-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfaceOverlay.py
executable file
·307 lines (212 loc) · 9.29 KB
/
faceOverlay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import cv2
import numpy as np
import math
import dlib
predictor_path = "shape_predictor_68_face_landmarks.dat"
image_path = 'women/'
def detect_landmarks(image, filepath):
# obtain detector and predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
# convert image to numpy array
numpy_image = np.asanyarray(image)
numpy_image.flags.writeable = True
# output list
face_landmark_tuples = []
# Ask the detector to find the bounding boxes of each face. The 1 in the
# second argument indicates that we should up sample the image 1 time. This
# will make everything bigger and allow us to detect more faces.
detected_faces = detector(numpy_image, 1)
print("Number of faces detected: {}".format(len(detected_faces)))
points = []
for k, rect in enumerate(detected_faces):
# Get the landmarks/parts for the face in box rect.
shape = predictor(numpy_image, rect)
for index in xrange(0, shape.num_parts, 1):
x, y = "{}\n".format(shape.part(index)).replace("(", "").replace(")", "").replace(",", "").split()
points.append((int(x), int(y)))
print("created points for " + filepath)
return points
# Create landmarks for each image in folder.
def create_landmarks():
landmarks_array = []
# List all files in the directory and read points from text files one by one
for filePath in sorted(os.listdir(image_path)):
if filePath.endswith(".jpg"):
# Read image found.
image = cv2.imread(os.path.join(image_path, filePath))
# detect faces and landmarks
landmarks_array.append(detect_landmarks(image, filePath))
return landmarks_array
# Read all jpg images in folder.
def read_images():
# Create array of array of images.
images_array = []
# List all files in the directory and read points from text files one by one
for filePath in sorted(os.listdir(image_path)):
if filePath.endswith(".jpg"):
# Read image found.
read_image = cv2.imread(os.path.join(image_path, filePath))
# Convert to floating point
read_image = np.float32(read_image) / 255.0
# Add to array of images
images_array.append(read_image)
return images_array
# Compute similarity transform given two sets of two points.
# OpenCV requires 3 pairs of corresponding points.
# We are faking the third one.
def similarity_transform(in_points, out_points):
s60 = math.sin(60 * math.pi / 180)
c60 = math.cos(60 * math.pi / 180)
in_pts = np.copy(in_points).tolist()
out_pts = np.copy(out_points).tolist()
xin = c60 * (in_pts[0][0] - in_pts[1][0]) - s60 * (in_pts[0][1] - in_pts[1][1]) + in_pts[1][0]
yin = s60 * (in_pts[0][0] - in_pts[1][0]) + c60 * (in_pts[0][1] - in_pts[1][1]) + in_pts[1][1]
in_pts.append([np.int(xin), np.int(yin)])
xout = c60 * (out_pts[0][0] - out_pts[1][0]) - s60 * (out_pts[0][1] - out_pts[1][1]) + out_pts[1][0]
yout = s60 * (out_pts[0][0] - out_pts[1][0]) + c60 * (out_pts[0][1] - out_pts[1][1]) + out_pts[1][1]
out_pts.append([np.int(xout), np.int(yout)])
return cv2.estimateRigidTransform(np.array([in_pts]), np.array([out_pts]), False)
# Check if a point is inside a rectangle
def rect_contains(rect, point):
if point[0] < rect[0]:
return False
elif point[1] < rect[1]:
return False
elif point[0] > rect[2]:
return False
elif point[1] > rect[3]:
return False
return True
# Calculate Delaunay triangle
def calculate_delaunay_triangles(rect, points):
# Create sub_div
sub_div = cv2.Subdiv2D(rect)
# Insert points into sub_div
for p in points:
sub_div.insert((p[0], p[1]))
# List of triangles. Each triangle is a list of 3 points ( 6 numbers )
triangle_list = sub_div.getTriangleList()
# Find the indices of triangles in the points array
delaunay_tri = []
for t in triangle_list:
pt = [(t[0], t[1]), (t[2], t[3]), (t[4], t[5])]
pt1 = (t[0], t[1])
pt2 = (t[2], t[3])
pt3 = (t[4], t[5])
if rect_contains(rect, pt1) and rect_contains(rect, pt2) and rect_contains(rect, pt3):
ind = []
for j in xrange(0, 3):
for k in xrange(0, len(points)):
if abs(pt[j][0] - points[k][0]) < 1.0 and abs(pt[j][1] - points[k][1]) < 1.0:
ind.append(k)
if len(ind) == 3:
delaunay_tri.append((ind[0], ind[1], ind[2]))
return delaunay_tri
def constrain_point(p, w, h):
p = (min(max(p[0], 0), w - 1), min(max(p[1], 0), h - 1))
