-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNetTester.py
89 lines (67 loc) · 2.65 KB
/
NetTester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from Net import Net_EMNIST_2
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def test():
with torch.no_grad():
myNet.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = myNet(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, size_average=False).item()
# get index of the max log-probability
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'
.format(test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def convert_image_np(inp):
"""Convert a Tensor to numpy image."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
return inp
def visualize_stn():
with torch.no_grad():
# Get a batch of training data
data = next(iter(test_loader))[0].to(device)
input_tensor = data.cpu()
transformed_input_tensor = myNet.stn(data).cpu()
in_grid = convert_image_np(
torchvision.utils.make_grid(input_tensor))
out_grid = convert_image_np(
torchvision.utils.make_grid(transformed_input_tensor))
# Plot the results side-by-side
f, axarr = plt.subplots(1, 2)
axarr[0].imshow(in_grid)
axarr[0].set_title('Dataset Images')
axarr[1].imshow(out_grid)
axarr[1].set_title('Transformed Images')
if __name__ == '__main__':
transformations = transforms.Compose([
transforms.RandomRotation([90,90]),
transforms.RandomVerticalFlip(1),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
test_loader = torch.utils.data.DataLoader(
datasets.EMNIST(root='.', split='balanced', train=False,
transform=transformations), batch_size=32, shuffle=True, num_workers=4)
myNet = Net_EMNIST_2()
pretrained_dict = torch.load("Models/EMNIST_Spacial_NEU", map_location='cpu')
myNet.load_state_dict(pretrained_dict)
myNet.to(device)
for epoch in range(1):
test()
visualize_stn()
plt.show()