-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathdataset_loaders.py
397 lines (336 loc) · 17 KB
/
dataset_loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import torchvision.transforms.functional as F
import os
import torch
import glob
from PIL import Image
from torch.utils.data import Dataset, DataLoader
import tqdm
import pickle
import numpy as np
import random
from io import BytesIO
import lmdb
from constants import INDICES
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
return img
def fast_image_reshape(in_img_batch, height_out, width_out, non_diff_allowed=False, mode='bicubic'):
resize_img = torch.nn.functional.interpolate(in_img_batch, size=(width_out, height_out), mode=mode)
if non_diff_allowed:
min_pix = in_img_batch.min().item()
max_pix = in_img_batch.max().item()
resize_img = resize_img.clamp(min=min_pix, max=max_pix)
return resize_img
def shuffle_flame_params(original_flame_params, fake_flame_params):
batch_size = original_flame_params.shape[0]
new_flame_batch = original_flame_params.repeat((5, 1))
shape_idx = INDICES['SHAPE']
exp_idx = INDICES['EXP']
cam_idx = INDICES['CAM']
pose_idx = INDICES['POSE']
# Swap shape
new_flame_batch[batch_size:batch_size*2, shape_idx[0]:shape_idx[1]] = fake_flame_params[:, shape_idx[0]:shape_idx[1]]
# Swap expression
new_flame_batch[batch_size*2:batch_size*3, exp_idx[0]:exp_idx[1]] = fake_flame_params[:, exp_idx[0]:exp_idx[1]]
# Swap pose
new_flame_batch[batch_size*3:batch_size*4, pose_idx[0]:pose_idx[1]] = fake_flame_params[:, pose_idx[0]:pose_idx[1]]
# Swap camera
new_flame_batch[batch_size*4:batch_size*5, cam_idx[0]:cam_idx[1]] = fake_flame_params[:, cam_idx[0]:cam_idx[1]]
return new_flame_batch
def same_padding_crop(img, normalized_crop):
"""
Not in place same padding crop however destroyes img
normalized_crop: tuple of float32/ float64 crop size if the image height and width is 1. i.e. 1 being max
rows or cols
"""
img_new = img.clone()
row_crop = int(normalized_crop[0] * img.shape[1])
col_crop = int(normalized_crop[1] * img.shape[2])
rows, cols = img.shape[1:]
if row_crop != 0:
if row_crop > 0: # shift up
img_new[:, :rows-row_crop, :] = img[:, row_crop:, :]
img_new[:, rows-row_crop:, :] = img[:, rows-row_crop:rows-row_crop+1, :]
else: # shift down
row_crop = -row_crop
img_new[:, row_crop:, :] = img[:, :rows-row_crop, :]
img_new[:, :row_crop, :] = img[:, 0:1, :]
img = img_new.clone()
if col_crop != 0:
if col_crop > 0: # shift left
img_new[:, :, :cols-col_crop] = img[:, :, col_crop:]
img_new[:, :, cols-col_crop:] = img[:, :, cols-col_crop:cols-col_crop+1]
else: # shift Right
col_crop = -col_crop
img_new[:, :, col_crop:] = img[:, :, :cols-col_crop]
img_new[:, :, :col_crop] = img[:, :, 0:1]
return img_new
class FFHQ(Dataset):
'''
Flame parameters for FFHQ are located in
/ps/project/face2d3d/faceHQ_100K/faceHQ_100K_fitting/flame_dynamic/params
'''
def __init__(self, real_img_root, rendered_flame_root, params_dir, generic_transform, normalization_file_path,
rendered_flame_as_condition, resolution=256, debug=False, pose_cam_from_yao=False,
generate_flame_only=False, random_crop=False, get_normal_images=False,
flame_version='FLAME_2020_revisited', camera=None, apply_random_h_flip=False, list_bad_images = []):
self.generic_transfor = generic_transform
self.scaling_transforms = []
self.real_imgae_root = real_img_root
self.params_dir = params_dir
self.pose_cam_from_yao = pose_cam_from_yao
self.all_flm_parmas = None
self.generate_flame_only = generate_flame_only
self.rendered_flame_as_condition = rendered_flame_as_condition
self.random_crop = random_crop
self.crop_max_in_px = 2
