-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathkendall_mergesort.cpp
314 lines (262 loc) · 7.64 KB
/
kendall_mergesort.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include <numeric>
#include <Rcpp.h>
using namespace Rcpp;
//' Returns sorted index in Rcpp
//'
//' @param x the vector to be sorted
//'
//' @importFrom Rcpp sourceCpp
//' @export
//' @useDynLib visualizationQualityControl
//' @return ordered indices
// [[Rcpp::export]]
IntegerVector sortedIndex(NumericVector x){
IntegerVector idx = seq_along(x) - 1;
std::sort(idx.begin(), idx.end(), [&](int i, int j){return x[i] < x[j];});
return idx;
}
// [[Rcpp::export]]
IntegerVector compare_self(NumericVector x){
int n_entry = x.size();
IntegerVector match_self (n_entry);
match_self[0] = 1;
int idx = 1;
for (int i = 1; i < (n_entry); i++) {
if (x[i] != x[(i - 1)]) {
match_self[idx] = 1;
} else {
match_self[idx] = 0;
}
idx++;
}
return match_self;
}
// [[Rcpp::export]]
IntegerVector compare_both(IntegerVector x, IntegerVector y){
int n_entry = x.size();
IntegerVector match_self (n_entry);
match_self[0] = 1;
int idx = 1;
for (int i = 1; i < (n_entry); i++) {
if ((x[i] != x[(i - 1)]) | (y[i] != y[(i - 1)])) {
match_self[idx] = 1;
} else {
match_self[idx] = 0;
}
idx++;
}
match_self.push_back(1);
return match_self;
}
// [[Rcpp::export]]
IntegerVector which_notzero(IntegerVector x){
IntegerVector notzero (x.size());
int idx = 0;
for (int i = 0; i < x.size(); i++) {
if (x[i] != 0) {
notzero[idx] = i;
idx++;
}
}
IntegerVector keep_loc = seq(0, (idx - 1));
notzero = notzero[keep_loc];
return notzero;
}
// [[Rcpp::export]]
int kendall_discordant(IntegerVector x, IntegerVector y){
double sup = 1 + max(y);
IntegerVector arr(sup, 0);
double i = 0;
double k = 0;
int n = x.size();
int idx = 0;
int dis = 0;
while (i < n){
while ((k < n) && (x[i] == x[k])) {
dis = dis + i;
idx = y[k];
while (idx != 0) {
dis = dis - arr[idx];
idx = idx & (idx - 1);
}
k++;
}
while (i < k) {
idx = y[i];
while (idx < sup) {
arr[idx] = arr[idx] + 1;
idx = idx + (idx & (-1*idx));
}
i++;
}
}
return dis;
}
// [[Rcpp::export]]
NumericVector count_rank_tie(IntegerVector ranks){
LogicalVector dup_ranks(ranks.size());
dup_ranks = duplicated(ranks);
IntegerVector ranks2 = ranks[dup_ranks];
IntegerVector number_tied;
number_tied = table(ranks2) + 1;
NumericVector counts(3);
counts(0) = sum(number_tied * (number_tied - 1)) / 2;
counts(1) = sum(number_tied * (number_tied - 1) * (number_tied - 2)) / 2;
counts(2) = sum(number_tied * (number_tied - 1) * (2 * number_tied + 5));
counts.names() = CharacterVector({"ntie", "t0", "t1"});
return counts;
}
inline double signC(double x) {
if (x > 0) {
return 1.0;
} else if (x == 0) {
return 0.0;
} else {
return -1.0;
}
}
//' Calculates ici-kendall-tau
//'
//' @param x numeric vector
//' @param y numeric vector
//' @param perspective should we consider the "local" or "global" perspective?
//'
//' @details Calculates the information-content-informed Kendall-tau correlation measure.
//' This correlation is based on concordant and discordant ranked pairs, like Kendall-tau,
//' but also includes missing values (as NA). Missing values are assumed to be *primarily* due
//' to lack of detection due to instrumental sensitivity, and therefore encode *some* information.
