-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdocker-compose.yml
190 lines (179 loc) · 5.22 KB
/
docker-compose.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
version: '3.9'
volumes:
s3-data: {}
mlflow-db-data: {}
mongo-data: {}
prometheus-data: {}
grafana-data: {}
services:
mlflow-db:
image: postgres:14.3
container_name: mlflow-db
environment:
POSTGRES_DB: ${POSTGRES_DB}
POSTGRES_USER: ${POSTGRES_USER}
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
expose:
- "5432"
ports:
- "127.0.0.1:5432:5432"
volumes:
- "mlflow-db-data:/var/lib/postgresql/"
minio:
image: minio/minio:RELEASE.2022-05-19T18-20-59Z
container_name: minio
command: server /data --console-address ":9001"
expose:
- "9000"
- "9001"
ports:
- "127.0.0.1:9000:9000"
- "127.0.0.1:9001:9001"
volumes:
- "s3-data:/data"
environment:
MINIO_SITE_REGION: ${AWS_DEFAULT_REGION}
MINIO_ROOT_USER: ${AWS_ACCESS_KEY_ID}
MINIO_ROOT_PASSWORD: ${AWS_SECRET_ACCESS_KEY}
createbuckets:
image: minio/mc
container_name: createbuckets
depends_on:
- minio
entrypoint: >
/bin/sh -c "
echo sleep 15;
sleep 15;
/usr/bin/mc config host add myminio http://minio:9000 ${AWS_ACCESS_KEY_ID} ${AWS_SECRET_ACCESS_KEY};
/usr/bin/mc mb myminio/${EXPERIMENT_NAME};
exit 0;
"
mlflow-server:
build:
context: ./app
dockerfile: Dockerfile
image: peco602/maternal-health-risk-predictor:latest
container_name: mlflow-server
environment:
AWS_REGION: ${AWS_REGION}
AWS_DEFAULT_REGION: ${AWS_DEFAULT_REGION}
AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}
AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_ACCESS_KEY}
MLFLOW_S3_ENDPOINT_URL: http://minio:9000
expose:
- "5000"
ports:
- "127.0.0.1:5000:5000"
command: mlflow server --host 0.0.0.0 --backend-store-uri postgresql://${POSTGRES_USER}:${POSTGRES_PASSWORD}@mlflow-db:5432/${POSTGRES_DB} --default-artifact-root s3://${EXPERIMENT_NAME}/mlflow
depends_on:
- mlflow-db
- minio
mongo:
image: mongo
container_name: mongo
ports:
- "127.0.0.1:27017:27017"
volumes:
- mongo-data:/data/db
prometheus:
image: prom/prometheus
container_name: prometheus
volumes:
- ./monitoring/config/prometheus.yml:/etc/prometheus/prometheus.yml
- prometheus-data:/prometheus
command:
- '--config.file=/etc/prometheus/prometheus.yml'
- '--storage.tsdb.path=/prometheus'
ports:
- "127.0.0.1:9090:9090"
restart: always
grafana:
image: grafana/grafana
container_name: grafana
user: "472"
depends_on:
- prometheus
ports:
- "127.0.0.1:3000:3000"
volumes:
- ./monitoring/config/grafana_datasources.yaml:/etc/grafana/provisioning/datasources/datasource.yaml:ro
- ./monitoring/config/grafana_dashboards.yaml:/etc/grafana/provisioning/dashboards/dashboards.yaml:ro
- ./monitoring/dashboards:/opt/grafana/dashboards
- grafana-data:/var/lib/grafana
restart: always
evidently-service:
build:
context: monitoring
dockerfile: Dockerfile
image: peco602/maternal-health-risk-monitoring-service:latest
container_name: evidently-service
environment:
MONGODB_URI: "mongodb://mongo:27017"
EXPERIMENT_NAME: ${EXPERIMENT_NAME}
MIN_AGE: ${MIN_AGE}
MAX_AGE: ${MAX_AGE}
depends_on:
- grafana
volumes:
- ./data:/app/datasets
- ./monitoring/config.yaml:/app/config.yaml
ports:
- "127.0.0.1:8085:8085"
web-app:
build:
context: ./app
dockerfile: Dockerfile
image: peco602/maternal-health-risk-predictor:latest
container_name: web-app
environment:
AWS_REGION: ${AWS_REGION}
AWS_DEFAULT_REGION: ${AWS_DEFAULT_REGION}
AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}
AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_ACCESS_KEY}
MLFLOW_ENABLED: "True"
MLFLOW_TRACKING_URI: http://mlflow-server:5000
DEFAULT_MODEL_ENABLED: ${DEFAULT_MODEL_ENABLED}
MLFLOW_S3_ENDPOINT_URL: http://minio:9000
MONITORING_ENABLED: "True"
EVIDENTLY_SERVICE_URI: http://evidently-service:8085
MONGODB_URI: "mongodb://mongo:27017"
EXPERIMENT_NAME: ${EXPERIMENT_NAME}
MIN_AGE: ${MIN_AGE}
MAX_AGE: ${MAX_AGE}
command: "gunicorn --bind=0.0.0.0:8081 predict:app"
expose:
- "8081"
ports:
- "80:8081"
depends_on:
- mlflow-server
- evidently-service
- mongo
restart: on-failure
prefect:
build:
context: ./app
dockerfile: Dockerfile
image: peco602/maternal-health-risk-predictor:latest
container_name: prefect
environment:
KAGGLE_USERNAME: ${KAGGLE_USERNAME}
KAGGLE_KEY: ${KAGGLE_KEY}
EXPERIMENT_NAME: ${EXPERIMENT_NAME}
AWS_REGION: ${AWS_REGION}
AWS_DEFAULT_REGION: ${AWS_DEFAULT_REGION}
AWS_ACCESS_KEY_ID: ${AWS_ACCESS_KEY_ID}
AWS_SECRET_ACCESS_KEY: ${AWS_SECRET_ACCESS_KEY}
MLFLOW_S3_ENDPOINT_URL: http://minio:9000
MLFLOW_TRACKING_URI: http://mlflow-server:5000
MODEL_SEARCH_ITERATIONS: ${MODEL_SEARCH_ITERATIONS}
command: "prefect orion start --host=0.0.0.0"
volumes:
- ./data:/app/data
expose:
- "4200"
ports:
- "127.0.0.1:4200:4200"
depends_on:
- mlflow-server
restart: on-failure