-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtest.py
81 lines (72 loc) · 3.94 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""General-purpose test script for image-to-image translation.
Original code: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/test.py
Once you have trained your model with train.py, you can use this script to test the model.
It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'.
It first creates model and dataset given the option. It will hard-code some parameters.
It then runs inference for '--num_test' images and save results to an HTML file.
Example (You need to train models first or download pre-trained models from our website):
Test an AODA model (one side only):
python3 test.py --model_suffix _B --dataroot ./scribble_10class/testA --name scribble_aoda --model test --phase test --no_dropout --n_classes 10
The option '--model test' is used for generating results only for one side.
This option will automatically set '--dataset_mode single', which only loads the images from one set.
On the contrary, using '--model aoda_gan' requires loading and generating results in both directions, and n_classes
which is sometimes unnecessary. The results will be saved at ./results/.
Use '--results_dir <directory_path_to_save_result>' to specify the results directory.
Test an aoda model:
python test.py --dataroot ./datasets/scribble --phase test --no_dropout --n_classes 10 --name scribble_aoda --model aoda_gan --direction BtoA
"""
import os
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
from util.visualizer import save_images
from util import html
import time
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
# disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.serial_batches = True
# no flip; comment this line if results on flipped images are needed.
opt.no_flip = True
# no visdom display; the test code saves the results to a HTML file.
opt.display_id = -1
# create a dataset given opt.dataset_mode and other options
dataset = create_dataset(opt)
# create a model given opt.model and other options
model = create_model(opt)
# regular setup: load and print networks; create schedulers
model.setup(opt)
# create a website
web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(
opt.phase, opt.epoch)) # define the website directory
if opt.load_iter > 0: # load_iter is 0 by default
web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter)
print('creating web directory', web_dir)
webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (
opt.name, opt.phase, opt.epoch))
# test with eval mode. This only affects layers like batchnorm and dropout.
if opt.eval:
model.eval()
consume_time = []
for i, data in enumerate(dataset):
if i >= opt.num_test: # only apply our model to opt.num_test images.
break
model.set_input(data) # unpack data from data loader
start_t = time.time()
model.test() # run inference
end_t = time.time()
consume_time.append(end_t - start_t)
visuals = model.get_current_visuals() # get image results
img_path = model.get_image_paths() # get image paths
if i % 5 == 0: # save images to an HTML file
print('processing (%04d)-th image... %s' % (i, img_path))
save_images(webpage, visuals, img_path,
aspect_ratio=opt.aspect_ratio, width=opt.display_winsize)
webpage.save() # save the HTML
sum_time = sum(consume_time)
avg_time = float(sum_time) / len(consume_time)
print('Total runtime {}s for {} images, average runtime {}'.format(
sum_time, len(consume_time), avg_time))