-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcollectData.py
305 lines (258 loc) · 11 KB
/
collectData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
### Example program to save several sensor data including bounding box
### Sensors: RGB Camera (+BoundingBox), De[th Camera, Segmentation Camera, Lidar Camera
### By Mukhlas Adib
### 2020
### Last tested on CARLA 0.9.10.1
### CARLA Simulator is licensed under the terms of the MIT license
### For a copy, see <https://opensource.org/licenses/MIT>
### For more information about CARLA Simulator, visit https://carla.org/
import glob
import os
import sys
import time
try:
sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
sys.version_info.major,
sys.version_info.minor,
'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
except IndexError:
print('carla not found')
pass
import carla
import argparse
import logging
import random
import queue
import numpy as np
from matplotlib import pyplot as plt
import cv2
import carla_vehicle_annotator as cva
def retrieve_data(sensor_queue, frame, timeout=5):
while True:
try:
data = sensor_queue.get(True,timeout)
except queue.Empty:
return None
if data.frame == frame:
return data
save_rgb = True
save_depth = False
save_segm = False
save_lidar = False
tick_sensor = 1
def main():
argparser = argparse.ArgumentParser(
description=__doc__)
argparser.add_argument(
'--host',
metavar='H',
default='127.0.0.1',
help='IP of the host server (default: 127.0.0.1)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-n', '--number-of-vehicles',
metavar='N',
default=50,
type=int,
help='number of vehicles (default: 10)')
argparser.add_argument(
'-tm_p', '--tm_port',
metavar='P',
default=8000,
type=int,
help='port to communicate with TM (default: 8000)')
args = argparser.parse_args()
vehicles_list = []
nonvehicles_list = []
client = carla.Client(args.host, args.port)
client.set_timeout(10.0)
try:
traffic_manager = client.get_trafficmanager(args.tm_port)
traffic_manager.set_global_distance_to_leading_vehicle(2.0)
world = client.get_world()
print('\nRUNNING in synchronous mode\n')
settings = world.get_settings()
traffic_manager.set_synchronous_mode(True)
if not settings.synchronous_mode:
synchronous_master = True
settings.synchronous_mode = True
settings.fixed_delta_seconds = 0.05
world.apply_settings(settings)
else:
synchronous_master = False
blueprints = world.get_blueprint_library().filter('vehicle.*')
spawn_points = world.get_map().get_spawn_points()
number_of_spawn_points = len(spawn_points)
if args.number_of_vehicles < number_of_spawn_points:
random.shuffle(spawn_points)
elif args.number_of_vehicles > number_of_spawn_points:
msg = 'Requested %d vehicles, but could only find %d spawn points'
logging.warning(msg, args.number_of_vehicles, number_of_spawn_points)
args.number_of_vehicles = number_of_spawn_points
SpawnActor = carla.command.SpawnActor
SetAutopilot = carla.command.SetAutopilot
FutureActor = carla.command.FutureActor
# --------------
# Spawn vehicles
# --------------
batch = []
for n, transform in enumerate(spawn_points):
if n >= args.number_of_vehicles:
break
blueprint = random.choice(blueprints)
if blueprint.has_attribute('color'):
color = random.choice(blueprint.get_attribute('color').recommended_values)
blueprint.set_attribute('color', color)
if blueprint.has_attribute('driver_id'):
driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values)
blueprint.set_attribute('driver_id', driver_id)
blueprint.set_attribute('role_name', 'autopilot')
batch.append(SpawnActor(blueprint, transform).then(SetAutopilot(FutureActor, True)))
spawn_points.pop(0)
for response in client.apply_batch_sync(batch, synchronous_master):
if response.error:
logging.error(response.error)
else:
vehicles_list.append(response.actor_id)
print('Created %d npc vehicles \n' % len(vehicles_list))
# -----------------------------
# Spawn ego vehicle and sensors
# -----------------------------
q_list = []
idx = 0
tick_queue = queue.Queue()
world.on_tick(tick_queue.put)
q_list.append(tick_queue)
tick_idx = idx
idx = idx+1
# Spawn ego vehicle
ego_bp = random.choice(blueprints)
ego_transform = random.choice(spawn_points)
ego_vehicle = world.spawn_actor(ego_bp, ego_transform)
vehicles_list.append(ego_vehicle)
ego_vehicle.set_autopilot(True)
print('Ego-vehicle ready')
