-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patharithmetic_task.py
executable file
·594 lines (535 loc) · 21.9 KB
/
arithmetic_task.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
This experiment was created using PsychoPy2 Experiment Builder (v1.85.2),
on June 26, 2019, at 17:43
If you publish work using this script please cite the PsychoPy publications:
Peirce, JW (2007) PsychoPy - Psychophysics software in Python.
Journal of Neuroscience Methods, 162(1-2), 8-13.
Peirce, JW (2009) Generating stimuli for neuroscience using PsychoPy.
Frontiers in Neuroinformatics, 2:10. doi: 10.3389/neuro.11.010.2008
"""
from __future__ import absolute_import, division, print_function
import sys
import time
import serial
import os
import os.path as op
from glob import glob
import numpy as np
import pandas as pd
from psychopy import gui, visual, core, data, event, logging
from psychopy.constants import STARTED, STOPPED
# Constants
OPERATOR_DICT = {'+': 'add',
'-': 'subtract',
'/': 'divide',
'*': 'multiply'}
RUN_DURATION = 450
LEAD_IN_DURATION = 6
END_SCREEN_DURATION = 2
N_RUNS = 2
def set_word_size(img):
# det from orig height 2row / orig height 1row
const = 1.764505119453925
# desired 1row height
height_1row = 0.225
height_2rows = height_1row * const
width, height = img.size
if height > 1: # det by stim gen procedure
new_height = height_2rows
else:
new_height = height_1row
new_shape = (new_height * (width / height), new_height)
return new_shape
def close_on_esc(win):
"""
Closes window if escape is pressed
"""
if 'escape' in event.getKeys():
win.close()
core.quit()
def draw_until_keypress(win, stim, continueKeys=['5']):
"""
"""
response = event.BuilderKeyResponse()
win.callOnFlip(response.clock.reset)
event.clearEvents(eventType='keyboard')
while True:
if isinstance(stim, list):
for s in stim:
s.draw()
else:
stim.draw()
keys = event.getKeys(keyList=continueKeys)
if any([ck in keys for ck in continueKeys]):
return
close_on_esc(win)
win.flip()
def draw(win, stim, duration, clock):
"""
Draw stimulus for a given duration.
Parameters
----------
win : (visual.Window)
stim : object with `.draw()` method or list of such objects
duration : (numeric)
duration in seconds to display the stimulus
"""
# Use a busy loop instead of sleeping so we can exit early if need be.
start_time = time.time()
response = event.BuilderKeyResponse()
response.tStart = start_time
response.frameNStart = 0
response.status = STARTED
win.callOnFlip(response.clock.reset)
event.clearEvents(eventType='keyboard')
while time.time() - start_time < duration:
if isinstance(stim, list):
for s in stim:
s.draw()
else:
stim.draw()
keys = event.getKeys(keyList=['1', '2', '3'], timeStamped=clock)
if keys:
response.keys.extend(keys)
response.rt.append(response.clock.getTime())
close_on_esc(win)
win.flip()
response.status = STOPPED
return response.keys, response.rt
if __name__ == '__main__':
# Ensure that relative paths start from the same directory as this script
try:
script_dir = op.dirname(op.abspath(__file__)).decode(sys.getfilesystemencoding())
except AttributeError:
script_dir = op.dirname(op.abspath(__file__))
