-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgen_images.py
124 lines (107 loc) · 4.75 KB
/
gen_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""Generate images using pretrained network pickle."""
import math
import os
import re
from typing import List, Optional, Tuple, Union
from torchvision.utils import save_image
import click
import dnnlib
import numpy as np
import PIL.Image
import torch
from training.volumetric_rendering import sample_camera_positions, create_cam2world_matrix
import legacy
from dnnlib.seg_tools import *
#----------------------------------------------------------------------------
def parse_range(s: Union[str, List]) -> List[int]:
'''Parse a comma separated list of numbers or ranges and return a list of ints.
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
'''
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
#----------------------------------------------------------------------------
def parse_vec2(s: Union[str, Tuple[float, float]]) -> Tuple[float, float]:
'''Parse a floating point 2-vector of syntax 'a,b'.
Example:
'0,1' returns (0,1)
'''
if isinstance(s, tuple): return s
parts = s.split(',')
if len(parts) == 2:
return (float(parts[0]), float(parts[1]))
raise ValueError(f'cannot parse 2-vector {s}')
#----------------------------------------------------------------------------
def make_transform(translate: Tuple[float,float], angle: float):
m = np.eye(3)
s = np.sin(angle/360.0*np.pi*2)
c = np.cos(angle/360.0*np.pi*2)
m[0][0] = c
m[0][1] = s
m[0][2] = translate[0]
m[1][0] = -s
m[1][1] = c
m[1][2] = translate[1]
return m
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=parse_range, help='List of random seeds (e.g., \'0,1,4-6\')', required=True)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--noise-mode', help='Noise mode', type=click.Choice(['const', 'random', 'none']), default='const', show_default=True)
@click.option('--outdir', help='Where to save the output images', type=str, required=True, metavar='DIR')
def generate_images(
network_pkl: str,
seeds: List[int],
truncation_psi: float,
noise_mode: str,
outdir: str,
):
"""Generate multi-viewed images and semantic masks using pretrained network pickle.
"""
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
os.makedirs(outdir, exist_ok=True)
# Generate images.
cs = torch.tensor([1,0,0,0, 0,1,0,0, 0,0,1,2.7, 0,0,0,1, 4.2647, 0, 0.5, 0, 4.2647, 0.5, 0, 0, 1]).float().to(device).reshape(1,-1)
for seed_idx, seed in enumerate(seeds):
torch.manual_seed(seed)
print('Generating image for seed %d (%d/%d) ...' % (seed, seed_idx, len(seeds)))
z = torch.from_numpy(np.random.RandomState(seed).randn(1, G.z_dim)).to(device)
ws = G.mapping(z=z, c=cs, truncation_psi=truncation_psi)
yaws = [-0.5, 0, 0.5]
imgs, segs = [], []
for k, yaw in enumerate(yaws):
render_params = {
"h_mean": yaw+math.pi*0.5,
"v_mean": math.pi * 0.5,
"h_stddev": 0.,
"v_stddev": 0.,
"fov": 18,
"num_steps": 96,
}
camera_points, phi, theta = sample_camera_positions(device, n=1, r=2.7, horizontal_mean=yaw+math.pi*0.5, vertical_mean=math.pi * 0.5, mode=None)
c = create_cam2world_matrix(-camera_points, camera_points, device=device)
c = c.reshape(1,-1)
c = torch.cat((c, torch.tensor([4.2647, 0, 0.5, 0, 4.2647, 0.5, 0, 0, 1]).reshape(1, -1).to(c)), -1)
img, seg = G.synthesis(ws, c=c, render_params=render_params, noise_mode=noise_mode, return_seg=True)
seg = (mask2color(seg) / 255. - 0.5) / 0.5 # (0, 255) -> (-1, 1)
imgs.append(img)
segs.append(seg)
imgs = torch.cat(imgs)
segs = torch.cat(segs)
save_image(imgs, f'{outdir}/seed{seed:04d}.png', normalize=True, range=(-1, 1))
save_image(segs, f'{outdir}/seed{seed:04d}_seg.png', normalize=True, range=(-1, 1))
#----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------