-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_test.py
203 lines (165 loc) · 9.08 KB
/
train_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import logging
import os
import numpy as np
import sys
from pathlib import Path
from tqdm import tqdm
import pandas as pd
import medmnist
from medmnist import INFO
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import random_split, DataLoader
from torchvision import transforms as T
from torchvision.utils import make_grid
import matplotlib as mpl
mpl.rcParams["text.usetex"] = True
import matplotlib.pyplot as plt
from dataloader import ChestXray14, JSRT
from models import build_model
from utils import seed_it_all, train_one_epoch, validation, save_checkpoint, my_transform
from utils import plot_performance, test_model, test_classification, metric_AUROC
from torchinfo import summary
from sklearn.metrics import accuracy_score
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_name", type=str, default="ChestMNIST",
help="ChestXray14|JSRT|ChestMNIST")
parser.add_argument("--model_name", type = str, default="resnet18",
help="swin_base|swin_tiny|resnet18|resnet50")
parser.add_argument("--isinit", type=bool, default=True,
help="False for Random| True for ImageNet")
parser.add_argument("--normalization", type=str, default="imagenet",
help="how to normalize data (imagenet|chestx-ray)")
parser.add_argument('--num_classes', type=int,
default=14, help='number of labels')
parser.add_argument('--output_dir', type=str,
help='output dir')
parser.add_argument('--max_epochs', type=int, default=100,
help='maximum epoch number to train')
parser.add_argument('--batch_size', type=int, default=24,
help='batch_size per gpu')
parser.add_argument('--base_lr', type=float, default=0.001,
help='classification network learning rate')
parser.add_argument('--img_size', type=int, default=224,
help='input patch size of network input')
parser.add_argument('--seed', type=int, default=1234,
help='random seed')
parser.add_argument("--exp_name", type=str, default="",
help="experiment name")
parser.add_argument("--num_trial", type=int, default=10,
help="number of trials")
parser.add_argument("--device", type=str, default="cuda",
help="cpu|cuda")
parser.add_argument("--train_list", type=str, default=None,
help="file for training list")
parser.add_argument("--val_list", type=str, default=None,
help="file for validation list")
parser.add_argument("--test_list", type=str, default=None,
help="file for test list")
parser.add_argument("--in_chans", type=int, default=1,
help="input data channel numbers")
parser.add_argument("--dataset_path", type=str, default="./images",
help="dataset path")
args = parser.parse_args()
if __name__ == "__main__":
args.init = "ImageNet" if args.isinit else "Random"
args.exp_name = args.model_name + "_" + args.init + "_" + args.exp_name
model_path = Path("./Models").joinpath(args.dataset_name, args.exp_name)
output_path = Path("./Outputs").joinpath(args.dataset_name, args.exp_name)
model_path.mkdir(parents=True, exist_ok=True)
output_path.mkdir(parents=True, exist_ok=True)
seed_it_all(args.seed)
if args.device == "cuda":
args.device = "cuda" if torch.cuda.is_available() else "cpu"
train_set = ChestXray14(images_path=args.dataset_path, list_path=args.train_list, num_class=args.num_classes,
transform=my_transform(normalize=args.normalization, mode="train"))
val_set = ChestXray14(images_path=args.dataset_path, list_path=args.val_list, num_class=args.num_classes,
transform=my_transform(normalize=args.normalization, mode="val"))
test_set = ChestXray14(images_path=args.dataset_path, list_path=args.test_list, num_class=args.num_classes,
transform=my_transform(normalize=args.normalization, mode="test"))
train_loader = DataLoader(dataset=train_set, batch_size=24, shuffle=True)
val_loader = DataLoader(dataset=val_set, batch_size=24, shuffle=False)
test_loader = DataLoader(dataset=test_set, batch_size=24, shuffle=False)
data, label = next(iter(train_loader))
img_grid = make_grid(data, nrow=8, normalize=True).permute(1, 2, 0)
plt.figure(figsize=(12, 6))
plt.imshow(img_grid)
plt.axis('off')
plt.savefig("RandomSamples.pdf", dpi=800)
## Model
torch.cuda.empty_cache()
model = build_model(args)
model = model.to(args.device)
optimizer = optim.SGD(model.parameters(), lr=args.base_lr, momentum=0.9)
loss_fn = nn.BCEWithLogitsLoss()
accuracy = []
mean_auc = []
for idx in range(args.num_trial):
print (f"Run: {idx+1}")
experiment = args.exp_name + "_run_" + str(idx)
save_model_path = model_path.joinpath(experiment)
args.plot_path = model_path / (experiment+ ".pdf")
log_file = model_path.joinpath(f"run_{str(idx)}.log")
logging.basicConfig(filename=log_file, level=logging.INFO, filemode='w',
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
# logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
loss_train_hist = []
loss_valid_hist = []
acc_train_hist = []
acc_valid_hist = []
best_loss_valid = torch.inf
epoch_counter = 0
for epoch in range(epoch_counter, args.max_epochs):
model, loss_train, acc_train = train_one_epoch(args,
model,
train_loader,
loss_fn,
optimizer)
logging.info(f"Epoch:{epoch+1}, TrainLoss:{loss_train:0.4f}, TrainAcc:{acc_train:0.4f}")
print("start validation.....")
