-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathinference_hitab_tabfact_fetaqa.py
135 lines (113 loc) · 4.84 KB
/
inference_hitab_tabfact_fetaqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import json
import sys
import math
import torch
import argparse
# import textwrap
import transformers
from peft import PeftModel
from transformers import GenerationConfig
from llama_attn_replace import replace_llama_attn
from supervised_fine_tune import PROMPT_DICT
from tqdm import tqdm
# from queue import Queue
# from threading import Thread
# import gradio as gr
def parse_config():
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--base_model', type=str, default="/data1/pretrained-models/llama-7b-hf")
parser.add_argument('--cache_dir', type=str, default="./cache")
parser.add_argument('--context_size', type=int, default=-1, help='context size during fine-tuning')
parser.add_argument('--flash_attn', type=bool, default=False, help='')
parser.add_argument('--temperature', type=float, default=0.6, help='')
parser.add_argument('--top_p', type=float, default=0.9, help='')
parser.add_argument('--max_gen_len', type=int, default=512, help='')
parser.add_argument('--input_data_file', type=str, default='input_data/', help='')
parser.add_argument('--output_data_file', type=str, default='output_data/', help='')
args = parser.parse_args()
return args
def generate_prompt(instruction, question, input_seg=None):
if input:
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input_seg=input_seg, question=question)
else:
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
def build_generator(
item, model, tokenizer, temperature=0.6, top_p=0.9, max_gen_len=4096, use_cache=True
):
def response(item):
# def response(material, question, material_type="", material_title=None):
# material = read_txt_file(material)
# prompt = format_prompt(material, question, material_type, material_title)
prompt = generate_prompt(instruction = item["instruction"], input_seg = item["input_seg"], question = item["question"])
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
output = model.generate(
**inputs,
max_new_tokens=max_gen_len,
temperature=temperature,
top_p=top_p,
use_cache=use_cache
)
out = tokenizer.decode(output[0], skip_special_tokens=False, clean_up_tokenization_spaces=False)
out = out.split(prompt)[1].strip()
return out
return response
def main(args):
if args.flash_attn:
replace_llama_attn()
# Set RoPE scaling factor
config = transformers.AutoConfig.from_pretrained(
args.base_model,
cache_dir=args.cache_dir,
)
orig_ctx_len = getattr(config, "max_position_embeddings", None)
if orig_ctx_len and args.context_size > orig_ctx_len:
scaling_factor = float(math.ceil(args.context_size / orig_ctx_len))
config.rope_scaling = {"type": "linear", "factor": scaling_factor}
# Load model and tokenizer
model = transformers.AutoModelForCausalLM.from_pretrained(
args.base_model,
config=config,
cache_dir=args.cache_dir,
torch_dtype=torch.float16,
device_map="auto",
)
model.resize_token_embeddings(32001)
tokenizer = transformers.AutoTokenizer.from_pretrained(
args.base_model,
cache_dir=args.cache_dir,
model_max_length=args.context_size if args.context_size > orig_ctx_len else orig_ctx_len,
# padding_side="right",
padding_side="left",
use_fast=False,
)
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
with open(args.input_data_file, "r") as f:
test_data = json.load(f)
# import random
# test_data = random.sample(test_data, k=3)
test_data_pred = []
for i in tqdm(range(len(test_data))):
item = test_data[i]
new_item = {}
respond = build_generator(item, model, tokenizer, temperature=args.temperature, top_p=args.top_p,
max_gen_len=args.max_gen_len, use_cache=not args.flash_attn) # the temperature and top_p are highly different with previous alpaca exp, pay attention to this if there is sth wrong later
output = respond(item)
new_item["idx"] = i
# new_item["table_id"] = test_data[i]["table_id"]
new_item["instruction"] = test_data[i]["instruction"]
new_item["input_seg"] = test_data[i]["input_seg"]
new_item["question"] = test_data[i]["question"]
# new_item["ground_truth"] = test_data[i]["ground_truth"]
new_item["output"] = test_data[i]["output"]
new_item["predict"] = output
test_data_pred.append(new_item)
# import pdb
# pdb.set_trace()
with open(args.output_data_file, "w") as f:
json.dump(test_data_pred, f, indent = 2)
if __name__ == "__main__":
args = parse_config()
main(args)