(Taken from features_info.txt) Feature Selection
The features selected for this database come from the accelerometer and gyroscope 3-axial raw signals tAcc-XYZ and tGyro-XYZ. These time domain signals (prefix 't' to denote time) were captured at a constant rate of 50 Hz. Then they were filtered using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20 Hz to remove noise. Similarly, the acceleration signal was then separated into body and gravity acceleration signals (tBodyAcc-XYZ and tGravityAcc-XYZ) using another low pass Butterworth filter with a corner frequency of 0.3 Hz.
Subsequently, the body linear acceleration and angular velocity were derived in time to obtain Jerk signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ). Also the magnitude of these three-dimensional signals were calculated using the Euclidean norm (tBodyAccMag, tGravityAccMag, tBodyAccJerkMag, tBodyGyroMag, tBodyGyroJerkMag).
Finally a Fast Fourier Transform (FFT) was applied to some of these signals producing fBodyAcc-XYZ, fBodyAccJerk-XYZ, fBodyGyro-XYZ, fBodyAccJerkMag, fBodyGyroMag, fBodyGyroJerkMag. (Note the 'f' to indicate frequency domain signals).
These signals were used to estimate variables of the feature vector for each pattern: '-XYZ' is used to denote 3-axial signals in the X, Y and Z directions.
tBodyAcc-XYZ
tGravityAcc-XYZ
tBodyAccJerk-XYZ
tBodyGyro-XYZ
tBodyGyroJerk-XYZ
tBodyAccMag
tGravityAccMag
tBodyAccJerkMag
tBodyGyroMag
tBodyGyroJerkMag
fBodyAcc-XYZ
fBodyAccJerk-XYZ
fBodyGyro-XYZ
fBodyAccMag
fBodyAccJerkMag
fBodyGyroMag
fBodyGyroJerkMag
The set of variables that were estimated from these signals are (variables in bold are those kept in the tidy data set):
mean(): Mean value
std(): Standard deviation
mad(): Median absolute deviation
max(): Largest value in array
min(): Smallest value in array
sma(): Signal magnitude area
energy(): Energy measure. Sum of the squares divided by the number of values.
iqr(): Interquartile range
entropy(): Signal entropy
arCoeff(): Autorregresion coefficients with Burg order equal to 4
correlation(): correlation coefficient between two signals
maxInds(): index of the frequency component with largest magnitude
meanFreq(): Weighted average of the frequency components to obtain a mean frequency
skewness(): skewness of the frequency domain signal
kurtosis(): kurtosis of the frequency domain signal
bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
angle(): Angle between to vectors.
Additional vectors obtained by averaging the signals in a signal window sample. These are used on the angle() variable:
gravityMean
tBodyAccMean
tBodyAccJerkMean
tBodyGyroMean
tBodyGyroJerkMean
The complete list of variables of each feature vector is available in 'features.txt'