-
Notifications
You must be signed in to change notification settings - Fork 741
/
datasets.py
executable file
·392 lines (282 loc) · 13 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import torch
import torch.utils.data as data
import os, math, random
from os.path import *
import numpy as np
from glob import glob
import utils.frame_utils as frame_utils
from scipy.misc import imread, imresize
class StaticRandomCrop(object):
def __init__(self, image_size, crop_size):
self.th, self.tw = crop_size
h, w = image_size
self.h1 = random.randint(0, h - self.th)
self.w1 = random.randint(0, w - self.tw)
def __call__(self, img):
return img[self.h1:(self.h1+self.th), self.w1:(self.w1+self.tw),:]
class StaticCenterCrop(object):
def __init__(self, image_size, crop_size):
self.th, self.tw = crop_size
self.h, self.w = image_size
def __call__(self, img):
return img[(self.h-self.th)//2:(self.h+self.th)//2, (self.w-self.tw)//2:(self.w+self.tw)//2,:]
class MpiSintel(data.Dataset):
def __init__(self, args, is_cropped = False, root = '', dstype = 'clean', replicates = 1):
self.args = args
self.is_cropped = is_cropped
self.crop_size = args.crop_size
self.render_size = args.inference_size
self.replicates = replicates
flow_root = join(root, 'flow')
image_root = join(root, dstype)
file_list = sorted(glob(join(flow_root, '*/*.flo')))
self.flow_list = []
self.image_list = []
for file in file_list:
if 'test' in file:
# print file
continue
fbase = file[len(flow_root)+1:]
fprefix = fbase[:-8]
fnum = int(fbase[-8:-4])
img1 = join(image_root, fprefix + "%04d"%(fnum+0) + '.png')
img2 = join(image_root, fprefix + "%04d"%(fnum+1) + '.png')
if not isfile(img1) or not isfile(img2) or not isfile(file):
continue
self.image_list += [[img1, img2]]
self.flow_list += [file]
self.size = len(self.image_list)
self.frame_size = frame_utils.read_gen(self.image_list[0][0]).shape
if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (self.frame_size[0]%64) or (self.frame_size[1]%64):
self.render_size[0] = ( (self.frame_size[0])//64 ) * 64
self.render_size[1] = ( (self.frame_size[1])//64 ) * 64
args.inference_size = self.render_size
assert (len(self.image_list) == len(self.flow_list))
def __getitem__(self, index):
index = index % self.size
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
flow = frame_utils.read_gen(self.flow_list[index])
images = [img1, img2]
image_size = img1.shape[:2]
if self.is_cropped:
cropper = StaticRandomCrop(image_size, self.crop_size)
else:
cropper = StaticCenterCrop(image_size, self.render_size)
images = list(map(cropper, images))
flow = cropper(flow)
images = np.array(images).transpose(3,0,1,2)
flow = flow.transpose(2,0,1)
images = torch.from_numpy(images.astype(np.float32))
flow = torch.from_numpy(flow.astype(np.float32))
return [images], [flow]
def __len__(self):
return self.size * self.replicates
class MpiSintelClean(MpiSintel):
def __init__(self, args, is_cropped = False, root = '', replicates = 1):
super(MpiSintelClean, self).__init__(args, is_cropped = is_cropped, root = root, dstype = 'clean', replicates = replicates)
class MpiSintelFinal(MpiSintel):
def __init__(self, args, is_cropped = False, root = '', replicates = 1):
super(MpiSintelFinal, self).__init__(args, is_cropped = is_cropped, root = root, dstype = 'final', replicates = replicates)
class FlyingChairs(data.Dataset):
def __init__(self, args, is_cropped, root = '/path/to/FlyingChairs_release/data', replicates = 1):
self.args = args
self.is_cropped = is_cropped
self.crop_size = args.crop_size
self.render_size = args.inference_size
self.replicates = replicates
images = sorted( glob( join(root, '*.ppm') ) )
self.flow_list = sorted( glob( join(root, '*.flo') ) )
assert (len(images)//2 == len(self.flow_list))
self.image_list = []
for i in range(len(self.flow_list)):
im1 = images[2*i]
im2 = images[2*i + 1]
self.image_list += [ [ im1, im2 ] ]
assert len(self.image_list) == len(self.flow_list)
