Skip to content

Latest commit

 

History

History
490 lines (400 loc) · 16.7 KB

README.md

File metadata and controls

490 lines (400 loc) · 16.7 KB

Visualization Quality Control

A set of useful functions for calculating various measures from high-feature datasets and visualizing them.

In addition to internal documentation, the package is also documented heavily here.

This package combines my needs for visualizing sample-sample correlations using heatmaps, and novel quality control measures that apply to different types of -omics or high-feature datasets proposed by Gierlinski et al., 2015, namely the median_correlation and outlier_fraction functions.

Installation

Dependencies

  • ComplexHeatmap, for generating the heatmaps.
  • dendsort, for reordering samples in heatmaps.
  • ICIKendallTau, for calculating Kendall-tau with missing values.

These should get installed automatically.

It is recommended to install BiocManager first so Bioconductor dependencies are installed automatically.

install.packages("BiocManager")

This Package

This package can be installed from the MoseleyBioinformaticsLab r-universe as it is not yet on CRAN.

options(repos = c(
    moseleybioinformaticslab = 'https://moseleybioinformaticslab.r-universe.dev',
    BiocManager::repositories()))
install.packages(c("ICIKendallTau", "visualizationQualityControl"))

Examples

These examples show the primary functionality. We will apply the visualizations to a two group dataset. However, all of the functions are still applicable to datasets with more than two groups. The examples below are for a dataset where there has been a sample swapped between the two groups (i.e. there is a problem!). If you want to see how the visualizations compare between a good dataset and a bad dataset, see the quality_control vignette.

library(visualizationQualityControl)
library(ggplot2)
library(ggforce)
data("grp_cor_data")
exp_data = grp_cor_data$data
rownames(exp_data) = paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) = paste0("s", seq(1, ncol(exp_data)))

sample_info = data.frame(id = colnames(exp_data), class = grp_cor_data$class)

exp_data[, 5] = grp_cor_data$data[, 19]
exp_data[, 19] = grp_cor_data$data[, 5]
sample_classes = sample_info$class

Visualize PCA Component Scores

pca_data = prcomp(t(exp_data), center = TRUE)
pca_scores = as.data.frame(pca_data$x)
pca_scores = cbind(pca_scores, sample_info)
ggplot(pca_scores, aes(x = PC1, y = PC2, color = class)) + geom_point()

To see how much explained variance each PC has, you can calculate them:

knitr::kable(visqc_score_contributions(pca_data$x))
pc variance percent cumulative labels
PC1 PC1 2.0852320 0.6853218 0.6853218 PC1 (69%)
PC2 PC2 0.0944324 0.0310357 0.7163574 PC2 (3.1%)
PC3 PC3 0.0827594 0.0271993 0.7435567 PC3 (2.7%)
PC4 PC4 0.0802501 0.0263746 0.7699313 PC4 (2.6%)
PC5 PC5 0.0758842 0.0249397 0.7948710 PC5 (2.5%)
PC6 PC6 0.0750434 0.0246634 0.8195344 PC6 (2.5%)
PC7 PC7 0.0668954 0.0219855 0.8415199 PC7 (2.2%)
PC8 PC8 0.0600538 0.0197370 0.8612569 PC8 (2%)
PC9 PC9 0.0590223 0.0193980 0.8806548 PC9 (1.9%)
PC10 PC10 0.0520022 0.0170908 0.8977456 PC10 (1.7%)
PC11 PC11 0.0507126 0.0166670 0.9144126 PC11 (1.7%)
PC12 PC12 0.0450374 0.0148018 0.9292143 PC12 (1.5%)
PC13 PC13 0.0398570 0.0130992 0.9423135 PC13 (1.3%)
PC14 PC14 0.0380927 0.0125194 0.9548329 PC14 (1.3%)
PC15 PC15 0.0337662 0.0110974 0.9659303 PC15 (1.1%)
PC16 PC16 0.0304897 0.0100206 0.9759509 PC16 (1%)
PC17 PC17 0.0271052 0.0089083 0.9848592 PC17 (0.89%)
PC18 PC18 0.0252369 0.0082942 0.9931534 PC18 (0.83%)
PC19 PC19 0.0208322 0.0068466 1.0000000 PC19 (0.68%)
PC20 PC20 0.0000000 0.0000000 1.0000000 PC20 (0.00000000000000000000000000000057%)

visqc_heatmap

Calculate sample-sample correlations and reorder based on within class correlations. We recommend a transform agnostic correlation like Kendall-tau that can also handle missing data when necessary. Here we use the {ici_kendalltau} function from our ICIKendallTau package.