# Collect user input
# ------------------
# Remember to turn fullscr to True for the real deal.
exp_info = {'Subject': '',
'Session': '',
'BioPac': ['Yes', 'No']}
dlg = gui.DlgFromDict(
exp_info,
title='Arithmetic task',
order=['Subject', 'Session', 'BioPac'])
window = visual.Window(
fullscr=True,
size=(800, 600),
monitor='testMonitor',
units='norm',
allowStencil=False,
allowGUI=False,
color='black',
colorSpace='rgb',
blendMode='avg',
useFBO=True)
if not dlg.OK:
core.quit() # user pressed cancel
if exp_info['BioPac'] == 'Yes':
ser = serial.Serial('COM2', 115200)
# Make output dir
if not op.exists(op.join(script_dir, 'data')):
os.makedirs(op.join(script_dir, 'data'))
# Data file name stem = absolute path + name; later add .psyexp, .csv, .log, etc
base_name = 'sub-{0}_ses-{1}_task-arithmetic'.format(
exp_info['Subject'].zfill(2), exp_info['Session'].zfill(2))
# Check for existence of output files
config_files = sorted(glob(op.join(script_dir, 'config', 'config_*.tsv')))
config_files = np.random.choice(config_files, size=N_RUNS, replace=False)
for i_run in range(1, N_RUNS+1):
outfile = op.join(script_dir, 'data',
'{0}_run-{1:02d}_events.tsv'.format(base_name, i_run))
if op.exists(outfile) and 'Pilot' not in outfile:
raise ValueError('Output file already exists.')
# save a log file for detail verbose info
filename = op.join(script_dir, 'data', '{0}_events'.format(base_name))
logfile = logging.LogFile(filename+'.log', level=logging.EXP)
logging.console.setLevel(logging.WARNING) # this outputs to the screen, not a file
# Initialize stimuli
# ------------------
instruction_text_box = visual.TextStim(
win=window,
name='instruction_text_box',
text="""\
You will be shown a series of formulae and individual numbers,
you must determine if the result is less than, equal to, or greater than
the value that follows:
1 - Less Than
2 - Equal to
3 - Greater Than""",
font=u'Arial',
height=0.1,
pos=(0, 0),
wrapWidth=None,
ori=0,
color='white',
colorSpace='rgb',
opacity=1,
depth=-1.0)
term1_image = visual.ImageStim(
win=window,
name='equation_first_term',
image=None,
ori=0,
color=[1, 1, 1],
colorSpace='rgb',
opacity=1,
depth=-1.0,
interpolate=True)
op_image = visual.ImageStim(
win=window,
name='equation_operator',
image=None,
ori=0,
pos=(0, 0),
color=[1, 1, 1],
colorSpace='rgb',
opacity=1,
depth=-1.0,
interpolate=True)
term2_image = visual.ImageStim(
win=window,
name='equation_second_term',
image=None,
ori=0,
color=[1, 1, 1],
colorSpace='rgb',
opacity=1,
depth=-1.0,
interpolate=True)
eq_image = visual.ImageStim(
win=window,
name='equation',
image=None,
ori=0,
pos=(0, 0),
color=[1, 1, 1],
colorSpace='rgb',
opacity=1,
depth=-1.0,
interpolate=True)
comparison_image = visual.ImageStim(
win=window,
name='comparison',
image=None,
ori=0,
pos=(0, 0),
color=[1, 1, 1],
colorSpace='rgb',
opacity=1,
depth=-1.0,
interpolate=True)
feedback_image = visual.ImageStim(
win=window,
name='feedback',
image=None,
size=None,
ori=0,
pos=(0, 0),
color=[1, 1, 1],
colorSpace='rgb',
opacity=1,
depth=-1.0,
interpolate=True)
iti_stim = visual.TextStim(
win=window,
name='fixation',
text=u'\u2022',
font=u'Arial',
pos=(0, 0),
height=0.14,
wrapWidth=None,
ori=0,
color='white',
colorSpace='rgb',
opacity=1,
depth=0.0)
isi_stim = visual.TextStim(
win=window,
name='fixation',
text=u'\u2022',
font=u'Arial',
pos=(0, 0),
height=0.14,
wrapWidth=None,
ori=0,
color='red',
colorSpace='rgb',
opacity=1,
depth=0.0)
end_screen = visual.TextStim(
win=window,
name='end_screen',
text='The task is now complete.',
font=u'Arial',
pos=(0, 0),
height=0.14,
wrapWidth=None,
ori=0,
color='white',
colorSpace='rgb',
opacity=1,
depth=0.0)
# Scanner runtime
# ---------------
global_clock = core.Clock() # to track the time since experiment started
