-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathrun.py
210 lines (176 loc) · 10.8 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import tensorflow as tf
import numpy as np
import cv2
import cuhk03_dataset
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_integer('batch_size', '150', 'batch size for training')
tf.flags.DEFINE_integer('max_steps', '210000', 'max steps for training')
tf.flags.DEFINE_string('logs_dir', 'logs/', 'path to logs directory')
tf.flags.DEFINE_string('data_dir', 'data/', 'path to dataset')
tf.flags.DEFINE_float('learning_rate', '0.01', '')
tf.flags.DEFINE_string('mode', 'train', 'Mode train, val, test')
tf.flags.DEFINE_string('image1', '', 'First image path to compare')
tf.flags.DEFINE_string('image2', '', 'Second image path to compare')
IMAGE_WIDTH = 60
IMAGE_HEIGHT = 160
class Reid:
def preprocess(self, images, is_train):
def train():
split = tf.split(images, [1, 1])
shape = [1 for _ in range(split[0].get_shape()[1])]
for i in range(len(split)):
split[i] = tf.reshape(split[i], [FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3])
split[i] = tf.image.resize_images(split[i], [IMAGE_HEIGHT + 8, IMAGE_WIDTH + 3])
split[i] = tf.split(split[i], shape)
for j in range(len(split[i])):
split[i][j] = tf.reshape(split[i][j], [IMAGE_HEIGHT + 8, IMAGE_WIDTH + 3, 3])
split[i][j] = tf.random_crop(split[i][j], [IMAGE_HEIGHT, IMAGE_WIDTH, 3])
split[i][j] = tf.image.random_flip_left_right(split[i][j])
split[i][j] = tf.image.random_brightness(split[i][j], max_delta=32. / 255.)
split[i][j] = tf.image.random_saturation(split[i][j], lower=0.5, upper=1.5)
split[i][j] = tf.image.random_hue(split[i][j], max_delta=0.2)
split[i][j] = tf.image.random_contrast(split[i][j], lower=0.5, upper=1.5)
split[i][j] = tf.image.per_image_standardization(split[i][j])
return [tf.reshape(tf.concat(split[0], axis=0), [FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
tf.reshape(tf.concat(split[1], axis=0), [FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3])]
def val():
split = tf.split(images, [1, 1])
shape = [1 for _ in range(split[0].get_shape()[1])]
for i in range(len(split)):
split[i] = tf.reshape(split[i], [FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3])
split[i] = tf.image.resize_images(split[i], [IMAGE_HEIGHT, IMAGE_WIDTH])
split[i] = tf.split(split[i], shape)
for j in range(len(split[i])):
split[i][j] = tf.reshape(split[i][j], [IMAGE_HEIGHT, IMAGE_WIDTH, 3])
split[i][j] = tf.image.per_image_standardization(split[i][j])
return [tf.reshape(tf.concat(split[0], axis=0), [FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
tf.reshape(tf.concat(split[1], axis=0), [FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3])]
return tf.cond(is_train, train, val)
def network(self, images1, images2, weight_decay):
with tf.variable_scope('network'):
# Tied Convolution
conv1_1 = tf.layers.conv2d(images1, 20, [5, 5], activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='conv1_1')
pool1_1 = tf.layers.max_pooling2d(conv1_1, [2, 2], [2, 2], name='pool1_1')
conv1_2 = tf.layers.conv2d(pool1_1, 25, [5, 5], activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='conv1_2')
pool1_2 = tf.layers.max_pooling2d(conv1_2, [2, 2], [2, 2], name='pool1_2')
conv2_1 = tf.layers.conv2d(images2, 20, [5, 5], activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='conv2_1')
pool2_1 = tf.layers.max_pooling2d(conv2_1, [2, 2], [2, 2], name='pool2_1')
conv2_2 = tf.layers.conv2d(pool2_1, 25, [5, 5], activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='conv2_2')
pool2_2 = tf.layers.max_pooling2d(conv2_2, [2, 2], [2, 2], name='pool2_2')
# Cross-Input Neighborhood Differences
trans = tf.transpose(pool1_2, [0, 3, 1, 2])
shape = trans.get_shape().as_list()
m1s = tf.ones([shape[0], shape[1], shape[2], shape[3], 5, 5])
reshape = tf.reshape(trans, [shape[0], shape[1], shape[2], shape[3], 1, 1])
f = tf.multiply(reshape, m1s)
trans = tf.transpose(pool2_2, [0, 3, 1, 2])
reshape = tf.reshape(trans, [1, shape[0], shape[1], shape[2], shape[3]])
g = []
pad = tf.pad(reshape, [[0, 0], [0, 0], [0, 0], [2, 2], [2, 2]])
for i in range(shape[2]):
for j in range(shape[3]):
g.append(pad[:,:,:,i:i+5,j:j+5])
concat = tf.concat(g, axis=0)
reshape = tf.reshape(concat, [shape[2], shape[3], shape[0], shape[1], 5, 5])
g = tf.transpose(reshape, [2, 3, 0, 1, 4, 5])
reshape1 = tf.reshape(tf.subtract(f, g), [shape[0], shape[1], shape[2] * 5, shape[3] * 5])
