-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathsupervised_fine_tune_stream.py
312 lines (250 loc) · 11.3 KB
/
supervised_fine_tune_stream.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# Some code based on https://github.com/epfml/landmark-attention
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import copy
import json
import math
import logging
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
from multiprocessing import cpu_count
from datasets import load_dataset
from tqdm import tqdm
import psutil
import torch
import transformers
# from torch.utils.data import Dataset, IterableDataset
from datasets.iterable_dataset import IterableDataset
from transformers import Trainer, DataCollatorForLanguageModeling
from llama_attn_replace import replace_llama_attn
from peft import LoraConfig, get_peft_model
from torch.distributed import barrier
IGNORE_INDEX = -100
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "<s>"
DEFAULT_UNK_TOKEN = "<unk>"
def _make_r_io_base(f, mode: str):
if not isinstance(f, io.IOBase):
f = open(f, mode=mode)
return f
def jload(f, mode="r"):
"""Load a .json file into a dictionary."""
f = _make_r_io_base(f, mode)
jdict = json.load(f)
f.close()
return jdict
def findAllFile(base):
for root, ds, fs in os.walk(base):
for f in fs:
if f.endswith('.json'):
fullname = os.path.join(root,f)
yield fullname
PROMPT_DICT = {
"prompt_input": (
"Below is an instruction that describes a task, paired with an input that provides further context. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Input:\n{input_seg}\n\n### Question:\n{question}\n\n### Response:"
),
"prompt_no_input": (
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request.\n\n"
"### Instruction:\n{instruction}\n\n### Response:"
),
}
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
@dataclass
class DataArguments:
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
data_size: int = field(default=None, metadata={"help": "for calculate max steps."})
gpu_size: int = field(default=None, metadata={"help": "for calculate max steps and for logging for calcuated intervel."})
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
model_max_length: int = field(
default=8192 * 4,
metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
)
use_flash_attn: bool = field(
default=True,
metadata={"help": "Whether use flash attention for training."},
)
low_rank_training: bool = field(
default=True,
metadata={"help": "Whether use low rank adaptation for training."},
)
trainable_params: str = field(
default="embed,norm",
metadata={"help": "Additional trainable parameters except LoRA weights, if low rank training."},
)
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
tok_example_count = 0
def preprocess_data(data_path, tokenizer):
def _tokenize_fn(text: str) -> Dict:
"""Tokenize a list of strings."""
tokenized = tokenizer(
text,
return_tensors="pt",
# padding="longest",
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
)
input_ids = labels = tokenized.input_ids[0]
input_ids_lens = labels_lens = tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def _process_function(example):
global tok_example_count
tok_example_count += 1
if tok_example_count % 128 == 0:
logging.warning(f"tok_example_count: {tok_example_count}")
# logging.warning("Formatting inputs...")
prompt_input, prompt_no_input = PROMPT_DICT["prompt_input"], PROMPT_DICT["prompt_no_input"]
source = prompt_input.format_map(example) if example.get("input_seg", "") != "" else prompt_no_input.format_map(example)
# targets = [f"{example['output']}{tokenizer.eos_token}" for example in list_data_dict]
target = f"{example['output']}{DEFAULT_EOS_TOKEN}"
source_target = source + target
example_tokenized = _tokenize_fn(source_target)
source_tokenized = _tokenize_fn(source)
input_ids = example_tokenized["input_ids"]
label = copy.deepcopy(input_ids)
label[:source_tokenized["input_ids_lens"]] = IGNORE_INDEX
new_example = {"input_ids": input_ids, "labels": label}
return new_example
base = data_path
sub_data_path_list = []
for sub_data_path in findAllFile(base):
sub_data_path_list.append(sub_data_path)
logging.warning(f"before loading data, RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
list_data_dict = load_dataset('json', data_files=sub_data_path_list, split = f'train', streaming=True)
logging.warning(f"list_data_dict: {list_data_dict}")
logging.warning(f"after loading data, RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB")
logging.warning("Tokenizing inputs... This may take some time...")
tokenized_dataset = list_data_dict.map(_process_function, remove_columns=["instruction", "input_seg", "question", "output"])
return tokenized_dataset
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
# logging.warning(f"instances: {instances}")
input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
# logging.warning(f"input_ids: {input_ids}")
# logging.warning(f"labels: {labels}")
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
return dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = preprocess_data(tokenizer=tokenizer, data_path=data_args.data_path)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
# logging.warning(f"train_dataset: {train_dataset}")
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
def train():
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
replace_llama_attn(training_args.use_flash_attn, True)
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
)
orig_ctx_len = getattr(config, "max_position_embeddings", None)
if orig_ctx_len and training_args.model_max_length > orig_ctx_len:
scaling_factor = float(math.ceil(training_args.model_max_length / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=training_args.cache_dir,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
special_tokens_dict = dict()
if tokenizer.pad_token is None:
special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN
if tokenizer.eos_token is None:
special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN
if tokenizer.bos_token is None:
special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN
if tokenizer.unk_token is None:
special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN
smart_tokenizer_and_embedding_resize(
special_tokens_dict=special_tokens_dict,
tokenizer=tokenizer,
model=model,
)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
if training_args.low_rank_training:
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
# enable trainable params
[p.requires_grad_() for n, p in model.named_parameters() if any([k in n for k in training_args.trainable_params.split(",")])]
model.enable_input_require_grads() # required for gradient checkpointing
model.gradient_checkpointing_enable() # enable gradient checkpointing
logging.warning(f"data_module: {data_module}")
# data_size = 2636762
# data_size = 7325
# GPU_size = 8
training_args.max_steps = math.ceil(training_args.num_train_epochs * data_args.data_size/(training_args.per_device_train_batch_size * data_args.gpu_size))
trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
trainer.train()
trainer.save_state()
trainer.save_model(output_dir=training_args.output_dir)
if __name__ == "__main__":
train()