rownames(sample_info) = sample_info$id
data_cor = ICIKendallTau::ici_kendalltau(exp_data)
data_order = similarity_reorderbyclass(data_cor$cor, sample_info[, "class", drop = FALSE], transform = "sub_1")

And then generate a colormapping for the sample classes and plot the correlation heatmap.

data_legend = generate_group_colors(2)
names(data_legend) = c("grp1", "grp2")
row_data = sample_info[, "class", drop = FALSE]
row_annotation = list(class = data_legend)

library(viridis)
suppressPackageStartupMessages(library(circlize))
colormap = colorRamp2(seq(0.3, 1, length.out = 50), viridis::viridis(50))

visqc_heatmap(data_cor$cor, colormap, "Correlation", row_color_data = row_data,
              row_color_list = row_annotation, col_color_data = row_data,
              col_color_list = row_annotation, row_order = data_order$indices,
              column_order = data_order$indices)

median_correlations

data_medcor = median_correlations(data_cor$cor, sample_info$class)
ggplot(data_medcor, aes(x = sample_id, y = med_cor)) + geom_point() + 
  facet_grid(. ~ sample_class, scales = "free_x") + ggtitle("Median Correlation")

ggplot(data_medcor, aes(x = sample_class, y = med_cor)) +
  geom_sina() +
  ggtitle("Median Correlation")

outlier_fraction

data_outlier = outlier_fraction(exp_data, sample_info$class)
ggplot(data_outlier, aes(x = sample_id, y = frac)) + geom_point() + 
  facet_grid(. ~ sample_class, scales = "free_x") + ggtitle("Outlier Fraction")

ggplot(data_outlier, aes(x = sample_class, y = frac)) +
  geom_sina() +
  ggtitle("Outlier Fraction")

determine_outliers

We can combine the median correlations and outlier fractions into a single score and then examine the distribution of scores to look for outliers.

out_samples = determine_outliers(data_medcor, data_outlier)

ggplot(out_samples, aes(x = sample_id, y = score, color = outlier)) +
  geom_point() +
  facet_wrap(~ sample_class, scales = "free_x") +
  ggtitle("Outliers Score")

ggplot(out_samples, aes(x = sample_class, y = score, color = outlier, group = sample_class)) +
  geom_sina() +
  ggtitle("Outliers Score")

Here we can see the outliers by their combined score. However, in this case we don’t actually want to remove the samples. In this example, what actually happened was that two samples got their sample_class wrong. And we can see that by going back to the correlation heatmap, that this is the case by the high correlation values observed with the other class of samples.

Correlation that Includes Missing Values

When there are missing values (either NA, or 0 depending on the case), we can use the information-content-informed Kendall-tau. This works under the assumption that most missing data in -omics is because samples have values that fall below the detection limit. Because of this, missingness actually contributes some information that can be incorporated in the correlation. The package ICIKendallTau provides this correlation measure.