self.size = len(self.image_list)
self.frame_size = frame_utils.read_gen(self.image_list[0][0]).shape
if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (self.frame_size[0]%64) or (self.frame_size[1]%64):
self.render_size[0] = ( (self.frame_size[0])//64 ) * 64
self.render_size[1] = ( (self.frame_size[1])//64 ) * 64
args.inference_size = self.render_size
def __getitem__(self, index):
index = index % self.size
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
flow = frame_utils.read_gen(self.flow_list[index])
images = [img1, img2]
image_size = img1.shape[:2]
if self.is_cropped:
cropper = StaticRandomCrop(image_size, self.crop_size)
else:
cropper = StaticCenterCrop(image_size, self.render_size)
images = list(map(cropper, images))
flow = cropper(flow)
images = np.array(images).transpose(3,0,1,2)
flow = flow.transpose(2,0,1)
images = torch.from_numpy(images.astype(np.float32))
flow = torch.from_numpy(flow.astype(np.float32))
return [images], [flow]
def __len__(self):
return self.size * self.replicates
class FlyingThings(data.Dataset):
def __init__(self, args, is_cropped, root = '/path/to/flyingthings3d', dstype = 'frames_cleanpass', replicates = 1):
self.args = args
self.is_cropped = is_cropped
self.crop_size = args.crop_size
self.render_size = args.inference_size
self.replicates = replicates
image_dirs = sorted(glob(join(root, dstype, 'TRAIN/*/*')))
image_dirs = sorted([join(f, 'left') for f in image_dirs] + [join(f, 'right') for f in image_dirs])
flow_dirs = sorted(glob(join(root, 'optical_flow_flo_format/TRAIN/*/*')))
flow_dirs = sorted([join(f, 'into_future/left') for f in flow_dirs] + [join(f, 'into_future/right') for f in flow_dirs])
assert (len(image_dirs) == len(flow_dirs))
self.image_list = []
self.flow_list = []
for idir, fdir in zip(image_dirs, flow_dirs):
images = sorted( glob(join(idir, '*.png')) )
flows = sorted( glob(join(fdir, '*.flo')) )
for i in range(len(flows)):
self.image_list += [ [ images[i], images[i+1] ] ]
self.flow_list += [flows[i]]
assert len(self.image_list) == len(self.flow_list)
self.size = len(self.image_list)
self.frame_size = frame_utils.read_gen(self.image_list[0][0]).shape
if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (self.frame_size[0]%64) or (self.frame_size[1]%64):
self.render_size[0] = ( (self.frame_size[0])//64 ) * 64
self.render_size[1] = ( (self.frame_size[1])//64 ) * 64
args.inference_size = self.render_size
def __getitem__(self, index):
index = index % self.size
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
flow = frame_utils.read_gen(self.flow_list[index])
images = [img1, img2]
image_size = img1.shape[:2]
if self.is_cropped:
cropper = StaticRandomCrop(image_size, self.crop_size)
else:
cropper = StaticCenterCrop(image_size, self.render_size)
images = list(map(cropper, images))
flow = cropper(flow)
images = np.array(images).transpose(3,0,1,2)
flow = flow.transpose(2,0,1)
images = torch.from_numpy(images.astype(np.float32))
flow = torch.from_numpy(flow.astype(np.float32))
return [images], [flow]
def __len__(self):
return self.size * self.replicates
class FlyingThingsClean(FlyingThings):
def __init__(self, args, is_cropped = False, root = '', replicates = 1):
super(FlyingThingsClean, self).__init__(args, is_cropped = is_cropped, root = root, dstype = 'frames_cleanpass', replicates = replicates)
class FlyingThingsFinal(FlyingThings):
def __init__(self, args, is_cropped = False, root = '', replicates = 1):
super(FlyingThingsFinal, self).__init__(args, is_cropped = is_cropped, root = root, dstype = 'frames_finalpass', replicates = replicates)
class ChairsSDHom(data.Dataset):
def __init__(self, args, is_cropped, root = '/path/to/chairssdhom/data', dstype = 'train', replicates = 1):
self.args = args
self.is_cropped = is_cropped
self.crop_size = args.crop_size
self.render_size = args.inference_size
self.replicates = replicates
