forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
esrgan.hpp
198 lines (165 loc) · 7.96 KB
/
esrgan.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#ifndef __ESRGAN_HPP__
#define __ESRGAN_HPP__
#include "ggml_extend.hpp"
#include "model.h"
/*
=================================== ESRGAN ===================================
References:
https://github.com/xinntao/Real-ESRGAN/blob/master/inference_realesrgan.py
https://github.com/XPixelGroup/BasicSR/blob/v1.4.2/basicsr/archs/rrdbnet_arch.py
*/
class ResidualDenseBlock : public GGMLBlock {
protected:
int num_feat;
int num_grow_ch;
public:
ResidualDenseBlock(int num_feat = 64, int num_grow_ch = 32)
: num_feat(num_feat), num_grow_ch(num_grow_ch) {
blocks["conv1"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv2"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + num_grow_ch, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv3"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv4"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, {3, 3}, {1, 1}, {1, 1}));
blocks["conv5"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat + 4 * num_grow_ch, num_feat, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* lrelu(struct ggml_context* ctx, struct ggml_tensor* x) {
return ggml_leaky_relu(ctx, x, 0.2f, true);
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, num_feat, h, w]
// return: [n, num_feat, h, w]
auto conv1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv1"]);
auto conv2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv2"]);
auto conv3 = std::dynamic_pointer_cast<Conv2d>(blocks["conv3"]);
auto conv4 = std::dynamic_pointer_cast<Conv2d>(blocks["conv4"]);
auto conv5 = std::dynamic_pointer_cast<Conv2d>(blocks["conv5"]);
auto x1 = lrelu(ctx, conv1->forward(ctx, x));
auto x_cat = ggml_concat(ctx, x, x1, 2);
auto x2 = lrelu(ctx, conv2->forward(ctx, x_cat));
x_cat = ggml_concat(ctx, x_cat, x2, 2);
auto x3 = lrelu(ctx, conv3->forward(ctx, x_cat));
x_cat = ggml_concat(ctx, x_cat, x3, 2);
auto x4 = lrelu(ctx, conv4->forward(ctx, x_cat));
x_cat = ggml_concat(ctx, x_cat, x4, 2);
auto x5 = conv5->forward(ctx, x_cat);
x5 = ggml_add(ctx, ggml_scale(ctx, x5, 0.2f), x);
return x5;
}
};
class RRDB : public GGMLBlock {
public:
RRDB(int num_feat, int num_grow_ch = 32) {
blocks["rdb1"] = std::shared_ptr<GGMLBlock>(new ResidualDenseBlock(num_feat, num_grow_ch));
blocks["rdb2"] = std::shared_ptr<GGMLBlock>(new ResidualDenseBlock(num_feat, num_grow_ch));
blocks["rdb3"] = std::shared_ptr<GGMLBlock>(new ResidualDenseBlock(num_feat, num_grow_ch));
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, num_feat, h, w]
// return: [n, num_feat, h, w]
auto rdb1 = std::dynamic_pointer_cast<ResidualDenseBlock>(blocks["rdb1"]);
auto rdb2 = std::dynamic_pointer_cast<ResidualDenseBlock>(blocks["rdb2"]);
auto rdb3 = std::dynamic_pointer_cast<ResidualDenseBlock>(blocks["rdb3"]);
auto out = rdb1->forward(ctx, x);
out = rdb2->forward(ctx, out);
out = rdb3->forward(ctx, out);
out = ggml_add(ctx, ggml_scale(ctx, out, 0.2f), x);
return out;
}
};
class RRDBNet : public GGMLBlock {
protected:
int scale = 4; // default RealESRGAN_x4plus_anime_6B
int num_block = 6; // default RealESRGAN_x4plus_anime_6B
int num_in_ch = 3;
int num_out_ch = 3;
int num_feat = 64; // default RealESRGAN_x4plus_anime_6B
int num_grow_ch = 32; // default RealESRGAN_x4plus_anime_6B
public:
RRDBNet() {
