-
Notifications
You must be signed in to change notification settings - Fork 41
/
stochy_patterngenerator.F90
396 lines (380 loc) · 15.3 KB
/
stochy_patterngenerator.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
!>@brief The module 'stochy_patterngenerator_mod' contains the derived type random_pattern
!! which controls the characteristics of the random pattern
module stochy_patterngenerator_mod
!> generate random patterns with specified temporal and spatial auto-correlation
!! in spherical harmonic space.
use kinddef
use spectral_transforms, only: len_trie_ls, len_trio_ls, ls_dim, ls_max_node
! use mersenne_twister_stochy, only: random_setseed,random_gauss,random_stat
use mersenne_twister, only: random_setseed,random_gauss,random_stat
! DH* replacing this with mpi_wrapper changes results - look for value of iseed?
use mpi_wrapper,only: is_rootpe, mp_bcst
! *DH
implicit none
private
public :: computevarspec, setvarspect,&
patterngenerator_init, patterngenerator_destroy, getnoise, &
patterngenerator_advance, ndimspec,&
chgres_pattern,computevarspec_r
! -----------------------------------------------
!>@brief Derived type 'random_pattern' contains the attrubites of a spefic random pattern
!>@details A seperate instance of this type is needed for each pattern
type,public :: random_pattern ! start type define
! -----------------------------------------------
real(kind_phys), public :: lengthscale ! length scale in m
real(kind_phys), public :: tau
real(kind_phys), public :: dt
real(kind_phys), public :: phi
real(kind_phys), public :: stdev
real(kind_dbl_prec), allocatable, dimension(:), public :: varspectrum, varspectrum1d, lap
integer, allocatable, dimension(:), public ::&
degree,order,idx_e,idx_o
integer, allocatable, dimension(:,:), public :: idx
integer, public :: seed
real(kind_dbl_prec), allocatable, dimension(:,:,:), public :: spec_e,spec_o
type(random_stat), public :: rstate
! -----------------------------------------------------
end type random_pattern ! end type define
! -----------------------------------------------------
integer :: nlons,nlats,ntrunc,ndimspec
contains
!>@brief The subroutine 'patterngenerator_init' sets up the spherical harmonics
!
!>@details It populates array defining the zonal and total wavenumbers, amplitude,
!! temporaral and spatial correlations.
subroutine patterngenerator_init(lscale, delt, tscale, stdev, iseed, rpattern,&
nlon, nlat, jcap, ls_nodes, npatterns,&
nlevs, varspect_opt,new_lscale)
!\callgraph
real(kind_phys), intent(in),dimension(npatterns) :: lscale,tscale,stdev
real, intent(in) :: delt
integer, intent(in) :: nlon,nlat,jcap,npatterns,varspect_opt
integer, intent(in) :: ls_nodes(ls_dim,3),nlevs
logical, intent(in) :: new_lscale
type(random_pattern), intent(out), dimension(npatterns) :: rpattern
integer(8), intent(inout) :: iseed(npatterns)
integer m,j,l,n,nm,nn,np,indev1,indev2,indod1,indod2
integer(8) count, count_rate, count_max, count_trunc
integer(8) :: iscale = 10000000000
integer count4, ierr
! integer member_id
integer indlsod,indlsev,jbasev,jbasod
include 'function_indlsod'
include 'function_indlsev'
nlons = nlon
nlats = nlat
ntrunc = jcap
ndimspec = (ntrunc+1)*(ntrunc+2)/2
! propagate seed supplied from namelist to all patterns...
if (iseed(1) .NE. 0) then
do np=2,npatterns
if (iseed(np).EQ.0) then
iseed(np)=iseed(1)+np*100000000
endif
enddo
endif
do np=1,npatterns
allocate(rpattern(np)%idx(0:ntrunc,0:ntrunc))
allocate(rpattern(np)%idx_e(len_trie_ls))
allocate(rpattern(np)%idx_o(len_trio_ls))
allocate(rpattern(np)%spec_e(len_trie_ls,2,nlevs))
allocate(rpattern(np)%spec_o(len_trio_ls,2,nlevs))
rpattern(np)%idx_e = 0; rpattern(np)%idx_o = 0; rpattern(np)%idx = 0
rpattern(np)%spec_e(:,:,:)=0.
rpattern(np)%spec_o(:,:,:)=0.
