-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_utils.py
33 lines (24 loc) · 1.03 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
import numpy as np
import torch
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from PIL import Image
controlnet_libs = {
'pose': "lllyasviel/sd-controlnet-openpose",
'scribble': "lllyasviel/sd-controlnet-scribble",
'canny': "lllyasviel/sd-controlnet-canny",
'hed': "lllyasviel/sd-controlnet-hed",
'depth': "lllyasviel/sd-controlnet-depth"
}
def load_pipeline(mode_1, mode_2,device='cuda'):
controlnet_1 = ControlNetModel.from_pretrained(controlnet_libs[mode_1])
controlnet_2 = ControlNetModel.from_pretrained(controlnet_libs[mode_2])
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet_2
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.controlnet1=controlnet_1
pipe.controlnet2= controlnet_2
pipe=pipe.to("cuda")
return pipe