diff --git a/src/LinearResponse/plotting.jl b/src/LinearResponse/plotting.jl index 444703cd..a947aa90 100644 --- a/src/LinearResponse/plotting.jl +++ b/src/LinearResponse/plotting.jl @@ -138,7 +138,7 @@ function plot_linear_response( kwargs..., ) length(size(res.solutions)) != 1 && - error("1D plots of not-1D datasets are usually a bad idea.") + error("The results are two dimensional. Consider using the `cut` keyword.") stable = classify_branch(res, branch, "stable") # boolean array X = Vector{Float64}(collect(values(res.swept_parameters))[1][stable]) @@ -177,7 +177,7 @@ function plot_linear_response( kwargs..., ) length(size(res.solutions)) != 1 && - error("1D plots of not-1D datasets are usually a bad idea.") + error("The results are two dimensional. Consider using the `cut` keyword.") X = Vector{Float64}(collect(first(values(res.swept_parameters)))) @@ -230,7 +230,7 @@ function plot_rotframe_jacobian_response( kwargs..., ) length(size(res.solutions)) != 1 && - error("1D plots of not-1D datasets are usually a bad idea.") + error("The results are two dimensional. Consider using the `cut` keyword.") stable = classify_branch(res, branch, "stable") # boolean array Ω_range = vcat(Ω_range) @@ -277,14 +277,22 @@ function plot_eigenvalues( filter = _get_mask(res, class) filter_branch = map(x -> getindex(x, branch), replace.(filter, 0 => NaN)) - dim(res) != 1 && error("1D plots of not-1D datasets are usually a bad idea.") + dim(res) != 1 && + error("The results are two dimensional. Consider using the `cut` keyword.") x = string(first(keys(res.swept_parameters))) varied = Vector{Float64}(collect(first(values(res.swept_parameters)))) - eigenvalues = [ - eigvals(res.jacobian(get_single_solution(res; branch=branch, index=i))) for - i in eachindex(varied) - ] + eigenvalues = map(eachindex(varied)) do i + jac = res.jacobian(get_single_solution(res; branch=branch, index=i)) + if any(isnan, jac) + throw( + ErrorException( + "The branch contains NaN values. Likely, the branch has non-physical solutions in the parameter sweep", + ), + ) + end + eigvals(jac) + end eigenvalues_filtered = map(.*, eigenvalues, filter_branch) eigenvectors = [ diff --git a/src/plotting_Plots.jl b/src/plotting_Plots.jl index b7432940..572b6f1c 100644 --- a/src/plotting_Plots.jl +++ b/src/plotting_Plots.jl @@ -159,7 +159,8 @@ function plot1D( end end - dim(res) != 1 && error("1D plots of not-1D datasets are usually a bad idea.") + dim(res) != 1 && + error("The results are two dimensional. Consider using the `cut` keyword.") x = x == "default" ? string(first(keys(res.swept_parameters))) : x X = transform_solutions(res, x; branches=branches) Y = transform_solutions(res, y; branches=branches, realify=true) diff --git a/test/linear_response.jl b/test/linear_response.jl index 6b961c54..c0d86f55 100644 --- a/test/linear_response.jl +++ b/test/linear_response.jl @@ -23,3 +23,21 @@ plot_rotframe_jacobian_response( plot_eigenvalues(result; branch=1) plot_eigenvalues(result; branch=1, type=:re, class="all") + +@testset begin + @variables α λ ω0 ω ωₚ F t x(t) + diff_eq = DifferentialEquation( + d(x, t, 2) + (ω0^2 - λ * cos(2 * ω * t)) * x + α * x^3 + γ * d(x, t) ~ + F * cos(ωₚ * t), + x, + ) + + add_harmonic!(diff_eq, x, ω) + add_harmonic!(diff_eq, x, ωₚ) + harmonic_eq = get_harmonic_equations(diff_eq) + + fixed = (γ => 0.008, ω0 => 1.0, α => 1.0, F => 0.0, ωₚ => 1.0, λ => 0.016) + varied = (ω => range(0.995, 1.005, 20)) + result_ω = get_steady_states(harmonic_eq, varied, fixed; show_progress=false, seed=SEED) + @test_throws ErrorException plot_eigenvalues(result_ω; branch=1) +end