nm = 0
do m=0,ntrunc
do n=m,ntrunc
nm = nm + 1
rpattern(np)%idx(m,n) = nm
enddo
enddo
do j = 1, ls_max_node
l=ls_nodes(j,1) ! zonal wavenumber
jbasev=ls_nodes(j,2)
jbasod=ls_nodes(j,3)
indev1 = indlsev(l,l)
indod1 = indlsod(l+1,l)
if (mod(l,2) .eq. mod(ntrunc+1,2)) then
indev2 = indlsev(ntrunc+1,l)
indod2 = indlsod(ntrunc ,l)
else
indev2 = indlsev(ntrunc ,l)
indod2 = indlsod(ntrunc+1,l)
endif
n = l ! degree
do nn=indev1,indev2
if (n <= ntrunc .and. l <= ntrunc) then
nm = rpattern(np)%idx(l,n)
rpattern(np)%idx_e(nn) = nm
endif
n = n + 2
enddo
n = l+1
do nn=indod1,indod2
if (n <= ntrunc .and. l <= ntrunc) then
nm = rpattern(np)%idx(l,n)
rpattern(np)%idx_o(nn) = nm
endif
n = n + 2
enddo
enddo
allocate(rpattern(np)%degree(ndimspec),rpattern(np)%order(ndimspec),rpattern(np)%lap(ndimspec))
j = 0
do m=0,ntrunc
do n=m,ntrunc
j = j + 1
rpattern(np)%degree(j) = n
rpattern(np)%order(j) = m
end do
end do
rpattern(np)%lap = -rpattern(np)%degree*(rpattern(np)%degree+1.0)
rpattern(np)%tau = tscale(np)
rpattern(np)%lengthscale = lscale(np)
rpattern(np)%dt = delt
rpattern(np)%phi = exp(-delt/tscale(np))
rpattern(np)%stdev = stdev(np)
allocate(rpattern(np)%varspectrum(ndimspec))
allocate(rpattern(np)%varspectrum1d(0:ntrunc))
! seed computed on root, then bcast to all tasks and set.
if (is_rootpe()) then
! read(ens_nam(2:3),'(i2)') member_id
! print *,'ens_nam,member_id',trim(ens_nam),member_id
if (iseed(np) == 0) then
! generate a random seed from system clock and ens member number
call system_clock(count, count_rate, count_max)
! iseed is elapsed time since unix epoch began (secs)
! truncate to 4 byte integer
count_trunc = iscale*(count/iscale)
count4 = count - count_trunc !+ member_id
print *,'using seed',count4
else
!count4 = iseed(np) + member_id
! don't rely on compiler to truncate integer(8) to integer(4) on
! overflow, do wrap around explicitly.
!count4 = mod(iseed(np) + member_id + 2147483648_8, 4294967296_8) - 2147483648_8
count4 = mod(iseed(np) + 2147483648_8, 4294967296_8) - 2147483648_8
print *,'using seed',count4,iseed(np)!,member_id
endif
endif
! broadcast seed to all tasks.
call mp_bcst(count4)
rpattern(np)%seed = count4
! set seed (to be the same) on all tasks. Save random state.
call random_setseed(rpattern(np)%seed,rpattern(np)%rstate)
if (varspect_opt .ne. 0 .and. varspect_opt .ne. 1) then
if (is_rootpe()) then
print *,'WARNING: illegal value for varspect_opt (should be 0 or 1), using 0 (gaussian spectrum)...'
endif
call setvarspect(rpattern(np),0,new_lscale)
else
call setvarspect(rpattern(np),varspect_opt,new_lscale)
endif
enddo ! n=1,npatterns
end subroutine patterngenerator_init
!>@brief The subroutine 'patterngenerator_destroy' dellaocate arrays
!>@details This is acutally never called
subroutine patterngenerator_destroy(rpattern,npatterns)
!\callgraph
type(random_pattern), intent(inout) :: rpattern(npatterns)
integer, intent(in) :: npatterns
integer n
do n=1,npatterns
deallocate(rpattern(n)%varspectrum,rpattern(n)%varspectrum1d)
deallocate(rpattern(n)%degree,rpattern(n)%order,rpattern(n)%lap)
deallocate(rpattern(n)%idx,rpattern(n)%idx_e,rpattern(n)%idx_o)
enddo
end subroutine patterngenerator_destroy
!>@brief The subroutine 'computevarspec' compute the globally integrated
!! variance from complex spectral coefficients
!>@details this is necessary to ensure the proper global variance
subroutine computevarspec(rpattern,dataspec,var)
!\callgraph
! compute globally integrated variance from spectral coefficients
complex(kind_dbl_prec), intent(in) :: dataspec(ndimspec)
real(kind_dbl_prec), intent(out) :: var
type(random_pattern), intent(in) :: rpattern
integer n
var = 0.