blocks["conv_first"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_in_ch, num_feat, {3, 3}, {1, 1}, {1, 1}));
for (int i = 0; i < num_block; i++) {
std::string name = "body." + std::to_string(i);
blocks[name] = std::shared_ptr<GGMLBlock>(new RRDB(num_feat, num_grow_ch));
}
blocks["conv_body"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
// upsample
blocks["conv_up1"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
blocks["conv_up2"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
blocks["conv_hr"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_feat, {3, 3}, {1, 1}, {1, 1}));
blocks["conv_last"] = std::shared_ptr<GGMLBlock>(new Conv2d(num_feat, num_out_ch, {3, 3}, {1, 1}, {1, 1}));
}
struct ggml_tensor* lrelu(struct ggml_context* ctx, struct ggml_tensor* x) {
return ggml_leaky_relu(ctx, x, 0.2f, true);
}
struct ggml_tensor* forward(struct ggml_context* ctx, struct ggml_tensor* x) {
// x: [n, num_in_ch, h, w]
// return: [n, num_out_ch, h*4, w*4]
auto conv_first = std::dynamic_pointer_cast<Conv2d>(blocks["conv_first"]);
auto conv_body = std::dynamic_pointer_cast<Conv2d>(blocks["conv_body"]);
auto conv_up1 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up1"]);
auto conv_up2 = std::dynamic_pointer_cast<Conv2d>(blocks["conv_up2"]);
auto conv_hr = std::dynamic_pointer_cast<Conv2d>(blocks["conv_hr"]);
auto conv_last = std::dynamic_pointer_cast<Conv2d>(blocks["conv_last"]);
auto feat = conv_first->forward(ctx, x);
auto body_feat = feat;
for (int i = 0; i < num_block; i++) {
std::string name = "body." + std::to_string(i);
auto block = std::dynamic_pointer_cast<RRDB>(blocks[name]);
body_feat = block->forward(ctx, body_feat);
}
body_feat = conv_body->forward(ctx, body_feat);
feat = ggml_add(ctx, feat, body_feat);
// upsample
feat = lrelu(ctx, conv_up1->forward(ctx, ggml_upscale(ctx, feat, 2)));
feat = lrelu(ctx, conv_up2->forward(ctx, ggml_upscale(ctx, feat, 2)));
auto out = conv_last->forward(ctx, lrelu(ctx, conv_hr->forward(ctx, feat)));
return out;
}
};
struct ESRGAN : public GGMLRunner {
RRDBNet rrdb_net;
int scale = 4;
int tile_size = 128; // avoid cuda OOM for 4gb VRAM
ESRGAN(ggml_backend_t backend,
ggml_type wtype)
: GGMLRunner(backend, wtype) {
rrdb_net.init(params_ctx, wtype);
}
std::string get_desc() {
return "esrgan";
}
bool load_from_file(const std::string& file_path) {
LOG_INFO("loading esrgan from '%s'", file_path.c_str());
alloc_params_buffer();
std::map<std::string, ggml_tensor*> esrgan_tensors;
rrdb_net.get_param_tensors(esrgan_tensors);
ModelLoader model_loader;
if (!model_loader.init_from_file(file_path)) {
LOG_ERROR("init esrgan model loader from file failed: '%s'", file_path.c_str());
return false;
}
bool success = model_loader.load_tensors(esrgan_tensors, backend);
if (!success) {
LOG_ERROR("load esrgan tensors from model loader failed");
return false;
}
LOG_INFO("esrgan model loaded");
return success;
}
struct ggml_cgraph* build_graph(struct ggml_tensor* x) {
struct ggml_cgraph* gf = ggml_new_graph(compute_ctx);
x = to_backend(x);
struct ggml_tensor* out = rrdb_net.forward(compute_ctx, x);
ggml_build_forward_expand(gf, out);
return gf;
}
void compute(const int n_threads,
struct ggml_tensor* x,
ggml_tensor** output,
ggml_context* output_ctx = NULL) {
auto get_graph = [&]() -> struct ggml_cgraph* {
return build_graph(x);
};
GGMLRunner::compute(get_graph, n_threads, false, output, output_ctx);
}
};
#endif // __ESRGAN_HPP__