return p
# Apply affine transform calculated using srcTri and dstTri to src and
# output an image of size.
def apply_affine_transform(src, src_tri, dst_tri, size):
# Given a pair of triangles, find the affine transform.
warp_mat = cv2.getAffineTransform(np.float32(src_tri), np.float32(dst_tri))
# Apply the Affine Transform just found to the src image
dst = cv2.warpAffine(src, warp_mat, (size[0], size[1]), None,
flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101)
return dst
# Warps and alpha blends triangular regions from img1 and img2 to img
def warp_triangle(img1, img2, t1, t2):
# Find bounding rectangle for each triangle
r1 = cv2.boundingRect(np.float32([t1]))
r2 = cv2.boundingRect(np.float32([t2]))
# Offset points by left top corner of the respective rectangles
t1_rect = []
t2_rect = []
t2_rect_int = []
for index in xrange(0, 3):
t1_rect.append(((t1[index][0] - r1[0]), (t1[index][1] - r1[1])))
t2_rect.append(((t2[index][0] - r2[0]), (t2[index][1] - r2[1])))
t2_rect_int.append(((t2[index][0] - r2[0]), (t2[index][1] - r2[1])))
# Get mask by filling triangle
mask = np.zeros((r2[3], r2[2], 3), dtype=np.float32)
cv2.fillConvexPoly(mask, np.int32(t2_rect_int), (1.0, 1.0, 1.0), 16, 0)
# Apply warpImage to small rectangular patches
img1_rect = img1[r1[1]:r1[1] + r1[3], r1[0]:r1[0] + r1[2]]
size = (r2[2], r2[3])
img2_rect = apply_affine_transform(img1_rect, t1_rect, t2_rect, size)
img2_rect = img2_rect * mask
# Copy triangular region of the rectangular patch to the output image
img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] =\
img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] * ((1.0, 1.0, 1.0) - mask)
img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] = img2[r2[1]:r2[1] + r2[3], r2[0]:r2[0] + r2[2]] + img2_rect
if __name__ == '__main__':
# Dimensions of output image
w = 600
h = 600
# Read landmarks for all images
allPoints = create_landmarks()
# Read all images
images = read_images()
# Eye corners
eyecornerDst = [(np.int(0.3 * w),
np.int(h / 3)),
(np.int(0.7 * w),
np.int(h / 3))]
imagesNorm = []
pointsNorm = []
# Add boundary points for delaunay triangulation
boundaryPts = np.array(
[(0, 0), (w / 2, 0), (w - 1, 0), (w - 1, h / 2), (w - 1, h - 1), (w / 2, h - 1), (0, h - 1), (0, h / 2)])
# Initialize location of average points to 0s
pointsAvg = np.array([(0, 0)] * (len(allPoints[0]) + len(boundaryPts)), np.float32)
n = len(allPoints[0])
numImages = len(images)
# Warp images and transform landmarks to output coordinate system,
# and find average of transformed landmarks.
for i in xrange(0, numImages):
points1 = allPoints[i]
# Corners of the eye in input image
eyecornerSrc = [allPoints[i][36], allPoints[i][45]]
# Compute similarity transform
tform = similarity_transform(eyecornerSrc, eyecornerDst)
# Apply similarity transformation
img = cv2.warpAffine(images[i], tform, (w, h))
# Apply similarity transform on points
points2 = np.reshape(np.array(points1), (68, 1, 2))
points = cv2.transform(points2, tform)
points = np.float32(np.reshape(points, (68, 2)))
# Append boundary points. Will be used in Delaunay Triangulation
points = np.append(points, boundaryPts, axis=0)
# Calculate location of average landmark points.
pointsAvg = pointsAvg + points / numImages
pointsNorm.append(points)
imagesNorm.append(img)
# Delaunay triangulation
rect = (0, 0, w, h)
dt = calculate_delaunay_triangles(rect, np.array(pointsAvg))
# Output image
output = np.zeros((h, w, 3), np.float32)
# Warp input images to average image landmarks
for i in xrange(0, len(imagesNorm)):
img = np.zeros((h, w, 3), np.float32)
# Transform triangles one by one
for j in xrange(0, len(dt)):
tin = []
tout = []
for k in xrange(0, 3):
pIn = pointsNorm[i][dt[j][k]]
pIn = constrain_point(pIn, w, h)
pOut = pointsAvg[dt[j][k]]
pOut = constrain_point(pOut, w, h)
tin.append(pIn)
tout.append(pOut)
warp_triangle(imagesNorm[i], img, tin, tout)
# Add image intensities for averaging
output = output + img
# Divide by numImages to get average
output = output / numImages
# Display result
cv2.imshow('image', output)
cv2.waitKey(0)