-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
80 lines (68 loc) · 2.68 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
layout: base
title: "Home"
---
<div class="homepage-content">
<!-- Image with caption -->
<div class="image-container">
<img src="figs/blogcatalog.png" alt="Graph of a part of a social network, from Gephi" class="align-center" style="width: 65%;">
</div>
<!-- Welcome message -->
<p><em>Welcome to the homepage of the Northernmost Graph Machine Learning group</em></p>
<!-- Description of the group -->
<p>
We are located at the <a href="https://en.uit.no/" target="_blank">UiT the Arctic University of Norway</a>
and we are affiliated with the IEEE Task Force
<a href="https://www.learning4graphs.org/home-page" target="_blank">Learning for Graphs</a>.
</p>
</div>
<!-- News section -->
<section class="recent-news">
<h2>Recent News and Events</h2>
<div class="news-carousel">
<ul class="news-list">
{% assign combined_posts = site.news | concat: site.events %}
{% assign sorted_posts = combined_posts | sort: 'date' | reverse %}
{% for post in sorted_posts limit: 5 %}
<li>
<h3><a href="{{ post.url }}">{{ post.title }}</a></h3>
<p>{{ post.date | date: "%B %-d, %Y" }}</p>
<p>{{ post.excerpt }}</p>
</li>
{% endfor %}
</ul>
</div>
</section>
<script>
$(document).ready(function() {
let newsItems = $('.news-list li');
let currentIndex = 0;
function showNextNews() {
$(newsItems[currentIndex]).fadeOut(500, function() {
currentIndex = (currentIndex + 1) % newsItems.length; // Loop through items
$(newsItems[currentIndex]).fadeIn(500);
});
}
// Hide all news items initially except the first one
newsItems.hide();
$(newsItems[0]).show();
// Rotate every 5 seconds
setInterval(showNextNews, 5000);
});
</script>
<!-- Other info section -->
<div class="about">
<h2>ℹ️ About us</h2>
<p>
Our research activities focus on Graph Neural Networks and other machine learning methodologies
to process and analyze data represented as graphs. We are also interested in graph signal processing,
network science, graph theory, graph visualization, and other graph-related themes. We gather regularly
to discuss the latest trends in graph machine learning, organize tutorials, workshops, and lectures
about our research topics.
</p>
<!-- Links to other pages -->
<ul>
<li>See our <a href="news.html">Events page</a> for the local events and activities that we organize.</li>
<li>If you are a student looking for a master project or a summer job, have a look at our <a href="theses.html">student projects</a> page.</li>
</ul>
</div>