image1 = sorted( glob( join(root, dstype, 't0/*.png') ) )
image2 = sorted( glob( join(root, dstype, 't1/*.png') ) )
self.flow_list = sorted( glob( join(root, dstype, 'flow/*.flo') ) )
assert (len(image1) == len(self.flow_list))
self.image_list = []
for i in range(len(self.flow_list)):
im1 = image1[i]
im2 = image2[i]
self.image_list += [ [ im1, im2 ] ]
assert len(self.image_list) == len(self.flow_list)
self.size = len(self.image_list)
self.frame_size = frame_utils.read_gen(self.image_list[0][0]).shape
if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (self.frame_size[0]%64) or (self.frame_size[1]%64):
self.render_size[0] = ( (self.frame_size[0])//64 ) * 64
self.render_size[1] = ( (self.frame_size[1])//64 ) * 64
args.inference_size = self.render_size
def __getitem__(self, index):
index = index % self.size
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
flow = frame_utils.read_gen(self.flow_list[index])
flow = flow[::-1,:,:]
images = [img1, img2]
image_size = img1.shape[:2]
if self.is_cropped:
cropper = StaticRandomCrop(image_size, self.crop_size)
else:
cropper = StaticCenterCrop(image_size, self.render_size)
images = list(map(cropper, images))
flow = cropper(flow)
images = np.array(images).transpose(3,0,1,2)
flow = flow.transpose(2,0,1)
images = torch.from_numpy(images.astype(np.float32))
flow = torch.from_numpy(flow.astype(np.float32))
return [images], [flow]
def __len__(self):
return self.size * self.replicates
class ChairsSDHomTrain(ChairsSDHom):
def __init__(self, args, is_cropped = False, root = '', replicates = 1):
super(ChairsSDHomTrain, self).__init__(args, is_cropped = is_cropped, root = root, dstype = 'train', replicates = replicates)
class ChairsSDHomTest(ChairsSDHom):
def __init__(self, args, is_cropped = False, root = '', replicates = 1):
super(ChairsSDHomTest, self).__init__(args, is_cropped = is_cropped, root = root, dstype = 'test', replicates = replicates)
class ImagesFromFolder(data.Dataset):
def __init__(self, args, is_cropped, root = '/path/to/frames/only/folder', iext = 'png', replicates = 1):
self.args = args
self.is_cropped = is_cropped
self.crop_size = args.crop_size
self.render_size = args.inference_size
self.replicates = replicates
images = sorted( glob( join(root, '*.' + iext) ) )
self.image_list = []
for i in range(len(images)-1):
im1 = images[i]
im2 = images[i+1]
self.image_list += [ [ im1, im2 ] ]
self.size = len(self.image_list)
self.frame_size = frame_utils.read_gen(self.image_list[0][0]).shape
if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (self.frame_size[0]%64) or (self.frame_size[1]%64):
self.render_size[0] = ( (self.frame_size[0])//64 ) * 64
self.render_size[1] = ( (self.frame_size[1])//64 ) * 64
args.inference_size = self.render_size
def __getitem__(self, index):
index = index % self.size
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
images = [img1, img2]
image_size = img1.shape[:2]
if self.is_cropped:
cropper = StaticRandomCrop(image_size, self.crop_size)
else:
cropper = StaticCenterCrop(image_size, self.render_size)
images = list(map(cropper, images))
images = np.array(images).transpose(3,0,1,2)
images = torch.from_numpy(images.astype(np.float32))
return [images], [torch.zeros(images.size()[0:1] + (2,) + images.size()[-2:])]
def __len__(self):
return self.size * self.replicates
'''
import argparse
import sys, os
import importlib
from scipy.misc import imsave
import numpy as np
import datasets
reload(datasets)
parser = argparse.ArgumentParser()
args = parser.parse_args()
args.inference_size = [1080, 1920]
args.crop_size = [384, 512]
args.effective_batch_size = 1
index = 500
v_dataset = datasets.MpiSintelClean(args, True, root='../MPI-Sintel/flow/training')
a, b = v_dataset[index]
im1 = a[0].numpy()[:,0,:,:].transpose(1,2,0)
im2 = a[0].numpy()[:,1,:,:].transpose(1,2,0)
imsave('./img1.png', im1)
imsave('./img2.png', im2)
flow_utils.writeFlow('./flow.flo', b[0].numpy().transpose(1,2,0))
'''