forked from huyaoyu/ImageFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOpticalFlow.py
108 lines (76 loc) · 3.23 KB
/
OpticalFlow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
from __future__ import print_function
import numpy as np
def from_camera_frame_to_image(coor, intrinsics):
"""
coor: A numpy column vector, 3x1.
return: A numpy column vector, 2x1.
"""
x = intrinsics.dot( coor )
x = x / x[2,:]
return x[0:2, :]
def from_depth_to_x_y(depth, intrinsics):
wIdx = np.linspace( 0, depth.shape[1] - 1, depth.shape[1] )
hIdx = np.linspace( 0, depth.shape[0] - 1, depth.shape[0] )
u, v = np.meshgrid(wIdx, hIdx)
u = u.astype(np.float)
v = v.astype(np.float)
focal = intrinsics[0, 0]
x = ( u - intrinsics[0, 2] ) * depth / focal
y = ( v - intrinsics[1, 2] ) * depth / focal
coor = np.zeros((3, depth.size), dtype = np.float)
coor[0, :] = x.reshape((1, -1))
coor[1, :] = y.reshape((1, -1))
coor[2, :] = depth.reshape((1, -1))
# Rearrange u and v into a two-channel matrix.
uv = np.stack([u, v], axis = 0)
return coor, uv
def of_one_to_zero(depth, pose, intrinsics):
"""
Calculate the optical flow of image 1 with respect to image 0. Thus, how the pixel of iamge
1 move if they are project onto the image plane of image 1.
depth: Depth image of camera 1.
pose: The camera pose measured in frame_0 (camera 0's reference frame). A 4x4 numpy matrix.
intrinsics: A 3x3 numpy matrix.
NOTE: The 3D reference frames of camera 0 and 1 have their z-axis pointing forward. This is NOT
the same way in which AirSim represents a 3D point and orientation with respect to its global
frame, which in turn has its z-axis pointing downwards.
"""
# Calculate the 3D coordinates of the points in reference frame 1.
coor_1, uv_1 = from_depth_to_x_y(depth, intrinsics)
# Transform.
R = pose[0:3, 0:3]
T = pose[0:3, 3:4]
coor_0 = R.dot(coor_1) + T
uv_0 = from_camera_frame_to_image(coor_0, intrinsics)
uv_0 = uv_0.reshape((2, depth.shape[0], depth.shape[1]))
dudv = uv_1 - uv_0
return dudv
if __name__ == "__main__":
# Load the depth file.
depth_1 = np.load("/home/yyhu/Projects/ImageFlow/data/form_one_to_zero/depth_1.npy")
# Compose the intrinsics.
intrinsics = np.eye(3, dtype = np.float)
intrinsics[0, 0] = 256.0
intrinsics[1, 1] = 256.0
intrinsics[0, 2] = 256.0
intrinsics[1, 2] = 192.0
# Load the pose matrix.
R = np.loadtxt("/home/yyhu/Projects/ImageFlow/data/form_one_to_zero/R.txt", dtype = np.float)
T = np.loadtxt("/home/yyhu/Projects/ImageFlow/data/form_one_to_zero/T.txt", dtype = np.float)
r = np.zeros((3, 3), dtype = np.float)
r[0, 0] = 1.0
r[1, 2] = 1.0
r[2, 1] = -1.0
R = np.matmul( np.matmul(r, R), r.transpose())
T = r.dot(T)
print("R = \n{}".format(R))
print("T = \n{}".format(T))
# Compose the pose matrix.
pose = np.eye(4, dtype = np.float)
pose[0:3, 0:3] = R
pose[0:3, 3] = T
# Calculate dudv.
dudv = of_one_to_zero(depth_1, pose, intrinsics)
# Save dudv.
np.savetxt("/home/yyhu/Projects/ImageFlow/data/form_one_to_zero/du.txt", dudv[0, :, :], fmt = "%+4d")
np.savetxt("/home/yyhu/Projects/ImageFlow/data/form_one_to_zero/dv.txt", dudv[1, :, :], fmt = "%+4d")