forked from yeahme49/tensorrt_demos
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrt_yolo_cv.py
97 lines (76 loc) · 3.11 KB
/
trt_yolo_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""trt_yolo_cv.py
This script could be used to make object detection video with
TensorRT optimized YOLO engine.
"cv" means "create video"
made by BigJoon (ref. jkjung-avt)
"""
import os
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
from utils.yolo_classes import get_cls_dict
from utils.visualization import BBoxVisualization
from utils.yolo_with_plugins import TrtYOLO
def parse_args():
"""Parse input arguments."""
desc = ('Run the TensorRT optimized object detecion model on an input '
'video and save BBoxed overlaid output as another video.')
parser = argparse.ArgumentParser(description=desc)
parser.add_argument(
'-v', '--video', type=str, required=True,
help='input video file name')
parser.add_argument(
'-o', '--output', type=str, required=True,
help='output video file name')
parser.add_argument(
'-c', '--category_num', type=int, default=80,
help='number of object categories [80]')
parser.add_argument(
'-m', '--model', type=str, required=True,
help=('[yolov3-tiny|yolov3|yolov3-spp|yolov4-tiny|yolov4|'
'yolov4-csp|yolov4x-mish|yolov4-p5]-[{dimension}], where '
'{dimension} could be either a single number (e.g. '
'288, 416, 608) or 2 numbers, WxH (e.g. 416x256)'))
parser.add_argument(
'-l', '--letter_box', action='store_true',
help='inference with letterboxed image [False]')
args = parser.parse_args()
return args
def loop_and_detect(cap, trt_yolo, conf_th, vis, writer):
"""Continuously capture images from camera and do object detection.
# Arguments
cap: the camera instance (video source).
trt_yolo: the TRT YOLO object detector instance.
conf_th: confidence/score threshold for object detection.
vis: for visualization.
writer: the VideoWriter object for the output video.
"""
while True:
ret, frame = cap.read()
if frame is None: break
boxes, confs, clss = trt_yolo.detect(frame, conf_th)
frame = vis.draw_bboxes(frame, boxes, confs, clss)
writer.write(frame)
print('.', end='', flush=True)
print('\nDone.')
def main():
args = parse_args()
if args.category_num <= 0:
raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num)
if not os.path.isfile('yolo/%s.trt' % args.model):
raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model)
cap = cv2.VideoCapture(args.video)
if not cap.isOpened():
raise SystemExit('ERROR: failed to open the input video file!')
frame_width, frame_height = int(cap.get(3)), int(cap.get(4))
writer = cv2.VideoWriter(
args.output,
cv2.VideoWriter_fourcc(*'mp4v'), 30, (frame_width, frame_height))
cls_dict = get_cls_dict(args.category_num)
vis = BBoxVisualization(cls_dict)
trt_yolo = TrtYOLO(args.model, args.category_num, args.letter_box)
loop_and_detect(cap, trt_yolo, conf_th=0.3, vis=vis, writer=writer)
writer.release()
cap.release()
if __name__ == '__main__':
main()