-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpheno_significance.R
71 lines (55 loc) · 2.34 KB
/
pheno_significance.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
library("lmerTest")
library("readr")
data_dir <- "/Users/chloehampson/Desktop/projects/abide-analysis/dset/group/habenula/" # Make sure to leave the slash at the end
clusters <- c("1", "2", "3", "4")
roi <- "RSFC"
# Level-1 Predictors
group_var <- "Group"
categorical_vars <- c("Sex")
numerical_vars <- c("Age")
phen_vars <- c("Phen1", "Phen2", "Phen3", "Phen4", "Phen5")
for (cluster in clusters) {
data_path <- paste0(data_dir, "cluster-", cluster, "_data.csv")
data <- read.table(file = data_path, sep = ',', header = TRUE)
for (phen_var in phen_vars) {
all_columns <- c(roi, categorical_vars, numerical_vars, phen_var, group_var, "Site")
sub_data <- data[, all_columns]
sub_data <- na.omit(sub_data)
# Print column names to ensure 'Group' is included
print(colnames(sub_data))
# Convert categorical variables to factors
for (var in categorical_vars) {
sub_data[[var]] <- factor(sub_data[[var]])
}
# Relevel 'Group' to make ASD the reference category
sub_data[[group_var]] <- relevel(factor(sub_data[[group_var]]), ref = "ASD")
# Check the levels of 'Group' to ensure releveling worked
print(levels(sub_data[[group_var]]))
# Scale continuous predictors
for (var in numerical_vars) {
sub_data[[var]] <- scale(sub_data[[var]], center = TRUE, scale = TRUE)
}
sub_data[[phen_var]] <- scale(sub_data[[phen_var]], center = TRUE, scale = TRUE)
# Initialize equation string
fixed_effects <- paste(c(numerical_vars), collapse = " + ")
equation_lme <- paste(roi, "~", fixed_effects, "+", group_var, "*", phen_var)
# Conditionally add random effect for Site, except for Phen4
if (phen_var != "Phen4" && length(unique(sub_data$Site)) > 1) {
equation_lme <- paste(equation_lme, "+ (1|Site)")
}
# Print the equation to check
message(equation_lme)
# Run model
if (phen_var == "Phen4") {
model <- lm(as.formula(equation_lme), data = sub_data)
} else {
model <- lmer(as.formula(equation_lme), data = sub_data)
}
x <- summary(model)
print(x)
# Write results of the model to csv file
out_file <- paste0(data_dir, "cluster-", cluster, "_", phen_var, "_table.csv")
model_table <- as.data.frame(coef(summary(model)))
write.csv(model_table, file = out_file, row.names = TRUE)
}
}