reshape2 = tf.reshape(tf.subtract(g, f), [shape[0], shape[1], shape[2] * 5, shape[3] * 5])
k1 = tf.nn.relu(tf.transpose(reshape1, [0, 2, 3, 1]), name='k1')
k2 = tf.nn.relu(tf.transpose(reshape2, [0, 2, 3, 1]), name='k2')
# Patch Summary Features
l1 = tf.layers.conv2d(k1, 25, [5, 5], (5, 5), activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='l1')
l2 = tf.layers.conv2d(k2, 25, [5, 5], (5, 5), activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='l2')
# Across-Patch Features
m1 = tf.layers.conv2d(l1, 25, [3, 3], activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='m1')
pool_m1 = tf.layers.max_pooling2d(m1, [2, 2], [2, 2], padding='same', name='pool_m1')
m2 = tf.layers.conv2d(l2, 25, [3, 3], activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l2_regularizer(weight_decay), name='m2')
pool_m2 = tf.layers.max_pooling2d(m2, [2, 2], [2, 2], padding='same', name='pool_m2')
# Higher-Order Relationships
concat = tf.concat([pool_m1, pool_m2], axis=3)
reshape = tf.reshape(concat, [FLAGS.batch_size, -1])
fc1 = tf.layers.dense(reshape, 500, tf.nn.relu, name='fc1')
fc2 = tf.layers.dense(fc1, 2, name='fc2')
return fc2
def main(self,argv=None):
FLAGS.batch_size = 1
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
images = tf.placeholder(tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images')
labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels')
is_train = tf.placeholder(tf.bool, name='is_train')
global_step = tf.Variable(0, name='global_step', trainable=False)
weight_decay = 0.0005
tarin_num_id = 0
val_num_id = 0
images1, images2 = preprocess(images, is_train)
print('Build network')
logits = network(images1, images2, weight_decay)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits))
inference = tf.nn.softmax(logits)
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
train = optimizer.minimize(loss, global_step=global_step)
lr = FLAGS.learning_rate
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
print('Restore model')
saver.restore(sess, ckpt.model_checkpoint_path)
image1 = cv2.imread(FLAGS.image1)
image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT))
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
image1 = np.reshape(image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float)
image2 = cv2.imread(FLAGS.image2)
image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT))
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float)
test_images = np.array([image1, image2])
feed_dict = {images: test_images, is_train: False}
prediction = sess.run(inference, feed_dict=feed_dict)
print(bool(not np.argmax(prediction[0])))
def __init__(self):
tf.reset_default_graph()
FLAGS.batch_size = 1
learning_rate = tf.placeholder(tf.float32, name='learning_rate')
self.images = tf.placeholder(tf.float32, [2, FLAGS.batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 3], name='images')
labels = tf.placeholder(tf.float32, [FLAGS.batch_size, 2], name='labels')
self.is_train = tf.placeholder(tf.bool, name='is_train')
global_step = tf.Variable(0, name='global_step', trainable=False)
weight_decay = 0.0005
tarin_num_id = 0
val_num_id = 0
images1, images2 = self.preprocess(self.images, self.is_train)
#print('Build network')
logits = self.network(images1, images2, weight_decay)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits))
self.inference = tf.nn.softmax(logits)
def compare(self, image_1, image_2):
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
ckpt = tf.train.get_checkpoint_state(FLAGS.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
#print('Restore model')
saver.restore(sess, ckpt.model_checkpoint_path)
image1 = cv2.imread(image_1)
image1 = cv2.resize(image1, (IMAGE_WIDTH, IMAGE_HEIGHT))
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
image1 = np.reshape(image1, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float)
image2 = cv2.imread(image_2)
image2 = cv2.resize(image2, (IMAGE_WIDTH, IMAGE_HEIGHT))
image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)
image2 = np.reshape(image2, (1, IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(float)
test_images = np.array([image1, image2])
feed_dict = {self.images: test_images, self.is_train: False}
prediction = sess.run(self.inference, feed_dict=feed_dict)
return bool(not np.argmax(prediction[0]))
if __name__ == '__main__':
tf.app.run()