-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtseries_pubdebt_gdp_frcsts.py
207 lines (189 loc) · 8.99 KB
/
tseries_pubdebt_gdp_frcsts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Import packages
import numpy as np
import pandas as pd
import datetime as dt
import os
from bokeh.io import output_file
from bokeh.plotting import figure, show
from bokeh.models import (ColumnDataSource, Title, Legend, HoverTool,
NumeralTickFormatter)
from bokeh.models.annotations import Label, LabelSet
from bokeh.models.tickers import SingleIntervalTicker
from bokeh.core.property.numeric import Interval
from bokeh.palettes import Reds
# Set paths to work across Mac/Windows/Linux platforms
cur_path = os.path.split(os.path.abspath(__file__))[0]
data_dir = os.path.join(cur_path, 'data')
data_path = os.path.join(data_dir, 'cbo_debt_forecasts.csv')
images_dir = os.path.join(cur_path, 'images')
# Read data from cbo_debt_forecasts.csv
main_df = pd.read_csv(data_path, header=5,
dtype={'year': pd.Int64Dtype(),
'jun_2009': np.float64,
'jun_2009_frcst': pd.Int64Dtype(),
'jun_2010': np.float64,
'jun_2010_frcst': pd.Int64Dtype(),
'jun_2011': np.float64,
'jun_2011_frcst': pd.Int64Dtype(),
'jun_2012': np.float64,
'jun_2012_frcst': pd.Int64Dtype(),
'sep_2013': np.float64,
'sep_2013_frcst': pd.Int64Dtype(),
'jul_2014': np.float64,
'jul_2014_frcst': pd.Int64Dtype(),
'jun_2015': np.float64,
'jun_2015_frcst': pd.Int64Dtype(),
'jul_2016': np.float64,
'jul_2016_frcst': pd.Int64Dtype(),
'jan_2017': np.float64,
'jan_2017_frcst': pd.Int64Dtype(),
'mar_2017': np.float64,
'mar_2017_frcst': pd.Int64Dtype(),
'jun_2018': np.float64,
'jun_2018_frcst': pd.Int64Dtype(),
'jan_2019': np.float64,
'jan_2019_frcst': pd.Int64Dtype(),
'jun_2019': np.float64,
'jun_2019_frcst': pd.Int64Dtype(),
'jan_2020': np.float64,
'jan_2020_frcst': pd.Int64Dtype(),
'sep_2020': np.float64,
'sep_2020_frcst': pd.Int64Dtype(),
'mar_2021': np.float64,
'mar_2021_frcst': pd.Int64Dtype()},
skiprows=0)
def gen_tseries_frcst(frcst_var_list, legend_label_list, df=main_df,
main_start_year='min', main_end_year='max',
full_start_year='min', full_end_year='max',
note_text_list=[], fig_title_str='', fig_path=''):
"""
This function creates a plot of multiple time series of CBO forecasts of
U.S. publicly held national debt.
"""
# Create Variables for min and max values
if main_start_year == 'min':
main_min_year = df['year'].min()
else:
main_min_year = int(main_start_year)
if full_start_year == 'min':
full_min_year = df['year'].min()
else:
full_min_year = int(full_start_year)
if main_end_year == 'max':
main_max_year = df['year'].max()
else:
main_max_year = int(main_end_year)
if full_end_year == 'max':
full_max_year = df['year'].max()
else:
full_max_year = int(full_end_year)
df_full = df[(df['year'] >= full_min_year) & (df['year'] <= full_max_year)]
df_main = df[(df['year'] >= main_min_year) & (df['year'] <= main_max_year)]
# Find the min and max yvar values across the list of yvars and create
# separate ColumnDataSource objects for each forecast series (this helps
# with the hovertools)
main_min_yvar = 100
main_max_yvar = 0
cds_list = []
for k, yvar in enumerate(frcst_var_list):
main_min_yvar = np.minimum(main_min_yvar, df_main[yvar].min())
main_max_yvar = np.maximum(main_max_yvar, df_main[yvar].max())
frcst_df = df_full[['year', yvar, yvar + '_frcst']].dropna()
frcst_df['frcst'] = frcst_df[yvar + '_frcst'] = 1
frcst_df['frcst_label'] = legend_label_list[k]
frcst_df.rename(columns={yvar: 'debt_gdp'}, inplace=True)
frcst_df = frcst_df[['year', 'debt_gdp', 'frcst', 'frcst_label']]
cds_list.append(ColumnDataSource(frcst_df))
# Output to HTML file
fig_title = fig_title_str