do n=1,ndimspec
if (rpattern%order(n) .ne. 0) then
var = var + dataspec(n)*conjg(dataspec(n))
else
var = var + 0.5*dataspec(n)*conjg(dataspec(n))
endif
enddo
end subroutine computevarspec
!>@brief The subroutine 'computevarspec_r' compute the globally integrated
!! variance from real spectral coefficients
!>@details this is necessary to ensure the proper global variance
subroutine computevarspec_r(rpattern,dataspec,var)
!\callgraph
! compute globally integrated variance from spectral coefficients
real(kind_phys), intent(in) :: dataspec(2*ndimspec)
real(kind_phys), intent(out) :: var
type(random_pattern), intent(in) :: rpattern
integer n
var = 0.
do n=1,ndimspec
if (rpattern%order(n) .ne. 0) then
var = var + dataspec(n)**2+dataspec(n+ndimspec)**2
else
var = var + 0.5*(dataspec(n)**2+dataspec(n+ndimspec)**2)
endif
enddo
end subroutine computevarspec_r
!>@brief The subroutine 'getnoise' scales spectral cofficients with
!! white noise to the appropriate amplitude for speherical harmonincs
!! variance from real spectral c
subroutine getnoise(rpattern,noise_e,noise_o)
!\callgraph
real(kind_phys), intent(out) :: noise_e(len_trie_ls,2)
real(kind_phys), intent(out) :: noise_o(len_trio_ls,2)
! generate white noise with unit variance in spectral space
type(random_pattern), intent(inout) :: rpattern
real(kind_dbl_prec) :: noise(2*ndimspec)
integer nm,nn
call random_gauss(noise,rpattern%rstate)
noise(1) = 0.; noise(ndimspec+1) = 0.
noise = noise*sqrt(1./ntrunc)
noise_e = 0.; noise_o = 0.
! subset
do nn=1,len_trie_ls
nm = rpattern%idx_e(nn)
if (nm == 0) cycle
noise_e(nn,1) = noise(nm)/sqrt(2.*rpattern%degree(nm)+1)
noise_e(nn,2) = noise(ndimspec+nm)/sqrt(2.*rpattern%degree(nm)+1)
if (rpattern%order(nm) .eq. 0) then
noise_e(nn,1) = sqrt(2.)*noise_e(nn,1)
noise_e(nn,2) = 0.
endif
enddo
do nn=1,len_trio_ls
nm = rpattern%idx_o(nn)
if (nm == 0) cycle
noise_o(nn,1) = noise(nm)/sqrt(2.*rpattern%degree(nm)+1)
noise_o(nn,2) = noise(ndimspec+nm)/sqrt(2.*rpattern%degree(nm)+1)
if (rpattern%order(nm) .eq. 0) then
noise_o(nn,1) = sqrt(2.)*noise_o(nn,1)
noise_o(nn,2) = 0.
endif
enddo
end subroutine getnoise
!>@brief The subroutine 'patterngenerator_advance' advance 1st-order autoregressive process
subroutine patterngenerator_advance(rpattern,k,skeb_first_call)
!\callgraph
! advance 1st-order autoregressive process with
! specified autocorrelation (phi) and variance spectrum (spectrum)
real(kind_phys) :: noise_e(len_trie_ls,2)
real(kind_phys) :: noise_o(len_trio_ls,2)
type(random_pattern), intent(inout) :: rpattern
logical, intent(in) :: skeb_first_call
integer j,l,n,nn,nm,k,k2
call getnoise(rpattern,noise_e,noise_o)
if (k.GT.1.AND.skeb_first_call) then
k2=k-1
else
k2=k
endif
do nn=1,len_trie_ls
nm = rpattern%idx_e(nn)
if (nm == 0) cycle
rpattern%spec_e(nn,1,k) = rpattern%phi*rpattern%spec_e(nn,1,k2) + &
rpattern%stdev*sqrt(1.-rpattern%phi**2)*rpattern%varspectrum(nm)*noise_e(nn,1)
rpattern%spec_e(nn,2,k) = rpattern%phi*rpattern%spec_e(nn,2,k2) + &
rpattern%stdev*sqrt(1.-rpattern%phi**2)*rpattern%varspectrum(nm)*noise_e(nn,2)
enddo
do nn=1,len_trio_ls
nm = rpattern%idx_o(nn)
if (nm == 0) cycle
rpattern%spec_o(nn,1,k) = rpattern%phi*rpattern%spec_o(nn,1,k2) + &
rpattern%stdev*sqrt(1.-rpattern%phi**2)*rpattern%varspectrum(nm)*noise_o(nn,1)
rpattern%spec_o(nn,2,k) = rpattern%phi*rpattern%spec_o(nn,2,k2) + &
rpattern%stdev*sqrt(1.-rpattern%phi**2)*rpattern%varspectrum(nm)*noise_o(nn,2)
enddo
end subroutine patterngenerator_advance
!>@brief The subroutine 'setvarspect' calculates the variance spectrum
! from a specified decorrelation lengthscale
subroutine setvarspect(rpattern,varspect_opt,new_lscale)
!\callgraph
! define variance spectrum (isotropic covariance)
! normalized to unit global variance
type(random_pattern), intent(inout) :: rpattern
integer, intent(in) :: varspect_opt
logical, intent(in) :: new_lscale
integer :: n
complex(kind_dbl_prec) noise(ndimspec)
real(kind_dbl_prec) var,rerth,inv_rerth_sq
rerth =6.3712e+6 ! radius of earth (m)
inv_rerth_sq=1.0/(rerth**2)
! 1d variance spectrum (as a function of total wavenumber)
if (varspect_opt == 0) then ! gaussian
! rpattern%lengthscale is interpreted as an efolding length
! scale, in meters.
