-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathmodels.py
436 lines (407 loc) · 16.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import copy
import torch
from torch import nn
import networks
import tools
to_np = lambda x: x.detach().cpu().numpy()
class RewardEMA:
"""running mean and std"""
def __init__(self, device, alpha=1e-2):
self.device = device
self.alpha = alpha
self.range = torch.tensor([0.05, 0.95], device=device)
def __call__(self, x, ema_vals):
flat_x = torch.flatten(x.detach())
x_quantile = torch.quantile(input=flat_x, q=self.range)
# this should be in-place operation
ema_vals[:] = self.alpha * x_quantile + (1 - self.alpha) * ema_vals
scale = torch.clip(ema_vals[1] - ema_vals[0], min=1.0)
offset = ema_vals[0]
return offset.detach(), scale.detach()
class WorldModel(nn.Module):
def __init__(self, obs_space, act_space, step, config):
super(WorldModel, self).__init__()
self._step = step
self._use_amp = True if config.precision == 16 else False
self._config = config
shapes = {k: tuple(v.shape) for k, v in obs_space.spaces.items()}
self.encoder = networks.MultiEncoder(shapes, **config.encoder)
self.embed_size = self.encoder.outdim
self.dynamics = networks.RSSM(
config.dyn_stoch,
config.dyn_deter,
config.dyn_hidden,
config.dyn_rec_depth,
config.dyn_discrete,
config.act,
config.norm,
config.dyn_mean_act,
config.dyn_std_act,
config.dyn_min_std,
config.unimix_ratio,
config.initial,
config.num_actions,
self.embed_size,
config.device,
)
self.heads = nn.ModuleDict()
if config.dyn_discrete:
feat_size = config.dyn_stoch * config.dyn_discrete + config.dyn_deter
else:
feat_size = config.dyn_stoch + config.dyn_deter
self.heads["decoder"] = networks.MultiDecoder(
feat_size, shapes, **config.decoder
)
self.heads["reward"] = networks.MLP(
feat_size,
(255,) if config.reward_head["dist"] == "symlog_disc" else (),
config.reward_head["layers"],
config.units,
config.act,
config.norm,
dist=config.reward_head["dist"],
outscale=config.reward_head["outscale"],
device=config.device,
name="Reward",
)
self.heads["cont"] = networks.MLP(
feat_size,
(),
config.cont_head["layers"],
config.units,
config.act,
config.norm,
dist="binary",
outscale=config.cont_head["outscale"],
device=config.device,
name="Cont",
)
for name in config.grad_heads:
assert name in self.heads, name
self._model_opt = tools.Optimizer(
"model",
self.parameters(),
config.model_lr,
config.opt_eps,
config.grad_clip,
config.weight_decay,
opt=config.opt,
use_amp=self._use_amp,
)
print(
f"Optimizer model_opt has {sum(param.numel() for param in self.parameters())} variables."
)
# other losses are scaled by 1.0.
self._scales = dict(
reward=config.reward_head["loss_scale"],
cont=config.cont_head["loss_scale"],
)
def _train(self, data):
# action (batch_size, batch_length, act_dim)
# image (batch_size, batch_length, h, w, ch)
# reward (batch_size, batch_length)
# discount (batch_size, batch_length)
data = self.preprocess(data)
with tools.RequiresGrad(self):
with torch.cuda.amp.autocast(self._use_amp):
embed = self.encoder(data)
post, prior = self.dynamics.observe(
embed, data["action"], data["is_first"]
)
kl_free = self._config.kl_free
dyn_scale = self._config.dyn_scale
rep_scale = self._config.rep_scale
kl_loss, kl_value, dyn_loss, rep_loss = self.dynamics.kl_loss(
post, prior, kl_free, dyn_scale, rep_scale
)
assert kl_loss.shape == embed.shape[:2], kl_loss.shape
preds = {}
for name, head in self.heads.items():
grad_head = name in self._config.grad_heads
feat = self.dynamics.get_feat(post)
feat = feat if grad_head else feat.detach()
pred = head(feat)
if type(pred) is dict:
preds.update(pred)
else:
preds[name] = pred
losses = {}
for name, pred in preds.items():
loss = -pred.log_prob(data[name])
assert loss.shape == embed.shape[:2], (name, loss.shape)
losses[name] = loss
scaled = {
key: value * self._scales.get(key, 1.0)
for key, value in losses.items()
}
model_loss = sum(scaled.values()) + kl_loss
metrics = self._model_opt(torch.mean(model_loss), self.parameters())
metrics.update({f"{name}_loss": to_np(loss) for name, loss in losses.items()})
metrics["kl_free"] = kl_free
metrics["dyn_scale"] = dyn_scale
metrics["rep_scale"] = rep_scale
metrics["dyn_loss"] = to_np(dyn_loss)
metrics["rep_loss"] = to_np(rep_loss)
