forked from jalagar/animated-art-engine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregenerate.py
139 lines (117 loc) · 4.75 KB
/
regenerate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from step1_layers_to_spritesheet.build import main as step1_main
from step3_generative_sheet_to_output.build import main as step3_main
import subprocess
from utils.file import parse_global_config
import os.path
import sys
import shutil
# In order to import utils/file.py we need to add this path.append
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from utils.file import setup_directory
import multiprocessing
SKIP_STEP_ONE = False
SKIP_STEP_THREE = False
global_config_json = parse_global_config()
num_total_frames = global_config_json["numberOfFrames"]
use_batching = global_config_json["useBatches"]
# if not using batching, default to num total frames
num_frames_per_batch = (
global_config_json["numFramesPerBatch"] if use_batching else num_total_frames
)
total_supply = global_config_json["totalSupply"]
use_batches = global_config_json["useBatches"]
start_index = global_config_json["startIndex"]
use_multiprocessing = global_config_json["useMultiprocessing"]
processor_count = global_config_json["processorCount"]
width = global_config_json["width"]
"""
Override START_EDITION and END_EDITION if you want to run in batches.
Default values:
START_EDITION = start_index
END_EDITION = start_index + total_supply
Ex. You have a 10k collection but it takes too long to render the entire collection. You would first do
START_EDITION = start_index
END_EDITION = 1000 (exclusive)
This would generate all 10k JSON files, but only generate the NFTs for the first 1K.
Then you can move these NFTs to another folder, and then change:
START_EDITION = 1000
END_EDITION = 2000
etc...
NOTE END_EDITION is exclusive, so if start_index is 0 and you have 10k collection, END_EDITION would be 10001
"""
START_EDITION = start_index
END_EDITION = start_index + total_supply
def create_from_dna(edition, num_frames_per_batch=num_frames_per_batch):
override_width = num_frames_per_batch * width
subprocess.run(
f"cd step2_spritesheet_to_generative_sheet && npm run create_from_dna {edition} {override_width}",
shell=True,
)
def create_all_from_dna():
if use_multiprocessing:
if processor_count > multiprocessing.cpu_count():
raise Exception(
f"You are trying to use too many processors, you passed in {processor_count} "
f"but your computer can only handle {multiprocessing.cpu_count()}. Change this value and run make step3 again."
)
args = [
(edition, num_frames_per_batch)
for edition in range(START_EDITION, END_EDITION)
]
with multiprocessing.Pool(processor_count) as pool:
pool.starmap(
create_from_dna,
args,
)
else:
# Then recreate DNA from the editions
for edition in range(START_EDITION, END_EDITION):
create_from_dna(edition, num_frames_per_batch)
def main():
# Run step 1 to generate layers
if not SKIP_STEP_ONE:
step1_main()
setup_directory("build", delete_if_exists=False)
setup_directory("build/json", delete_if_exists=False)
# If metadata JSON and dna don't not exist, recreate metadata
if not os.path.isfile("build/json/_metadata.json") and not os.path.isfile(
"build/_dna.json"
):
subprocess.run(
f"cd step2_spritesheet_to_generative_sheet && npm run regenerate_metadata",
shell=True,
)
# If DNA does not exist, recreate it, this depends on _metadata.json
if not os.path.isfile("build/_dna.json"):
subprocess.run(
f"cd step2_spritesheet_to_generative_sheet && npm run regenerate_dna",
shell=True,
)
# Then regenerate all the JSON files
subprocess.run(
f"cd step2_spritesheet_to_generative_sheet && npm run regenerate_metadata_from_dna",
shell=True,
)
setup_directory("step2_spritesheet_to_generative_sheet/output/images")
if use_batches:
for i in range(num_total_frames // num_frames_per_batch):
print(f"*******Starting Batch {i}*******")
step1_main(i)
# Remove step 2 folders to reset the editions if regenerating in parts
shutil.rmtree("step2_spritesheet_to_generative_sheet/output/images")
os.mkdir("step2_spritesheet_to_generative_sheet/output/images")
create_all_from_dna()
# Only generate gif if its the last batch
if not SKIP_STEP_THREE:
step3_main(
i,
should_generate_output=i
== (num_total_frames // num_frames_per_batch - 1),
)
else:
create_all_from_dna()
# Finally output gifs
if not SKIP_STEP_THREE:
step3_main()
if __name__ == "__main__":
main()