loss_valid, acc_valid = validation(args, model, val_loader, loss_fn)
logging.info(f"Epoch:{epoch+1}, ValidLoss:{loss_valid:0.4f}, ValidAcc:{acc_valid:0.4f}")
# print(f"Epoch:{epoch+1}, ValidLoss = {loss_valid:0.4f}, ValidAcc = {acc_valid:0.4f}")
loss_train_hist.append(loss_train)
loss_valid_hist.append(loss_valid)
acc_train_hist.append(acc_train)
acc_valid_hist.append(acc_valid)
if loss_valid < best_loss_valid:
save_checkpoint({
'epoch': epoch + 1,
'lossMIN': best_loss_valid,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
# 'scheduler': lr_scheduler.state_dict()
}, filename=str(save_model_path))
best_loss_valid = loss_valid
print('Model Saved!')
epoch_counter += 1
plot_performance(args, loss_train_hist, loss_valid_hist,
acc_train_hist, acc_valid_hist, epoch_counter)
print ("start testing.....")
output_file = os.path.join(output_path, args.exp_name + "_results.txt")
saved_model = model_path.joinpath(f"{experiment}.pth.tar")
y_test, p_test = test_classification(args, str(saved_model), test_loader)
if args.dataset_name == "RSNAPneumonia":
acc = accuracy_score(np.argmax(y_test.cpu().numpy(),axis=1),np.argmax(p_test.cpu().numpy(),axis=1))
print(">>{}: ACCURACY = {}".format(experiment,acc))
logging.info("{}: ACCURACY = {}\n".format(experiment, np.array2string(np.array(acc), precision=4, separator='\t')))
accuracy.append(acc)
individual_results = metric_AUROC(y_test, p_test, args.num_classes)
print(">>{}: AUC = {}".format(experiment, np.array2string(np.array(individual_results), precision=4, separator=',')))
logging.info("{}: AUC = {}\n".format(experiment, np.array2string(np.array(individual_results), precision=4, separator='\t')))
mean_over_all_classes = np.array(individual_results).mean()
print(">>{}: AUC = {:.4f}".format(experiment, mean_over_all_classes))
logging.info("{}: AUC = {:.4f}\n".format(experiment, mean_over_all_classes))
mean_auc.append(mean_over_all_classes)
mean_auc = np.array(mean_auc)
print(">> All trials: mAUC = {}".format(np.array2string(mean_auc, precision=4, separator=',')))
logging.info("All trials: mAUC = {}\n".format(np.array2string(mean_auc, precision=4, separator='\t')))
print(">> Mean AUC over All trials: = {:0.4f}".format(np.mean(mean_auc)))
logging.info("Mean AUC over All trials = {:0.4f}\n".format(np.mean(mean_auc)))
print(">> STD over All trials: = {:0.4f}".format(np.std(mean_auc)))
logging.info("STD over All trials: = {:0.4f}\n".format(np.std(mean_auc)))