-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhand_track_module.py
103 lines (81 loc) · 3.24 KB
/
hand_track_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import cv2
import mediapipe as mp
import time
import math
class handDetector():
def __init__(self,mode=False,maxHands=2,model_complexity=True,detectionCon=0.5,trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.model_complexity=model_complexity
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode,self.maxHands,self.model_complexity,
self.detectionCon,self.trackCon)
self.mpDraw = mp.solutions.drawing_utils
self.tipIds = [4,8,12,16,20]
def findHands(self,img,draw=True):
imgRGB = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
# print(results.multi_hand_landmarks)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img,handLms,self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self,img,handNo=0,draw=True):
self.lmList = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks [handNo]
for id,lm in enumerate(myHand.landmark):
# print(id,lm)
h,w,c = img.shape
cx,cy = int(lm.x * w),int(lm.y * h)
# print(id,cx,cy)
self.lmList.append([id,cx,cy])
if draw:
cv2.circle(img,(cx,cy),8,(255,0,0),cv2.FILLED)
return self.lmList
def fingersUp(self):
fingers = []
if self.lmList [self.tipIds [4]] [2] < self.lmList [self.tipIds [3]] [2]:
fingers.append(1)
else:
fingers.append(0)
for id in range(1,5):
if self.lmList[self.tipIds [id]] [2] < self.lmList [self.tipIds [id]-2] [2]:
fingers.append(1)
else:
fingers.append(0)
return fingers
def findDistance(self,p1,p2,img,draw=True,r=15,t=3):
x1,y1 = self.lmList [4] [1],self,lmList [4] [2]
x2,y2 = self.lmList [8] [1],self.lmList [8] [2]
cx,cy = (x1+x2) // 2,(y1+y2) // 2
if draw:
cv2.line(img,(x1,y1),(x2,y2),(255,0,255),t)
cv2.circle(img,(x1,y1),7,(255,0,0),cv2.FILLED)
cv2.circle(img,(x2,y2),7,(255,0,0),cv2.FILLED)
cv2.circle(img,(cx,cy),7,(255,0,0),cv2.FILLED)
length = math.hypot(x2-x1,y2-y1)
return length,img,[x1,y1,x2,y2,cx,cy]
def main():
ptime = 0
ctime = 0
cap = cv2.VideoCapture(0,cv2.CAP_DSHOW)
detector = handDetector()
while True:
success,img = cap.read()
img = detector.findHands(img)
lmList = detector.findPosition(img)
if len(lmList) != 0:
print(lmList [4])
ctime = time.time()
fps = 1 / (ctime-ptime)
ptime = ctime
cv2.putText(img,str(int(fps)),(10,70),cv2.FONT_HERSHEY_PLAIN,3,(255,0,255),3)
cv2.imshow("Image",img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if __name__ == "__main__":
main()