run_clock = core.Clock() # to track time since each run starts (post scanner pulse)
stage_clock = core.Clock() # to track duration of each stage in each trial
# set up handler to look after randomisation of conditions etc
run_loop = data.TrialHandler(nReps=N_RUNS, method='random',
extraInfo=exp_info, originPath=-1,
trialList=[None],
seed=None, name='run_loop')
curr_run = run_loop.trialList[0] # so we can initialise stimuli with some values
for curr_run in run_loop:
COLUMNS = [
'onset', 'duration', 'trial_type',
'comparison_onset', 'comparison_duration',
'feedback_onset', 'feedback_duration',
'first_term', 'operation', 'second_term',
'comparison', 'solution', 'rounded_difference',
'feedback_type',
'response', 'response_time', 'accuracy',
'stim_file_first_term', 'stim_file_operator', 'stim_file_second_term',
'stim_file_comparison', 'stim_file_feedback',
'equation_representation', 'comparison_representation']
run_data = {c: [] for c in COLUMNS}
currentLoop = run_loop
run_label = run_loop.thisN + 1
config_df = pd.read_table(config_files[run_label - 1])
outfile = op.join(script_dir, 'data',
'{0}_run-{1:02d}_events.tsv'.format(base_name, run_label))
# Shuffle configuration
columns_to_shuffle = [
['equation', 'solution', 'comparison', 'rounded_difference', 'trial_type'],
'equation_representation', 'comparison_representation', 'feedback',
'equation_duration', 'isi1', 'comparison_duration', 'isi2', 'feedback_duration', 'iti'
]
for c in columns_to_shuffle:
shuffle_idx = np.random.permutation(config_df.index.values)
config_df[c] = config_df.loc[shuffle_idx, c].reset_index(drop=True)
# Reset BioPac
if exp_info['BioPac'] == 'Yes':
ser.write('RR')
# Scanner runtime
# ---------------
# Wait for trigger from scanner.
draw_until_keypress(win=window, stim=instruction_text_box)
# Start recording
if exp_info['BioPac'] == 'Yes':
ser.write('FF')
run_clock.reset()
# Beginning fixation
stage_clock.reset()
draw(win=window, stim=iti_stim, duration=LEAD_IN_DURATION,
clock=stage_clock)
# set up handler to look after randomisation of conditions etc
trial_loop = data.TrialHandler(nReps=config_df.shape[0], method='random',
extraInfo=exp_info, originPath=-1,
trialList=[None],
seed=None, name='trial_loop')
curr_trial = trial_loop.trialList[0] # so we can initialise stimuli with some values
for curr_trial in trial_loop:
# This section (before the "prepare" portion) takes ~0.4s with 300dpi images
# Within reasonable range for 72dpi images
currentLoop = trial_loop
trial_num = trial_loop.thisN
trial_type = config_df.loc[trial_num, 'trial_type']
equation = config_df.loc[trial_num, 'equation']
feedback_type = config_df.loc[trial_num, 'feedback']
num_type_eq = config_df.loc[trial_num, 'equation_representation']
num_type_comp = config_df.loc[trial_num, 'comparison_representation']
comparison = int(config_df.loc[trial_num, 'comparison'])
rounded_difference = int(config_df.loc[trial_num, 'rounded_difference'])
solution = config_df.loc[trial_num, 'solution']
if trial_type == 'math':
operator = [x for x in equation if not x.isdigit()][0]
term1, term2 = equation.split(operator)
term1_image.setImage(op.join(
script_dir,
'stimuli', 'numerals', '{0:02d}_{1}.png'.format(int(term1), num_type_eq[0])))
term2_image.setImage(op.join(
script_dir,
'stimuli', 'numerals', '{0:02d}_{1}.png'.format(int(term2), num_type_eq[0])))
op_image.setImage(op.join(
script_dir,
'stimuli', 'numerals', '{0}_{1}.png'.format(OPERATOR_DICT[operator], num_type_eq[0])))
op_image.setSize(set_word_size(op_image))
if num_type_eq == 'numeric':
term1_image.setSize(set_word_size(term1_image))
term2_image.setSize(set_word_size(term2_image))
term1_pos = -1 * ((term1_image.size[0] / 2.) + (op_image.size[0] / 2.))