self.get_normal_images = get_normal_images
self.flame_version = flame_version
self.camera = camera
self.apply_random_h_flip = apply_random_h_flip
self.list_bad_images = list_bad_images
np.random.seed(2)
torch.manual_seed(2)
self.ffhq_params = self.collect_params(flame_version, debug)
self.valid_ids = self.get_valid_ids()
if flame_version == 'FLAME_2020_revisited':
self.rend_flm_res = 512
if self.camera is None:
flength = 5000
self.camera = {'f': [flength, flength], 'c': [self.rend_flm_res/2, self.rend_flm_res/2]}
else:
self.rend_flm_res = 256
if pose_cam_from_yao:
self.flm_parmas = np.load(os.path.join(self.params_dir, 'FFHQ_ringnet_params.npz'), allow_pickle=True)
self.all_flm_parmas = np.hstack((self.flm_parmas['shape'], self.flm_parmas['exp'], self.flm_parmas['pose'],
self.flm_parmas['camera']))
# there are missing files! So weare collecting the contiguous index of the current file name to access the
# right flame param index in the numpy file
self.paramfile_id_to_index = {int(k1.split('.')[0]): k2 for k1, k2 in zip(sorted(self.ffhq_params.keys()),
list(range(0, len(self.ffhq_params))))}
if pose_cam_from_yao:
self.flame_mean = np.mean(self.all_flm_parmas, axis=0)
self.flame_std = np.std(self.all_flm_parmas, axis=0)
elif flame_version == 'FLAME_2020_revisited':
assert normalization_file_path is None
self.flame_mean = 0
self.flame_std = 1
elif flame_version == 'DECA':
assert normalization_file_path is None
self.flame_mean = 0
self.flame_std = 1
else:
normalization_data = np.load(normalization_file_path)
self.flame_mean = normalization_data['mean'][0]
self.flame_std = normalization_data['std'][0]
if not generate_flame_only:
self.env_real_images = lmdb.open(
real_img_root,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,)
if not self.env_real_images:
raise IOError('Cannot open lmdb dataset', real_img_root)
else:
with self.env_real_images.begin(write=False) as txn:
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
if self.rendered_flame_as_condition or self.get_normal_images:
self.env_rendered_images = lmdb.open(
rendered_flame_root,
max_readers=32,
readonly=True,
lock=False,
readahead=False,
meminit=False,)
if not self.env_rendered_images:
raise IOError('Cannot open lmdb dataset', real_img_root)
self.resolution = resolution
self.img = np.random.uniform(-1, 1, (3, 1024, 1024)).astype('float32')
self.flm_lbl = [np.random.uniform(-1, 1, 119).astype('float32')]
self.flm_col_idx = 0
self.flm_10k_params = None
self.pose_10_k = None
def un_normalize_flame(self, flame_batch):
if self.flame_mean != 0 and self.flame_std != 1:
return flame_batch * torch.from_numpy(self.flame_std).cuda() + torch.from_numpy(self.flame_mean).cuda()
else:
return flame_batch
def set_resolution(self, resolution):
self.resolution = resolution
def accumulate_batches_of_flm(self, flm_batch, pose):
if self.flm_col_idx < 10_000:
flm_batch = flm_batch.cpu().numpy().astype('float32')
if self.flm_10k_params is None:
self.flm_10k_params = np.zeros((10_000, ) + flm_batch.shape[1:], dtype='float32')
if self.pose_10_k is None and pose is not None:
pose = pose.cpu().numpy().astype('float32')
self.pose_10_k = np.zeros((10_000,) + pose.shape[1:], dtype='float32')
max_acumulatable = min(flm_batch.shape[0], 10_000 - self.flm_col_idx)
self.flm_10k_params[self.flm_col_idx:self.flm_col_idx + max_acumulatable, :] = \
flm_batch[:max_acumulatable, :]
if pose is not None:
self.pose_10_k[self.flm_col_idx:self.flm_col_idx + max_acumulatable, :] = pose[:max_acumulatable, :]
self.flm_col_idx += max_acumulatable
def get_10k_flame_params(self):
if self.pose_cam_from_yao:
