-
Notifications
You must be signed in to change notification settings - Fork 727
/
Copy pathnet.py
102 lines (94 loc) · 3.67 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from itertools import combinations
def xavier_init(shape):
max_val = np.sqrt(6 / np.sum(shape))
min_val = -max_val
return paddle.ParamAttr(initializer=nn.initializer.Uniform(min_val,
max_val))
def generate_pairs(ranges, mask=None, order=2):
res = []
for i in range(order):
res.append([])
for i, pair in enumerate(list(combinations(ranges, order))):
if mask is None or mask[i] == 1:
for j in range(order):
res[j].append(pair[j])
return res
class AutoDeepFMLayer(nn.Layer):
def __init__(self,
num_inputs,
input_size,
embedding_size,
width,
depth,
pairs,
stage,
use_bn=True):
super().__init__()
self.stage = stage
self.depth = depth
self.w_embeddings = nn.Embedding(
input_size, 1, weight_attr=xavier_init([input_size]))
self.v_embeddings = nn.Embedding(
input_size,
embedding_size,
weight_attr=xavier_init([input_size, embedding_size]))
in_features = [num_inputs * embedding_size] + [width] * depth
out_features = [width] * depth + [1]
if use_bn:
self.bn = nn.LayerList([nn.BatchNorm(width) for _ in range(depth)])
else:
self.bn = nn.LayerList([nn.Identity() for _ in range(depth)])
self.linear = nn.LayerList([
nn.Linear(
*_, weight_attr=xavier_init([_]))
for _ in zip(in_features, out_features)
])
self.comb_mask = None if stage == 0 else np.load('comb_mask.npy')
pairs = pairs if stage == 0 else sum(self.comb_mask)
self.mask = paddle.create_parameter(
[1, pairs],
'float32',
default_initializer=nn.initializer.Uniform(0.6 - 0.001,
0.6 + 0.001))
self.bn2 = nn.BatchNorm(pairs) if use_bn else nn.Identity()
def forward(self, inputs):
# 对应embedding lookup
xw = self.w_embeddings(inputs).squeeze(-1)
xv = self.v_embeddings(inputs)
# 对应liner
h = xv.flatten(1)
# 对应bin_mlp
for i in range(self.depth + 1):
h = self.linear[i](h)
if i != self.depth:
h = self.bn[i](h)
h = F.relu(h)
h = h.squeeze(-1)
l = xw.sum(1)
cols, rows = generate_pairs(range(xv.shape[1]), mask=self.comb_mask)
cols = paddle.to_tensor(cols).unsqueeze(-1)
rows = paddle.to_tensor(rows).unsqueeze(-1)
left = paddle.gather(xv, cols, 1)
right = paddle.gather(xv, rows, 1)
level_2_matrix = (left * right).sum(-1)
level_2_matrix = self.bn2(level_2_matrix) * self.mask
fm_out = level_2_matrix.sum(-1)
# print(l.shape, fm_out.shape, h.shape)
return F.sigmoid(l + fm_out + h)