-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmain.py
219 lines (172 loc) · 6.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import argparse
import datetime
import json
import os
import random
import sys
import numpy as np
sys.path.append("..")
import time
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor
from models import get_model
from tasks import eval_task
class Evaluator:
def __init__(
self,
args,
seed=1234,
):
self.args = args
model = args.model
model_args = args.model_args
self.set_seed(seed)
if isinstance(model, str):
if not model_args:
exit("model args is required")
model = get_model(model)(model_args)
else:
print("Incorrect model format")
exit()
self.model = model
data_config = self.process_config(args.config_path)
self.build_tasks(data_config)
def process_config(self, config_path: str):
if config_path.endswith(".json"):
with open(config_path, "r", encoding="utf-8") as f:
data_config = json.load(f)
else:
exit("config file must be json format")
return data_config
def build_tasks(self, configs):
tasks_map = {v["task_name"]: v for v in configs}
selected_task_objects = []
for name in tasks_map:
task_cfg = tasks_map[name]
if not os.path.exists(task_cfg["path"]):
print(f'{task_cfg["path"]} not exist!')
exit()
if len(task_cfg["metric"]) == 0:
raise ValueError(
"No metric selected for task `{}`".format(task_cfg["task_name"])
)
selected_task_objects.append(
eval_task.EvalTask(
task_name=task_cfg["task_name"],
task_path=task_cfg["path"],
description=task_cfg.get("description", ""),
transform_script_path=task_cfg["transform"],
num_fewshot=self.args.num_fewshot
if self.args.num_fewshot is not None
else task_cfg["fewshot"],
metric_config=task_cfg["metric"],
sample_config=task_cfg.get("generate"),
model_postprocess=self.args.postprocess,
task_postprocess=task_cfg["postprocess"],
log_dir=self.args.output_base_path,
params=self.args.params,
limit=self.args.limit,
batch_size=self.args.batch_size,
)
)
self.tasks = selected_task_objects
def set_seed(self, seed=1234):
random.seed(seed)
np.random.seed(seed)
def run(
self,
):
for task in self.tasks:
task.run(self.model)
# save instance.jsonl
if self.args.write_out:
_save_path = os.path.join(self.args.output_base_path, task.task_name, "instance.jsonl")
with open(_save_path, "a", encoding="utf-8") as jsonl_file:
for ins in task.dataset[: task.limit]:
jsonl_file.write(ins.dump() + "\n")
print(f"For detailed output of the model, see {_save_path}")
# def write_out(self):
# def dump_task(task, base_path):
# for ins in task.dataset[: task.limit]:
# ins.dump(os.path.join(base_path, task.task_name))
# with ThreadPoolExecutor() as executor:
# futures = [
# executor.submit(dump_task, task, self.args.output_base_path)
# for task in self.tasks
# ]
# for future in futures:
# future.result()
def make_table(
self,
):
from pytablewriter import MarkdownTableWriter
md_writer = MarkdownTableWriter()
md_writer.headers = ["Task", "Metric", "Value"]
values = []
dataset_result = {}
for task in self.tasks:
dataset_name = task.task_name.split("_")[0]
if dataset_name not in dataset_result:
dataset_result[dataset_name] = dict()
dataset_result[dataset_name][task.task_name] = task.final_metrics
for k, v in task.final_metrics.items():
values.append([task.task_name, k, "%.4f" % v])
md_writer.value_matrix = values
print("\nHere are the results for each task:")
print(md_writer.dumps())
sum_values = []
for dataset, tasks in dataset_result.items():
sums = defaultdict(float)
counts = defaultdict(int)
for key, value in tasks.items():
for k, v in value.items():
sums[k] += v
counts[k] += 1
dataset_result[dataset]["mean_result"] = {
key: sums[key] / counts[key] for key in sums
}
for k, v in dataset_result[dataset]["mean_result"].items():
sum_values.append([dataset, k, "%.4f" % v])
md_writer.headers = ["Dataset", "Metric", "Value"]
md_writer.value_matrix = sum_values
print("\nHere are the results for each dataset:")
print(md_writer.dumps())
with open(
os.path.join(self.args.output_base_path, "_all_results.json"),
"w",
encoding="utf-8",
) as f:
json.dump(dataset_result, f, indent=4, ensure_ascii=False)
print(f"\nThe results of all tasks have been saved to the {os.path.join(self.args.output_base_path, '_all_results.json')}\n")
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", required=True)
parser.add_argument("--config_path", type=str, required=True)
parser.add_argument("--output_base_path", type=str, default="logs")
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--num_fewshot", type=int)
parser.add_argument("--postprocess", type=str, default="")
parser.add_argument("--params", type=str, default="")
parser.add_argument("--limit", type=int, default=None)
parser.add_argument("--write_out", action="store_true", default=False)
return parser.parse_args()
def main():
starting = time.time()
args = parse_args()
now = datetime.datetime.now()
dir_name = now.strftime("%Y-%m-%d_%H-%M-%S")
args.output_base_path = os.path.join(args.output_base_path, dir_name)
evaluator = Evaluator(args)
evaluator.run()
evaluator.make_table()
running = time.time()
print(f"Running time: {running - starting} seconds")
# if args.write_out:
# evaluator.write_out()
ending = time.time()
print(
f"Running time: {running - starting} seconds, the whole time: {ending - starting} seconds"
)
if __name__ == "__main__":
main()