# TODO(Partha): Not always 'all_flm_parmas' are avialable. accumulate over batches!
flm_parms_10k = self.all_flm_parmas[:10_000]
flm_parms_10k = (flm_parms_10k.astype('float32') - self.flame_mean) / self.flame_std
return flm_parms_10k, np.arange(10_000), self.pose_10_k
else:
return self.flm_10k_params, np.arange(10_000), self.pose_10_k
def apply_transforms_to_images(self, img):
if self.generic_transfor: # Be careful not to destroy the flame param association
img = self.generic_transfor(img)
if self.scaling_transforms:
img = [transform(F.to_pil_image(img)).float() for transform in self.scaling_transforms]
else:
img = img.float()
return img
def __getitem__(self, index, bypass_valid_indexing=False):
if bypass_valid_indexing:
index_valid = index
else:
index_valid = self.valid_ids[index]
curren_file = str(index_valid).zfill(5) + '.npy'
# import ipdb; ipdb.set_trace()
while curren_file in self.list_bad_images:
# print(f'oops!: {curren_file} is bad')
index_valid = self.valid_ids[np.random.randint(0, len(self.valid_ids))]
curren_file = str(index_valid).zfill(5) + '.npy'
if self.generate_flame_only:
img = 0
else:
with self.env_real_images.begin(write=False) as txn:
key = f'{self.resolution}-{str(index_valid).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
buffer = BytesIO(img_bytes)
img = Image.open(buffer)
img = self.apply_transforms_to_images(img)
if self.rendered_flame_as_condition or self.get_normal_images:
with self.env_rendered_images.begin(write=False) as txn:
if self.rendered_flame_as_condition:
key = f'{self.rend_flm_res}-{str(index_valid).zfill(5)}'.encode('utf-8')
img_bytes = txn.get(key)
# import ipdb; ipdb.set_trace()
if self.get_normal_images:
normal_img_key = f'norm_map_{self.rend_flm_res}-{str(index_valid).zfill(5)}'.encode('utf-8')
normal_img_bytes = txn.get(normal_img_key)
if self.rendered_flame_as_condition:
buffer = BytesIO(img_bytes)
flm_rndr = Image.open(buffer)
if flm_rndr.size[0] != self.resolution:
flm_rndr = flm_rndr.resize((self.resolution, self.resolution))
if self.get_normal_images:
norm_img_buffer = BytesIO(normal_img_bytes)
normal_img = Image.open(norm_img_buffer)
# print(self.resolution)
if normal_img.size[0] != self.resolution:
normal_img = normal_img.resize((self.resolution, self.resolution))
if self.get_normal_images and not self.rendered_flame_as_condition:
flm_rndr = normal_img
if self.rendered_flame_as_condition and self.get_normal_images:
flm_rndr = [torch.cat((self.apply_transforms_to_images(flm_rndr),
self.apply_transforms_to_images(normal_img)), dim=0)]
else:
flm_rndr = [self.apply_transforms_to_images(flm_rndr)]
else:
flm_rndr = [0]
if self.pose_cam_from_yao:
flame_param = self.all_flm_parmas[self.paramfile_id_to_index[index_valid]]
else:
flame_param = self.ffhq_params[str(index_valid).zfill(5)+'.pkl']
if self.flame_version == 'old':
flame_param = np.hstack((flame_param['betas'][:100], flame_param['betas'][300:350],
flame_param['pose'][0:3], flame_param['pose'][6:9], flame_param['trans']))
elif self.flame_version == 'FLAME_2020_revisited':
flame_param = np.hstack(
(flame_param['shape'], flame_param['exp'], flame_param['pose'], flame_param['cam']))
tz = self.camera['f'][0] / (self.camera['c'][0] * flame_param[:, 156:157])