do n=0,ntrunc
rpattern%varspectrum1d(n) = exp(-rpattern%lengthscale**2*(float(n)*(float(n)+1.))/(4.*rerth**2))
enddo
! scaling factors for spectral coeffs of white noise pattern with unit variance
if (new_lscale) then
!fix for proper lengthscale
rpattern%varspectrum = ntrunc*exp((rpattern%lengthscale*0.25)**2*rpattern%lap*inv_rerth_sq)
else
rpattern%varspectrum = sqrt(ntrunc*exp(rpattern%lengthscale**2*rpattern%lap/(4.*rerth**2)))
endif
else if (varspect_opt == 1) then ! power law
! rpattern%lengthscale is interpreted as a power, not a length.
do n=0,ntrunc
rpattern%varspectrum1d(n) = float(n)**(rpattern%lengthscale)
enddo
! scaling factors for spectral coeffs of white noise pattern with unit variance
rpattern%varspectrum = sqrt(ntrunc*(rpattern%degree**(rpattern%lengthscale)))
endif
noise = 0.
do n=1,ndimspec
if (rpattern%order(n) .ne. 0.) then
noise(n) = cmplx(1.,1.)/sqrt(2.*rpattern%degree(n)+1)
else
noise(n) = sqrt(2.)/sqrt(2.*rpattern%degree(n)+1.)
endif
enddo
noise(1) = 0 ! no global mean.
! make sure global mean variance is 1.
noise = noise*sqrt(1./ntrunc)
noise = rpattern%varspectrum*noise
call computevarspec(rpattern,noise,var)
rpattern%varspectrum = rpattern%varspectrum/sqrt(var)
rpattern%varspectrum1d = rpattern%varspectrum1d/var
end subroutine setvarspect
!>@brief The subroutine 'chgres_pattern' truncates the spherical harmonics if
!! restarting from a higher-resolution pattern
subroutine chgres_pattern(pattern2din,pattern2dout,ntruncin,ntruncout)
!\callgraph
real(kind_phys), intent(in) :: pattern2din((ntruncin+1)*(ntruncin+2))
real(kind_phys), intent(out) :: pattern2dout((ntruncout+1)*(ntruncout+2))
integer, intent(in) :: ntruncin,ntruncout
integer :: m,n,nm,ndimsspecin,ndimsspecout
integer,allocatable, dimension(:,:):: idxin
allocate(idxin(0:ntruncin,0:ntruncin))
ndimsspecin=(ntruncin+1)*(ntruncin+2)/2
ndimsspecout=(ntruncout+1)*(ntruncout+2)/2
nm = 0
do m=0,ntruncin
do n=m,ntruncin
nm = nm + 1
idxin(m,n) = nm
enddo
enddo
! chgres
nm = 0
do m=0,ntruncout
do n=m,ntruncout
nm = nm + 1
if (m .le. ntruncin .and. n .le. ntruncin) then
pattern2dout(nm) = pattern2din(idxin(m,n))
pattern2dout(ndimsspecout+nm) = pattern2din(ndimsspecin+idxin(m,n))
endif
enddo
enddo
deallocate(idxin)
end subroutine chgres_pattern
end module stochy_patterngenerator_mod