
# --------------------------------
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
class AlligatorStrat(IStrategy):
"""
author@: Gert Wohlgemuth
idea:
buys and sells on crossovers - doesn't really perfom that well and its just a proof of concept
"""
# Minimal ROI designed for the strategy.
# This attribute will be overridden if the config file contains "minimal_roi"
minimal_roi = {
"0": 0.1
# "53": 0.06157,
# "93": 0.0518,
# "187": 0.03,
}
# Optimal stoploss designed for the strategy
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.2
# Optimal ticker interval for the strategy
ticker_interval = '4h'
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# CCIPeriod = 14
# T3Period = 5
# b = 0.618
dataframe['SMAShort'] = ta.SMA(dataframe, timeperiod=5)
dataframe['SMAMedium'] = ta.SMA(dataframe, timeperiod=8)
dataframe['SMALong'] = ta.SMA(dataframe, timeperiod=13)
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macdsignal'] = macd['macdsignal']
dataframe['macdhist'] = macd['macdhist']
# b2 = b*b2b3 = b2 * b2c1 = -b3
# c2 = (3 * (b2+b3))
# c3 = -3 * (2*b2+b+b3)
# c4 = (1+3*b+b3+3*b2)
# nr = 1 + 0.5 * (T3period - 1)
# w1 = 2 / (nr + 1)
# w2 = 1 - w1
# xcci = ta.CCI(CCIPeriod)
return dataframe
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the buy signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
#or cross above SMALong to be more conservative
(
qtpylib.crossed_above(dataframe['SMAShort'], dataframe['SMAMedium']) &
((dataframe['macd'] > -0.00001)) &
(dataframe['macd'] > dataframe['macdsignal'])
)
|
qtpylib.crossed_above(dataframe['macd'], dataframe['macdsignal'])
# |
# (
# (dataframe['SMAShort'] > dataframe['SMAMedium']) &
# ((dataframe['macd'] > -0.00006)) &
# qtpylib.crossed_above(dataframe['macd'], dataframe['macdsignal'])
# )
),
'buy'] = 1
return dataframe
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Based on TA indicators, populates the sell signal for the given dataframe
:param dataframe: DataFrame
:return: DataFrame with buy column
"""
dataframe.loc[
(
# qtpylib.crossed_below(dataframe['SMAShort'], dataframe['SMALong']) &
((dataframe['close'] < dataframe['SMAMedium']) &
(dataframe['macd'] < dataframe['macdsignal'])
)
|
qtpylib.crossed_below(dataframe['macd'], dataframe['macdsignal'])
# (dataframe['cci'] >= 100.0)
),
'sell'] = 1
return dataframe