flame_param[:, 156:159] = np.concatenate((flame_param[:, 157:], tz), axis=1)
flame_param = flame_param[0]
elif self.flame_version == 'DECA':
# import ipdb; ipdb.set_trace()
flame_param = np.hstack(
(flame_param['shape'], flame_param['exp'], flame_param['pose'], flame_param['cam'],
flame_param['tex'], flame_param['lit'].flatten()))
flm_lbl = [(flame_param.astype('float32') - self.flame_mean)/self.flame_std]
if self.random_crop:
flm_lbl[0] *= 0
crop_256 = np.random.randint(-self.crop_max_in_px, self.crop_max_in_px, 2)
# if index == 11:
# import ipdb; ipdb.set_trace()
img = same_padding_crop(img, crop_256/256.0)
flm_rndr[0] = same_padding_crop(flm_rndr[0], crop_256/256.0)
if self.apply_random_h_flip:
flm_lbl[0] *= 0 # TODO(Partha): If you figure out how to get FLAME param for hflip it might not be made None
flm_lbl[0] -= 9999
if random.random() < 0.5:
img = torch.flip(img, [-1])
flm_rndr[0] = torch.flip(flm_rndr[0], [-1])
return img, flm_rndr, flm_lbl, index
def collect_params(self, flame_version, debug):
'''
Puts all the FLAME parameters of FFHQ images in a dict and returns the dict
Structure of output dict:
params_dict = {'filename1.pkl': {'trans': np.array(size[3]), 'betas': np.array(size[400]),
'rotation': np.array(size[4]), 'pose': np.array(size[15]),}
'filename2.pkl': {'trans': np.array(size[3]), 'betas': np.array(size[400]),
'rotation': np.array(size[4]), 'pose': np.array(size[15]),}
'filename3.pkl': {'trans': np.array(size[3]), 'betas': np.array(size[400]),
'rotation': np.array(size[4]), 'pose': np.array(size[15]),}
...
}
'''
print('Collating FFHQ parameters')
if flame_version == 'old':
file_ext_to_look_for = '*.pkl'
elif flame_version == 'FLAME_2020_revisited' or flame_version == 'DECA':
file_ext_to_look_for = '*.npy'
else:
raise ValueError(f'flame version {flame_version} not understood')
if os.path.isdir(self.params_dir):
params_dict = {}
params_files = glob.glob(os.path.join(self.params_dir, file_ext_to_look_for))
params_files_celebA = glob.glob(os.path.join(self.params_dir, 'imgHQ' + file_ext_to_look_for))
param_files_FFHQ = sorted(list(set(params_files) - set(params_files_celebA)))
for i, f in enumerate(tqdm.tqdm(param_files_FFHQ)):
key = os.path.basename(f)[:-3] + 'pkl'
param = self.load_flame_param(f)
params_dict[key] = param
if i >= 2000 and debug:
break
# np.save('flame_dynamic_2020.npy', params_dict)
# exit(0)
elif self.params_dir.endswith('.npy'):
# import ipdb; ipdb.set_trace()
params_dict = np.load(self.params_dir, allow_pickle=True).item()
print('Collating FFHQ parameters, done!')
return params_dict
def load_flame_param(self, param_path):
if param_path.endswith('.npy'):
params = np.load(param_path, allow_pickle=True)
else:
with open(param_path, 'rb') as param_file:
params = pickle.load(param_file, encoding='latin1')
return params
def get_valid_ids(self):
valid_ids = []
for id in self.ffhq_params.keys():
valid_ids.append(int(id.split('.')[0]))
return valid_ids
def __len__(self):
return len(self.valid_ids)
def sample_data(dataset, batch_size, image_sizes, debug=False):
if debug:
n_workers = 0
else:
n_workers = 16
loader = DataLoader(dataset, shuffle=True, batch_size=batch_size, num_workers=n_workers, drop_last=True,
pin_memory=True)
return loader