term2_pos = (term2_image.size[0] / 2.) + (op_image.size[0] / 2.)
term1_image.pos = (term1_pos, 0.0)
term2_image.pos = (term2_pos, 0.0)
elif num_type_eq == 'word':
term1_image.setSize(set_word_size(term1_image))
term2_image.setSize(set_word_size(term2_image))
term1_pos = (term1_image.size[1] / 2.) + (op_image.size[1] / 2.)
term2_pos = -1 * ((term2_image.size[1] / 2.) + (op_image.size[1] / 2.))
term1_image.pos = (0.0, term1_pos)
term2_image.pos = (0.0, term2_pos)
elif num_type_eq == 'analog': # unused
term1_image.size = (0.45, 0.675)
term2_image.size = (0.45, 0.675)
term1_image.pos = (-0.45, 0.0)
term2_image.pos = (0.45, 0.0)
else:
raise Exception('num_type_eq must be "analog", "numeric", '
'or "word", not {}'.format(num_type_eq))
run_data['first_term'].append(int(term1))
run_data['operation'].append(OPERATOR_DICT[operator])
run_data['second_term'].append(int(term2))
run_data['stim_file_first_term'].append(term1_image.image.split(op.sep+'stimuli'+op.sep)[1])
run_data['stim_file_second_term'].append(term2_image.image.split(op.sep+'stimuli'+op.sep)[1])
run_data['stim_file_operator'].append(op_image.image.split(op.sep+'stimuli'+op.sep)[1])
else: # null trials- just memorize the number
solution = int(equation)
eq_image.setImage(op.join(
script_dir,
'stimuli', 'numerals', '{0:02d}_{1}.png'.format(solution, num_type_eq[0])))
eq_image.setSize(set_word_size(eq_image))
run_data['first_term'].append(solution)
run_data['operation'].append('n/a')
run_data['second_term'].append('n/a')
run_data['stim_file_first_term'].append(eq_image.image.split(op.sep+'stimuli'+op.sep)[1])
run_data['stim_file_second_term'].append('n/a')
run_data['stim_file_operator'].append('n/a')
comparison_image.setImage(op.join(
script_dir,
'stimuli', 'numerals', '{0:02d}_{1}.png'.format(comparison, num_type_comp[0])))
comparison_image.setSize(set_word_size(comparison_image))
# Equation
stage_clock.reset()
equation_onset_time = run_clock.getTime()
if trial_type == 'math':
draw(win=window, stim=[term1_image, op_image, term2_image],
duration=config_df.loc[trial_num, 'equation_duration'],
clock=stage_clock)
else:
draw(win=window, stim=eq_image,
duration=config_df.loc[trial_num, 'equation_duration'],
clock=stage_clock)
equation_duration = stage_clock.getTime()
# ISI1
stage_clock.reset()
isi1_keys, _ = draw(win=window, stim=isi_stim,
duration=config_df.loc[trial_num, 'isi1'],
clock=stage_clock)
# Comparison
stage_clock.reset()
comparison_onset_time = run_clock.getTime()
task_keys, _ = draw(win=window, stim=comparison_image,
duration=config_df.loc[trial_num, 'comparison_duration'],
clock=stage_clock)
comparison_duration = stage_clock.getTime()
# ISI2
stage_clock.reset()
isi2_keys, _ = draw(win=window, stim=iti_stim,
duration=config_df.loc[trial_num, 'isi2'],
clock=stage_clock)
# determine response
if task_keys and isi2_keys:
response_value = int(isi2_keys[-1][0])
run_data['response_time'].append(task_keys[0][1])
elif task_keys and not isi2_keys:
response_value = int(task_keys[-1][0])
run_data['response_time'].append(task_keys[0][1])
elif isi2_keys and not task_keys:
response_value = int(isi2_keys[-1][0])
run_data['response_time'].append(isi2_keys[0][1])
else:
response_value = 'n/a'
run_data['response_time'].append(np.nan)
run_data['response'].append(response_value)
# determine correct response
if solution > comparison:
