-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpython.jl
243 lines (184 loc) · 12.3 KB
/
python.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import Pkg
Pkg.add(["DataFrames", "CSV", "JuMP", "GLPK", "Statistics", "Dates", "Random", "StatsBase", "Distributions"])
using JuMP, GLPK, CSV, DataFrames, Statistics, Dates, Random, StatsBase, Distributions
include("utils.jl")
function recommend_signings_single_stage(team::String, data_orig::DataFrame, df_means::DataFrame, dict_stats; time_limit::Float64 = 60.0,
age_limit = 45, min_keep::Int64 = 11, starting11::Bool = true, own_players_val::Float64 = 1.0, formation::String="", budget::Float64=0.0)
data = deepcopy(data_orig)
if formation == "Qualquer" # test all formations
formation_results = [recommend_signings_single_stage(team, data_orig, df_means, dict_stats; time_limit = time_limit,
age_limit = age_limit, min_keep = min_keep, own_players_val = own_players_val,
formation=formation, budget=budget) for (formation,v) in dict_formations]
val, idx = findmax(map(x -> x[3], formation_results))
return formation_results[idx]
end
# Sets
I = collect(1:size(data,1))
idx_current = min_keep > 0 ? findall(x -> x in eachrow(lineup(team, data)), eachrow(data)) : Int64[]
S = [findfirst(x -> x == k, names(df_means)) for k in keys(dict_stats)]
data[idx_current, :Value] = Int64.(round.(own_players_val*data[idx_current, :Value]))
model = Model(GLPK.Optimizer)
set_optimizer_attribute(model, "time_limit", time_limit)
@variable(model, x[I], binary=true)
if budget == 0 # FO: minimizar custo
@objective(model, Min, sum(x[i]*data.Value[i] for i in I))
else # FO: maximizar stats dado budget
dict_stats_normalized = Dict{String, Vector{Float64}}()
for (stat, pct) in dict_stats
mini, maxi = minimum(data[:,stat]), maximum(data[:,stat])
dict_stats_normalized[stat] = (data[:,stat] .- mini) / (maxi - mini) # normalização min-max
end
@objective(model, Max, sum(x[i]*norm[i] for i in I, (stat,norm) in dict_stats_normalized))
@constraint(model, budget_constraint, sum(x[i]*data.Value[i] for i in I) <= budget)
end
for (stat, pct) in dict_stats # deixar apenas no caso de budget == 0?
@constraint(model, sum(x[i]*data[i,stat] for i in I) >= quantile(df_means[:,stat], pct) * sum(x[i] for i in I)) # assuming initial starters are maintained
end
# @constraint(model, sum(x[j] for j in idx_current) == round(pct_keep*length(idx_current)))
@constraint(model, sum(x[j] for j in idx_current) >= min_keep)
@constraint(model, max_age, sum(x[i]*data[i,:Age] for i in I) <= age_limit * sum(x[i] for i in I))
# pct_keep > 0.0 || @constraint(model, sum(x[i] for i in I) >= 1)
starting11 && @constraint(model, sum(x[i] for i in I) == 11)
positions = dict_formations[formation]
for (i, qtd_pos) in enumerate(positions)
pos_name = all_positions[i]
bool_pos = [name == pos_name for name in data.Position]
@constraint(model, sum(x[i]*bool_pos[i] for i in I) == qtd_pos)
end
optimize!(model)
if termination_status(model) == MOI.INFEASIBLE
@warn "It is impossible to build a team respecting such constraints"
return data[[],:], 0.0, 0.0, ""
end
rs = sort(data[findall(x -> abs(x) > 10^(-12), JuMP.value.(x).data),:], [:Position], lt=position_sort)
score = Float64[]
for (stat, pct) in dict_stats
mini, maxi = minimum(data[:,stat]), maximum(data[:,stat])
push!(score, mean((rs[:,stat] .- mini) / (maxi - mini)))
end
ret = rs[:, vcat("Player", "Squad", "Position", "Age", "Value", [k for k in keys(dict_stats)])]
ret[:,4:end] = round.(ret[:,4:end], digits=2)
return ret, sum(rs.Value), round(mean(score), digits=4), formation, starters(rs, formation)
end
function recommend_signings_multi_stage(team::String, data_orig::DataFrame, df_means::DataFrame, dict_stats; time_limit::Float64 = 60.0,
age_limit = 45, pct_keep::Float64 = 0., own_players_val::Float64 = 1.0, formation::String="", budget::Float64=0.0, scenarios::Int64=100, max_players::Int64=1922, gap::Float64=0.01, foreigners::Int64=4, healthy::Matrix, pred_method::String="Naïve")
if formation == "Qualquer" # test all formations
formation_results = [recommend_signings_multi_stage(team, data_orig, df_means, dict_stats; time_limit = time_limit,
age_limit = age_limit, pct_keep = pct_keep, own_players_val = own_players_val,
formation=formation, budget=budget, scenarios=scenarios, max_players=max_players, gap=gap, healthy=healthy, pred_method=pred_method) for (formation,v) in dict_formations]
val, idx = findmax(map(x -> x[3], formation_results))
return formation_results[idx]
end
data = deepcopy(data_orig)
# Sets
I = collect(1:size(data,1))
idx_current = pct_keep > 0 ? findall(x -> x.Squad == "Monaco", eachrow(data)) : Int64[]
# idx_foreigners = foreigners > 0 ? findall(x -> !(x.Nation in vcat(europe,africa)), eachrow(data)) : Int64[] # Ligue 1
S = [findfirst(x -> x == k, names(df_means)) for k in keys(dict_stats)]
C = collect(1:scenarios) # S?