# Spawn RGB camera
cam_transform = carla.Transform(carla.Location(x=1.5, z=2.4))
cam_bp = world.get_blueprint_library().find('sensor.camera.rgb')
cam_bp.set_attribute('sensor_tick', str(tick_sensor))
cam = world.spawn_actor(cam_bp, cam_transform, attach_to=ego_vehicle)
nonvehicles_list.append(cam)
cam_queue = queue.Queue()
cam.listen(cam_queue.put)
q_list.append(cam_queue)
cam_idx = idx
idx = idx+1
print('RGB camera ready')
# Spawn depth camera
depth_bp = world.get_blueprint_library().find('sensor.camera.depth')
depth_bp.set_attribute('sensor_tick', str(tick_sensor))
depth = world.spawn_actor(depth_bp, cam_transform, attach_to=ego_vehicle)
cc_depth_log = carla.ColorConverter.LogarithmicDepth
nonvehicles_list.append(depth)
depth_queue = queue.Queue()
depth.listen(depth_queue.put)
q_list.append(depth_queue)
depth_idx = idx
idx = idx+1
print('Depth camera ready')
# Spawn segmentation camera
if save_segm:
segm_bp = world.get_blueprint_library().find('sensor.camera.semantic_segmentation')
segm_bp.set_attribute('sensor_tick', str(tick_sensor))
segm_transform = carla.Transform(carla.Location(x=1.5, z=2.4))
segm = world.spawn_actor(segm_bp, segm_transform, attach_to=ego_vehicle)
cc_segm = carla.ColorConverter.CityScapesPalette
nonvehicles_list.append(segm)
segm_queue = queue.Queue()
segm.listen(segm_queue.put)
q_list.append(segm_queue)
segm_idx = idx
idx = idx+1
print('Segmentation camera ready')
# Spawn LIDAR sensor
if save_lidar:
lidar_bp = world.get_blueprint_library().find('sensor.lidar.ray_cast')
lidar_bp.set_attribute('sensor_tick', str(tick_sensor))
lidar_bp.set_attribute('channels', '64')
lidar_bp.set_attribute('points_per_second', '1120000')
lidar_bp.set_attribute('upper_fov', '30')
lidar_bp.set_attribute('range', '100')
lidar_bp.set_attribute('rotation_frequency', '20')
lidar_transform = carla.Transform(carla.Location(x=0, z=4.0))
lidar = world.spawn_actor(lidar_bp, lidar_transform, attach_to=ego_vehicle)
nonvehicles_list.append(lidar)
lidar_queue = queue.Queue()
lidar.listen(lidar_queue.put)
q_list.append(lidar_queue)
lidar_idx = idx
idx = idx+1
print('LIDAR ready')
# Begin the loop
time_sim = 0
while True:
# Extract the available data
nowFrame = world.tick()
# Check whether it's time to capture data
if time_sim >= tick_sensor:
data = [retrieve_data(q,nowFrame) for q in q_list]
assert all(x.frame == nowFrame for x in data if x is not None)
# Skip if any sensor data is not available
if None in data:
continue
vehicles_raw = world.get_actors().filter('vehicle.*')
snap = data[tick_idx]
rgb_img = data[cam_idx]
depth_img = data[depth_idx]
# Attach additional information to the snapshot
vehicles = cva.snap_processing(vehicles_raw, snap)
# Save depth image, RGB image, and Bounding Boxes data
if save_depth:
depth_img.save_to_disk('out_depth/%06d.png' % depth_img.frame, cc_depth_log)
depth_meter = cva.extract_depth(depth_img)
filtered, removed = cva.auto_annotate(vehicles, cam, depth_meter, json_path='vehicle_class_json_file.txt')
cva.save_output(rgb_img, filtered['bbox'], filtered['class'], removed['bbox'], removed['class'], save_patched=True, out_format='json')
# Uncomment if you want to save the data in darknet format
#cva.save2darknet(filtered['bbox'], filtered['class'], rgb_img)
# Save segmentation image
if save_segm:
segm_img = data[segm_idx]
segm_img.save_to_disk('out_segm/%06d.png' % segm_img.frame, cc_segm)
# Save LIDAR data
if save_lidar:
lidar_data = data[lidar_idx]
lidar_data.save_to_disk('out_lidar/%06d.ply' % segm_img.frame)
time_sim = 0
time_sim = time_sim + settings.fixed_delta_seconds
finally:
cva.save2darknet(None,None,None,save_train=True)
try:
cam.stop()
depth.stop()
if save_segm:
segm.stop()
if save_lidar:
lidar.stop()
except:
print("Simulation ended before sensors have been created")
settings = world.get_settings()
settings.synchronous_mode = False
settings.fixed_delta_seconds = None
world.apply_settings(settings)
print('\ndestroying %d vehicles' % len(vehicles_list))
client.apply_batch([carla.command.DestroyActor(x) for x in vehicles_list])
print('destroying %d nonvehicles' % len(nonvehicles_list))
client.apply_batch([carla.command.DestroyActor(x) for x in nonvehicles_list])
time.sleep(0.5)
if __name__ == '__main__':
try:
main()
except KeyboardInterrupt:
pass
finally:
print('\ndone.')