fig_path = fig_path
output_file(fig_path, title=fig_title)
fig = figure(title=fig_title,
plot_height=600,
plot_width=1100,
x_axis_label='Year',
x_range=(main_min_year - 1, main_max_year + 1),
y_axis_label='Percent of Gross Domestic Product',
y_range=(main_min_yvar - 5, main_max_yvar + 5),
tools=['save', 'zoom_in', 'zoom_out', 'box_zoom',
'pan', 'undo', 'redo', 'reset', 'help'],
toolbar_location='left')
fig.toolbar.logo = None
# Set title font size and axes font sizes
fig.title.text_font_size = '15pt'
fig.xaxis.axis_label_text_font_size = '12pt'
fig.xaxis.major_label_text_font_size = '12pt'
fig.yaxis.axis_label_text_font_size = '12pt'
fig.yaxis.major_label_text_font_size = '12pt'
# Modify tick intervals for X-axis and Y-axis
fig.xaxis.ticker = SingleIntervalTicker(interval=10, num_minor_ticks=2)
fig.xgrid.ticker = SingleIntervalTicker(interval=10)
fig.yaxis.ticker = SingleIntervalTicker(interval=20, num_minor_ticks=2)
fig.ygrid.ticker = SingleIntervalTicker(interval=20)
min_256_color_ind = 0
max_256_color_ind = 200
intercept = max_256_color_ind
slope = (min_256_color_ind - intercept) / (len(frcst_var_list) - 1)
legend_item_list = []
for k, v in enumerate(frcst_var_list):
color_ind = int(np.round(slope * k + intercept))
line = fig.line(x='year', y='debt_gdp', source=cds_list[k],
color=Reds[256][color_ind], line_width=3, alpha=0.7,
muted_alpha=0.15)
legend_item_list.append((legend_label_list[k], [line]))
# Add information on hover
tooltips = [('Year', '@year'),
('Debt/GDP','@debt_gdp'),
('Forecast', '@frcst'),
('Forecast date', '@frcst_label')]
fig.add_tools(HoverTool(tooltips=tooltips, toggleable=False))
# Add legend
legend = Legend(items=legend_item_list, location='center')
fig.add_layout(legend, 'right')
fig.legend.border_line_width = 1
fig.legend.border_line_color = 'black'
fig.legend.border_line_alpha = 1
fig.legend.label_text_font_size = '4mm'
# Set legend muting click policy
fig.legend.click_policy = 'mute'
# Add notes below image
for note_text in note_text_list:
caption = Title(text=note_text, align='left', text_font_size='4mm',
text_font_style='italic')
fig.add_layout(caption, 'below')
return fig
if __name__ == "__main__":
"""
Script that runs if the module is called and executed directly
"""
frcst_var_list = [
'jun_2009', 'jun_2010', 'jun_2011', 'jun_2012', 'sep_2013', 'jul_2014',
'jun_2015', 'jul_2016', 'jan_2017', 'mar_2017', 'jun_2018', 'jan_2019',
'jun_2019', 'jan_2020', 'sep_2020', 'mar_2021']
legend_label_list = [
'Jun. 2009', 'Jun. 2010', 'Jun. 2011', 'Jun. 2012', 'Sep. 2013',
'Jul. 2014', 'Jun. 2015', 'Jul. 2016', 'Jan. 2017', 'Mar. 2017',
'Jun. 2018', 'Jan. 2019', 'Jun. 2019', 'Jan. 2020', 'Sep. 2020',
'Mar. 2021']
note_text_list = \
[
('Source: U.S. publicly held debt-to-GDP forecasts (extended ' +
'baseline) from Congressional Budget Office Long-term Budget ' +
'Outlook reports in'),
(' data associated with underlying figures, Long-term Budget ' +
'Projections Data (https://www.cbo.gov/data/budget-economic-' +
'data#1), and'),
(' Historical Budget Data (https://www.cbo.gov/data/budget-' +
'economic-data#2). Richard W. Evans (@rickecon).')
]
# Create publicly held debt forecasts figure
fig_title = ('Comparison of 16 CBO Forecasts of U.S. Publicly Held Debt ' +
'as Percent of GDP: 2009-2021 forecasts')
fig_path = os.path.join(images_dir, 'tseries_pubdebt_gdp_frcsts.html')
pubdebt_gdp_frcsts_tseries = \
gen_tseries_frcst(frcst_var_list, legend_label_list,
main_start_year=1915, main_end_year=2050,
full_start_year='min', full_end_year='max',
note_text_list=note_text_list,
fig_title_str=fig_title, fig_path=fig_path)
show(pubdebt_gdp_frcsts_tseries)