data[idx_current, :Value] = Int64.(round.(own_players_val*data[idx_current, :Value]))
model = Model(GLPK.Optimizer)
set_time_limit_sec(model, time_limit)
set_optimizer_attribute(model, "MIPGap", gap)
@variable(model, x[I], binary=true) # contratação
@variable(model, y[I,C], binary=true) # escalação
dict_stats_normalized = Dict{String, Vector{Float64}}()
for (stat, pct) in dict_stats
mini, maxi = minimum(data[:,stat]), maximum(data[:,stat])
dict_stats_normalized[stat] = (data[:,stat] .- mini) / (maxi - mini) # normalização min-max
end
# Cenários
Random.seed!(21)
healthy = rand(size(data,1), scenarios) .> data.Injury_Prob
healthy = BitMatrix(zeros(size(data,1), scenarios))
for i in 1:size(data,1)
prob = data[i,:Injury_Prob]
num_scen_healthy = Int64(round(scenarios*(1-prob)))
v = BitArray(zeros(scenarios))
v[1:num_scen_healthy] = ones(num_scen_healthy)
healthy[i,:] = shuffle(v)
end
@constraint(model, budget_constraint, sum(x[i]*data.Value[i] for i in I) <= budget)
for (stat, pct) in dict_stats # fazer em y e em z?
@constraint(model, sum(y[i,c]*data[i,stat] for i in I, c in C) >= quantile(df_means[:,stat], pct) * sum(y[i,c] for i in I, c in C))
end
pre_game_stats = zeros(length(I), length(S), scenarios)
for (k,stat) in enumerate([stat for stat in keys(dict_stats_normalized)])
if pred_method == "Naïve"
pre_game = hcat([repeat([el], scenarios) for el in data[:,stat]]...) # SxI (inverter?)
elseif pred_method == "Normal"
# if minimum(data[:,stat]) >= 0 # valores inteiros, mais realista, mas variação está muito grande
# pre_game = hcat([rand(Poisson(el), scenarios) for el in data[:,stat]]...) # SxI (inverter?)
# else
pre_game = hcat([el == 0 ? zeros(scenarios) : rand(Normal(el, 2/3*std(data[:,stat])), scenarios) for el in data[:,stat]]...) # SxI (inverter?)
# end
elseif pred_method == "Séries temporais"
stat_ = stat == "PrgR_Receiving" ? "Prog_Receiving" : stat # generalizar com get(dict)
stat_ = get(Dict("PrgR_Receiving" => "Prog_Receiving", "Succ_Take" => "Succ_Dribbles"), stat, stat)
pos_ = [dict_positions[pos] for pos in data.Position]
X = [ones(size(data,1)) data[:,stat] data.Age data.Age .^ 2 pos_ .== "FW" pos_ .== "GK" pos_ .== "MF"]
coefs_vcov = df_regs[:,stat_]
eta = X * coefs_vcov[1:7]
vc = reshape(coefs_vcov[8:end], 7, 7)
vcovXnewT = vc*X'
stdeta = [sqrt(GLM.dot(view(X, i, :), view(vcovXnewT, :, i))) for i in axes(X,1)]
lower, upper = eta .- 1.96*stdeta, eta .+ 1.96*stdeta
dists = Normal.(eta,(eta-lower)/1.96)
pre_game = hcat([rand(dist, scenarios) for dist in dists]...) # SxI (inverter?)