corr_resp = 3
elif solution == comparison:
corr_resp = 2
elif solution < comparison:
corr_resp = 1
# determine accuracy
if response_value == 'n/a':
trial_status = 'no_response'
elif response_value == corr_resp:
trial_status = 'correct'
else:
trial_status = 'incorrect'
# determine feedback
if feedback_type == 'noninformative':
feedback_image.image = op.join(script_dir, 'stimuli', 'feedback', 'noninformative.png')
elif trial_status == 'correct':
feedback_image.image = op.join(script_dir, 'stimuli', 'feedback', 'positive.png')
elif trial_status == 'incorrect':
feedback_image.image = op.join(script_dir, 'stimuli', 'feedback', 'negative.png')
else: # no response
feedback_image.image = op.join(script_dir, 'stimuli', 'feedback', 'negative.png')
# feedback presentation
stage_clock.reset()
feedback_onset_time = run_clock.getTime()
width, height = feedback_image.size
new_height = 0.6
new_shape = (new_height * (width / height), new_height)
feedback_image.setSize(new_shape)
draw(win=window, stim=feedback_image,
duration=config_df.loc[trial_num, 'feedback_duration'],
clock=stage_clock)
feedback_duration = stage_clock.getTime()
# Compile new row of output file
run_data['onset'].append(equation_onset_time)
run_data['duration'].append(equation_duration)
run_data['trial_type'].append(trial_type)
run_data['comparison_onset'].append(comparison_onset_time)
run_data['comparison_duration'].append(comparison_duration)
run_data['feedback_onset'].append(feedback_onset_time)
run_data['feedback_duration'].append(feedback_duration)
run_data['equation_representation'].append(num_type_eq)
run_data['comparison_representation'].append(num_type_comp)
run_data['comparison'].append(comparison)
run_data['accuracy'].append(trial_status)
run_data['solution'].append(solution)
run_data['rounded_difference'].append(rounded_difference)
run_data['feedback_type'].append(feedback_type)
run_data['stim_file_comparison'].append(comparison_image.image.split(op.sep+'stimuli'+op.sep)[1])
run_data['stim_file_feedback'].append(feedback_image.image.split(op.sep+'stimuli'+op.sep)[1])
# Save updated output file
run_frame = pd.DataFrame(run_data)
run_frame.to_csv(outfile, sep='\t', line_terminator='\n',
na_rep='n/a', index=False, float_format='%.2f')
# ITI
stage_clock.reset()
# For last trial, update fixation
if trial_num == config_df.index.values[-1]:
iti_duration = RUN_DURATION - run_clock.getTime()
else:
iti_duration = config_df.loc[trial_num, 'iti']
draw(win=window, stim=iti_stim, duration=iti_duration,
clock=stage_clock)
# Unset stim sizes so they don't pass on to the next trial
term1_image.size = None
op_image.size = None
term2_image.size = None
eq_image.size = None
comparison_image.size = None
# end trial_loop
run_frame = pd.DataFrame(run_data)
run_frame.to_csv(outfile, sep='\t', line_terminator='\n', na_rep='n/a',
index=False, float_format='%.2f')
if exp_info['BioPac'] == 'Yes':
ser.write('00')
print('Total duration of run: {}'.format(run_clock.getTime()))
# end run_loop
# Shut down serial port connection
if exp_info['BioPac'] == 'Yes':
ser.close()
# Scanner is off for this
stage_clock.reset()
draw(win=window, stim=end_screen, duration=END_SCREEN_DURATION, clock=stage_clock)
window.flip()
logging.flush()
# make sure everything is closed down
window.close()
core.quit()