-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuber_pickups.py
38 lines (30 loc) · 1.24 KB
/
uber_pickups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import streamlit as st
import pandas as pd
import numpy as np
st.title('Uber pickups in NYC')
DATE_COLUMN = 'date/time'
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
'streamlit-demo-data/uber-raw-data-sep14.csv.gz')
@st.cache_data
def load_data(nrows):
data = pd.read_csv(DATA_URL, nrows=nrows)
lowercase = lambda x: str(x).lower()
data.rename(lowercase, axis='columns', inplace=True)
data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
return data
# Create a text element and let the reader know the data is loading.
data_load_state = st.text('Loading data...')
# Load 10,000 rows of data into the dataframe.
data = load_data(10000)
# Notify the reader that the data was successfully loaded.
data_load_state.text("Done! (using st.cache_data)")
# if st.checkbox('Show raw data'):
# st.subheader('Raw data')
# st.write(data)
st.subheader('Number of pickups by hour')
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
st.bar_chart(hist_values, x_label="Time", y_label="Num of pickups")
# hour_to_filter = st.slider('hour', 0, 23, 17)
# filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]
# st.subheader(f'Map of all pickups at {hour_to_filter}:00')
# st.map(filtered_data)