metrics["kl"] = to_np(torch.mean(kl_value))
with torch.cuda.amp.autocast(self._use_amp):
metrics["prior_ent"] = to_np(
torch.mean(self.dynamics.get_dist(prior).entropy())
)
metrics["post_ent"] = to_np(
torch.mean(self.dynamics.get_dist(post).entropy())
)
context = dict(
embed=embed,
feat=self.dynamics.get_feat(post),
kl=kl_value,
postent=self.dynamics.get_dist(post).entropy(),
)
post = {k: v.detach() for k, v in post.items()}
return post, context, metrics
# this function is called during both rollout and training
def preprocess(self, obs):
obs = {
k: torch.tensor(v, device=self._config.device, dtype=torch.float32)
for k, v in obs.items()
}
obs["image"] = obs["image"] / 255.0
if "discount" in obs:
obs["discount"] *= self._config.discount
# (batch_size, batch_length) -> (batch_size, batch_length, 1)
obs["discount"] = obs["discount"].unsqueeze(-1)
# 'is_first' is necesarry to initialize hidden state at training
assert "is_first" in obs
# 'is_terminal' is necesarry to train cont_head
assert "is_terminal" in obs
obs["cont"] = (1.0 - obs["is_terminal"]).unsqueeze(-1)
return obs
def video_pred(self, data):
data = self.preprocess(data)
embed = self.encoder(data)
states, _ = self.dynamics.observe(
embed[:6, :5], data["action"][:6, :5], data["is_first"][:6, :5]
)
recon = self.heads["decoder"](self.dynamics.get_feat(states))["image"].mode()[
:6
]
reward_post = self.heads["reward"](self.dynamics.get_feat(states)).mode()[:6]
init = {k: v[:, -1] for k, v in states.items()}
prior = self.dynamics.imagine_with_action(data["action"][:6, 5:], init)
openl = self.heads["decoder"](self.dynamics.get_feat(prior))["image"].mode()
reward_prior = self.heads["reward"](self.dynamics.get_feat(prior)).mode()
# observed image is given until 5 steps
model = torch.cat([recon[:, :5], openl], 1)
truth = data["image"][:6]
model = model
error = (model - truth + 1.0) / 2.0
return torch.cat([truth, model, error], 2)
class ImagBehavior(nn.Module):
def __init__(self, config, world_model):
super(ImagBehavior, self).__init__()
self._use_amp = True if config.precision == 16 else False
self._config = config
self._world_model = world_model
if config.dyn_discrete:
feat_size = config.dyn_stoch * config.dyn_discrete + config.dyn_deter
else:
feat_size = config.dyn_stoch + config.dyn_deter
self.actor = networks.MLP(
feat_size,
(config.num_actions,),
config.actor["layers"],
config.units,
config.act,
config.norm,
config.actor["dist"],
config.actor["std"],
config.actor["min_std"],
config.actor["max_std"],
absmax=1.0,
temp=config.actor["temp"],
unimix_ratio=config.actor["unimix_ratio"],
outscale=config.actor["outscale"],
name="Actor",
)
self.value = networks.MLP(
feat_size,
(255,) if config.critic["dist"] == "symlog_disc" else (),
config.critic["layers"],
config.units,
config.act,
config.norm,
config.critic["dist"],
outscale=config.critic["outscale"],
device=config.device,
name="Value",
)
if config.critic["slow_target"]:
self._slow_value = copy.deepcopy(self.value)
self._updates = 0
kw = dict(wd=config.weight_decay, opt=config.opt, use_amp=self._use_amp)
self._actor_opt = tools.Optimizer(
"actor",
self.actor.parameters(),
config.actor["lr"],
config.actor["eps"],
config.actor["grad_clip"],
**kw,
)
print(
f"Optimizer actor_opt has {sum(param.numel() for param in self.actor.parameters())} variables."
)
self._value_opt = tools.Optimizer(
"value",
self.value.parameters(),
config.critic["lr"],
config.critic["eps"],
config.critic["grad_clip"],
**kw,
)
print(
f"Optimizer value_opt has {sum(param.numel() for param in self.value.parameters())} variables."
)
if self._config.reward_EMA:
# register ema_vals to nn.Module for enabling torch.save and torch.load
self.register_buffer(
"ema_vals", torch.zeros((2,), device=self._config.device)
)
self.reward_ema = RewardEMA(device=self._config.device)
def _train(
self,
start,
objective,
):
self._update_slow_target()
metrics = {}
with tools.RequiresGrad(self.actor):
with torch.cuda.amp.autocast(self._use_amp):
imag_feat, imag_state, imag_action = self._imagine(
start, self.actor, self._config.imag_horizon
)
reward = objective(imag_feat, imag_state, imag_action)
actor_ent = self.actor(imag_feat).entropy()
state_ent = self._world_model.dynamics.get_dist(imag_state).entropy()