end
pre_game_stats[:,k,:] = permutedims(pre_game)
end
@objective(model, Max, sum(y[i,c]*pre_game_stats[i,s,c] for i in I, c in C, s in 1:length(dict_stats_normalized)))
@constraint(model, sum(y[j,c] for j in idx_current, c in C) >= sum(pct_keep for c in C) * 11)
@constraint(model, max_age, sum(y[i,c]*data[i,:Age] for i in I, c in C) <= age_limit * sum(y[i,c] for i in I, c in C))
@constraint(model, [c in C], sum(y[i,c] for i in I) == 11) # redundante com a restrição de posições, mas whatever
positions = dict_formations[formation]
for (i, qtd_pos) in enumerate(positions)
pos_name = all_positions[i]
bool_pos = [name == pos_name for name in data.Position]
@constraint(model, [c in C], sum(y[i,c]*bool_pos[i] for i in I) == qtd_pos)
end
@constraint(model, [i in I, c in C], y[i,c] <= x[i]) # só pode escalar se tiver contratado
@constraint(model, [i in I, c in C], y[i,c] <= healthy[i,c]) # só pode escalar quem está disponível
@constraint(model, [i in I], x[i] <= sum(y[i,c] for c in C)) # só contrata se for de fato usar
@constraint(model, sum(x[i] for i in I) <= max_players) # opcional, só pra ajudar no tempo computacional
optimize!(model)
if termination_status(model) != MOI.OPTIMAL
#@warn "It is impossible to build a team respecting such constraints"
return data[[],:], 0.0, 0.0, ""
end
rs = sort(data[findall(x -> abs(x) > 10^(-12), JuMP.value.(x).data),:], [:Position], lt=position_sort)
rsy = [sort(data[findall(x -> abs(x) > 10^(-12), JuMP.value.(y).data[:,c]),:], [:Position], lt=position_sort) for c in C]
rs[!, :Apps] = [count(x->x==p, vcat(map(x->x.Player, rsy)...)) for p in rs.Player]
score = Float64[]
for (stat, pct) in dict_stats
mini, maxi = minimum(data[:,stat]), maximum(data[:,stat])
push!(score, mean((rs[:,stat] .- mini) / (maxi - mini)))
end
idx(url) = findfirst(x -> x.Url == url, eachrow(data))
ret = rs[:, vcat("Player", "Squad", "Position", "Apps", "Age", "Value", [k for k in keys(dict_stats)])]
ret[:,5:end] = round.(ret[:,5:end], digits=2)
return ret, sum(rs.Value), round(mean(score), digits=4), formation, starters(rs, formation)
# return rs, sum(rs.Value), mean(score), rsy, healthy[[idx(url) for url in rs.Url],:], pre_game_stats[[idx(url) for url in rs.Url],:,:]
end
function recommended_signings(team::String, season::Int64, dict_stats; time_limit::Float64 = 60.0,
age_limit = 45, pct_keep::Float64 = 0., starting11::Bool = false, own_players_val::Float64 = 1.0, formation::String="", budget::Float64=0.0, scenarios::Int64=100, max_players::Int64=1922, gap::Float64=0.01, foreigners::Int64=4, healthy::Matrix=Matrix(undef, 1, 1), pred_method::String="Naïve")
data = CSV.read("dados/dados$season.csv", DataFrame)
replace!(data.Position, "midfield" => "Centre-Back", "Second Striker" => "Centre-Forward", "Right Midfield" => "Right Winger", "Left Midfield" => "Left Winger", "attack" => "Left Winger")
df_means = CSV.read("dados/medias$season.csv", DataFrame)
filter!(x -> x.Mins_Per_90 >= 5, data)
data.Age = season >= 2023 ? map(x -> x.value/365, Date(season,7) .- Date.(data.Birth, "mm/dd/yyyy")) : map(x -> x.value/365, Date(season,7) .- data.Birth)
data.Value = data.Value ./ 10^6
if starting11
return recommend_signings_single_stage(team, data, df_means, dict_stats; time_limit = time_limit,
age_limit = age_limit, min_keep = Int64(pct_keep*11), own_players_val = own_players_val, formation=formation, budget=budget)
else
prob_inj = CSV.read("dados/injury_prob.csv", DataFrame)
dict_prob_inj = Dict([row.Url => row.Prob for row in eachrow(prob_inj)])
data[!, :Injury_Prob] = [get(dict_prob_inj, row.Url, StatsBase.mode(prob_inj.Prob)) for row in eachrow(data)]
yell, red = 3/quantile(df_means[:,"CrdY"],.5), 1/quantile(df_means[:,"CrdR"],.5)
data.Injury_Prob = data.Injury_Prob .+ (1/yell + 1/red)
return recommend_signings_multi_stage(team, data, df_means, dict_stats; time_limit = time_limit,
age_limit = age_limit, pct_keep = pct_keep, own_players_val = own_players_val, formation=formation, budget=budget, scenarios=scenarios, max_players=50, gap=gap, foreigners=foreigners, healthy=healthy, pred_method=pred_method)
end
end