//'
//' For more details see the ICI-Kendall-tau vignette:
//' \code{vignette("ici-kendalltau", package = "visualizationQualityControl")}
//'
//' @examples
//' data("grp_cor_data")
//' exp_data = grp_cor_data$data
//' x = exp_data[, 1]
//' y = exp_data[, 2]
//' kendallt(x, y)
//' cor(x, y, method = "kendall")
//'
//' x = sort(rnorm(100))
//' y = x + 1
//' y2 = y
//' y2[1:10] = NA
//' kendallt(x, y)
//' kendallt(x, y2, "global")
//' kendallt(x, y2)
//'
//' @importFrom Rcpp sourceCpp
//' @export
//' @useDynLib visualizationQualityControl
//' @return kendall tau correlation
// [[Rcpp::export]]
NumericVector ici_kendallt_mergesort(NumericVector x, NumericVector y, String perspective = "local", String alternative = "two.sided", String output = "simple") {
if (x.length() != y.length()) {
throw std::range_error("X and Y are not the same length!");
exit(-1);
}
NumericVector z_b (1);
NumericVector p_value (1);
LogicalVector matching_na;
//double n_matching_na;
if (perspective == "local") {
matching_na = is_na(x) & is_na(y);
//n_matching_na = sum(matching_na);
x = x[!matching_na];
y = y[!matching_na];
}
NumericVector x2 = clone(x);
NumericVector y2 = clone(y);
int n_na_x = sum(is_na(x));
int n_na_y = sum(is_na(y));
if ((n_na_x == x.size()) || (n_na_y == y.size())) {
return 0.0;
}
x2 = x[!is_na(x)];
y2 = y[!is_na(y)];
double min_value = min(NumericVector::create(min(x2), min(y2)));
double na_value = min_value - 0.1;
x2 = clone(x);
y2 = clone(y);
x2[is_na(x)] = na_value;
y2[is_na(y)] = na_value;
int n_entry = x2.size();
//Rprintf("n_entry: %i\n", n_entry);
if (n_entry < 2) {
return 0.0;
}
IntegerVector low_subset = seq(1, (n_entry - 1));
//Rprintf("n_low: %i\n", low_subset.size());
IntegerVector hi_subset = seq(0, (n_entry - 2));
//Rprintf("n_hi: %i\n", hi_subset.size());
IntegerVector perm_y = sortedIndex(y2);
x2 = x2[perm_y];
y2 = y2[perm_y];
IntegerVector y3 = compare_self(y2);
IntegerVector y4 = cumsum(y3);
//return y4;
IntegerVector perm_x = sortedIndex(x2);
x2 = x2[perm_x];
y4 = y4[perm_x];
IntegerVector x3 = compare_self(x2);
IntegerVector x4 = cumsum(x3);
//return x4;
IntegerVector obs = compare_both(x4, y4);
IntegerVector cnt = diff(which_notzero(obs));
int dis = kendall_discordant(x4, y4);
double ntie = sum(cnt * (cnt - 1)) / 2;
// three values should be read as:
// xtie, x0, and x1, and then same for y
NumericVector x_counts = count_rank_tie(x4);
double xtie = x_counts[0];
double x0 = x_counts[1];
double x1 = x_counts[2];
NumericVector y_counts = count_rank_tie(y4);
double ytie = y_counts[0];
double y0 = y_counts[1];
double y1 = y_counts[2];
int tot = (n_entry * (n_entry - 1)) / 2;
//Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie
// = con + dis + xtie + ytie - ntie
NumericVector k_res(2);
k_res.names() = CharacterVector({"tau", "pvalue"});
if ((xtie == tot) || (ytie == tot)) {
return k_res;
}
double con_minus_dis = tot - xtie - ytie + ntie - 2 * dis;
double tau = con_minus_dis / sqrt(tot - xtie) / sqrt(tot - ytie);
if (tau > 1) {
tau = 1;
} else if (tau < -1) {
tau = -1;
}
double m = n_entry * (n_entry - 1);
//Rprintf("m: %f\n", m);
double var = ((m * (2 * n_entry + 5) - x1 - y1) / 18 +
(2 * xtie * ytie) / m + x0 * y0 / (9 * m * (n_entry - 2)));
//Rprintf("var: %f\n", var);
double s_adjusted = tau * sqrt(((m / 2) - xtie) * ((m / 2) - ytie));
//Rprintf("s_adjusted: %f\n", s_adjusted);
double s_adjusted2 = signC(s_adjusted) * (std::abs(s_adjusted) - 1);
//Rprintf("s_adjusted2: %f\n", s_adjusted2);
z_b[0] = s_adjusted2 / sqrt(var);
if (alternative == "less") {
k_res[1] = pnorm(z_b, 0.0, 1.0)[0];
} else if (alternative == "greater") {
k_res[1] = pnorm(z_b, 0.0, 1.0, false, false)[0];
} else if (alternative == "two.sided") {
NumericVector p_res (2);
p_res[0] = pnorm(z_b, 0.0, 1.0)[0];
p_res[1] = pnorm(z_b, 0.0, 1.0, false)[0];
k_res[1] = 2 * min(p_res);
}
k_res[0] = tau;
return k_res;
}
/*** R
x = c(12, 2, 1, 12, 2)
y = c(1, 4, 7, 1, 0)
t1 = ici_kendallt_mergesort(x, y)
t1
t2 = visualizationQualityControl::ici_kendallt(x, y, output = "crap")
*/