-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeras_tf_train_mnist.py
80 lines (63 loc) · 2.06 KB
/
keras_tf_train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import tensorflow as tf
print("Tensorflow version {}".format(tf.__version__))
tf.compat.v1.enable_eager_execution()
"""
Intel Neural Compressor has old package names: iLiT and LPOT.
"""
try:
import neural_compressor as inc
print("neural_compressor version {}".format(inc.__version__))
except:
try:
import lpot as inc
print("LPOT version {}".format(inc.__version__))
except:
import ilit as inc
print("iLiT version {}".format(inc.__version__))
import matplotlib.pyplot as plt
import numpy as np
"""
Dataset
Use MNIST dataset to recognize hand writing numbers. Load the dataset.
"""
import alexnet
data = alexnet.read_data()
x_train, y_train, label_train, x_test, y_test, label_test = data
print('train', x_train.shape, y_train.shape, label_train.shape)
print('test', x_test.shape, y_test.shape, label_test.shape)
"""
Build Model
Build a CNN model like Alexnet by Keras API based on Tensorflow. Print the model structure by Keras API: summary().
"""
classes = 10
width = 28
channels = 1
model = alexnet.create_model(width ,channels ,classes)
model.summary()
"""
Train the Model with the Dataset
Set the epochs to "1"
"""
epochs = 1
alexnet.train_mod(model, data, epochs)
"""
Freeze and Save Model to Single PB
Set the input node name is "x".
"""
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
def save_frozen_pb(model, mod_path):
# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: model(x))
concrete_function = full_model.get_concrete_function(
x=tf.TensorSpec(model.inputs[0].shape, model.inputs[0].dtype))
# Get frozen ConcreteFunction
frozen_model = convert_variables_to_constants_v2(concrete_function)
# Generate frozen pb
tf.io.write_graph(graph_or_graph_def=frozen_model.graph,
logdir=".",
name=mod_path,
as_text=False)
fp32_frozen_pb_file = "fp32_frozen.pb"
save_frozen_pb(model, fp32_frozen_pb_file)
os.system("ls -la fp32_frozen.pb")