# this target is not scaled by ema or sym_log.
target, weights, base = self._compute_target(
imag_feat, imag_state, reward
)
actor_loss, mets = self._compute_actor_loss(
imag_feat,
imag_action,
target,
weights,
base,
)
actor_loss -= self._config.actor["entropy"] * actor_ent[:-1, ..., None]
actor_loss = torch.mean(actor_loss)
metrics.update(mets)
value_input = imag_feat
with tools.RequiresGrad(self.value):
with torch.cuda.amp.autocast(self._use_amp):
value = self.value(value_input[:-1].detach())
target = torch.stack(target, dim=1)
# (time, batch, 1), (time, batch, 1) -> (time, batch)
value_loss = -value.log_prob(target.detach())
slow_target = self._slow_value(value_input[:-1].detach())
if self._config.critic["slow_target"]:
value_loss -= value.log_prob(slow_target.mode().detach())
# (time, batch, 1), (time, batch, 1) -> (1,)
value_loss = torch.mean(weights[:-1] * value_loss[:, :, None])
metrics.update(tools.tensorstats(value.mode(), "value"))
metrics.update(tools.tensorstats(target, "target"))
metrics.update(tools.tensorstats(reward, "imag_reward"))
if self._config.actor["dist"] in ["onehot"]:
metrics.update(
tools.tensorstats(
torch.argmax(imag_action, dim=-1).float(), "imag_action"
)
)
else:
metrics.update(tools.tensorstats(imag_action, "imag_action"))
metrics["actor_entropy"] = to_np(torch.mean(actor_ent))
with tools.RequiresGrad(self):
metrics.update(self._actor_opt(actor_loss, self.actor.parameters()))
metrics.update(self._value_opt(value_loss, self.value.parameters()))
return imag_feat, imag_state, imag_action, weights, metrics
def _imagine(self, start, policy, horizon):
dynamics = self._world_model.dynamics
flatten = lambda x: x.reshape([-1] + list(x.shape[2:]))
start = {k: flatten(v) for k, v in start.items()}
def step(prev, _):
state, _, _ = prev
feat = dynamics.get_feat(state)
inp = feat.detach()
action = policy(inp).sample()
succ = dynamics.img_step(state, action)
return succ, feat, action
succ, feats, actions = tools.static_scan(
step, [torch.arange(horizon)], (start, None, None)
)
states = {k: torch.cat([start[k][None], v[:-1]], 0) for k, v in succ.items()}
return feats, states, actions
def _compute_target(self, imag_feat, imag_state, reward):
if "cont" in self._world_model.heads:
inp = self._world_model.dynamics.get_feat(imag_state)
discount = self._config.discount * self._world_model.heads["cont"](inp).mean
else:
discount = self._config.discount * torch.ones_like(reward)
value = self.value(imag_feat).mode()
target = tools.lambda_return(
reward[1:],
value[:-1],
discount[1:],
bootstrap=value[-1],
lambda_=self._config.discount_lambda,
axis=0,
)
weights = torch.cumprod(
torch.cat([torch.ones_like(discount[:1]), discount[:-1]], 0), 0
).detach()
return target, weights, value[:-1]
def _compute_actor_loss(
self,
imag_feat,
imag_action,
target,
weights,
base,
):
metrics = {}
inp = imag_feat.detach()
policy = self.actor(inp)
# Q-val for actor is not transformed using symlog
target = torch.stack(target, dim=1)
if self._config.reward_EMA:
offset, scale = self.reward_ema(target, self.ema_vals)
normed_target = (target - offset) / scale
normed_base = (base - offset) / scale
adv = normed_target - normed_base
metrics.update(tools.tensorstats(normed_target, "normed_target"))
metrics["EMA_005"] = to_np(self.ema_vals[0])
metrics["EMA_095"] = to_np(self.ema_vals[1])
if self._config.imag_gradient == "dynamics":
actor_target = adv
elif self._config.imag_gradient == "reinforce":
actor_target = (
policy.log_prob(imag_action)[:-1][:, :, None]
* (target - self.value(imag_feat[:-1]).mode()).detach()
)
elif self._config.imag_gradient == "both":
actor_target = (
policy.log_prob(imag_action)[:-1][:, :, None]
* (target - self.value(imag_feat[:-1]).mode()).detach()
)
mix = self._config.imag_gradient_mix
actor_target = mix * target + (1 - mix) * actor_target
metrics["imag_gradient_mix"] = mix
else:
raise NotImplementedError(self._config.imag_gradient)
actor_loss = -weights[:-1] * actor_target
return actor_loss, metrics
def _update_slow_target(self):
if self._config.critic["slow_target"]:
if self._updates % self._config.critic["slow_target_update"] == 0:
mix = self._config.critic["slow_target_fraction"]
for s, d in zip(self.value.parameters(), self._slow_value.parameters()):
d.data = mix * s.data + (1 - mix) * d.data
self._updates += 1