Lets add some missingness to our data.

exp_data = grp_cor_data$data
rownames(exp_data) = paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) = paste0("s", seq(1, ncol(exp_data)))

make_na = rep(FALSE, nrow(exp_data))
s1_missing = make_na
s1_missing[sample(length(make_na), 20)] = TRUE
s2_missing = make_na
s2_missing[sample(which(!s1_missing), 20)] = TRUE

exp_data2 = exp_data
exp_data2[s1_missing, 1] = NA
exp_data2[s2_missing, 1] = NA

cor_random_missing = ICIKendallTau::ici_kendalltau(exp_data2)$cor
cor_random_missing[1:4, 1:4]

##           s1        s2        s3        s4
## s1 0.6000000 0.2495988 0.1958932 0.2333110
## s2 0.2495988 1.0000000 0.7058586 0.7200000
## s3 0.1958932 0.7058586 1.0000000 0.6925253
## s4 0.2333110 0.7200000 0.6925253 1.0000000

cor_random_missing_nw = ICIKendallTau::ici_kendalltau(exp_data)$cor
cor_random_missing_nw[1:4, 1:4]

##           s1        s2        s3        s4
## s1 1.0000000 0.6953535 0.7074747 0.7224242
## s2 0.6953535 1.0000000 0.7058586 0.7200000
## s3 0.7074747 0.7058586 1.0000000 0.6925253
## s4 0.7224242 0.7200000 0.6925253 1.0000000

What happens if we make the missingness match between them? That counts as information? If the feature is missing in the same samples, that is worth something?

exp_data = grp_cor_data$data
rownames(exp_data) = paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) = paste0("s", seq(1, ncol(exp_data)))
exp_data[s1_missing, 1:2] = NA

cor_same_missing = ICIKendallTau::ici_kendalltau(exp_data)$cor
cor_same_missing[1:4, 1:4]

##           s1        s2        s3        s4
## s1 0.8000000 0.8067227 0.4079051 0.4190298
## s2 0.8067227 0.8000000 0.4021367 0.4025488
## s3 0.4079051 0.4021367 1.0000000 0.6925253
## s4 0.4190298 0.4025488 0.6925253 1.0000000

Here we can see that the correlation between sapmles S1 and S2 has actually increased over the random missing case.

Fake Data Generation

Some fake data is stored in grp_cor_data that is useful for testing the median_correlation function. It was generated by:

library(fakeDataWithError)
set.seed(1234)

s1 = runif(100, 0, 1)
grp1 = add_uniform_noise(10, s1, 0.1)

model_data = data.frame(s1 = s1, s2 = grp1[, 1])

lm_1 = lm(s1 ~ s2, data = model_data)

lm_1$coefficients[2] = 0.5

s3 = predict(lm_1)
s4 = add_uniform_noise(1, s3, 0.2)

grp2 = add_uniform_noise(10, s4, 0.1)

grp_class = rep(c("grp1", "grp2"), each = 10)

grp_cor_data = list(data = cbind(grp1, grp2), class = grp_class)

library(fakeDataWithError)
set.seed(1234)

n_point = 1000
n_rep = 10

# a nice log-normal distribution of points with points along the entire range
simulated_data = c(rlnorm(n_point / 2, meanlog = 1, sdlog = 1),
                    runif(n_point / 2, 5, 100))

# go to log to have decent correlations on the "transformed" data
lsim1 = log(simulated_data)

# add some uniform noise to get lower than 1 correlations
lgrp1 = add_uniform_noise(n_rep, lsim1, .5)

# add some uniform noise to everything in normal space
sim1_error = add_uniform_noise(n_rep, simulated_data, 1, use_zero = TRUE)
# and generate the grp1 data in normal space
ngrp1 = exp(lgrp1) + sim1_error


# do regression to generate some other data
model_data = data.frame(lsim1 = lsim1, lsim2 = lgrp1[, 1])
lm_1 = lm(lsim1 ~ lsim2, data = model_data)

# reduce the correlation between them
lm_1$coefficients[2] = 0.5
lsim3 = predict(lm_1)

# and a bunch of error
lsim4 = add_uniform_noise(1, lsim3, 1.5)

# create group with added error to reduce correlation from 1
lgrp2 = add_uniform_noise(10, lsim4, .5)

# add error in original space
nsim4 = exp(lsim4)
sim4_error = add_uniform_noise(10, nsim4, 1, use_zero = TRUE)
ngrp2 = exp(lgrp2) + sim4_error

# put all data together, and make negatives zero
all_data = cbind(ngrp1, ngrp2)
all_data[(all_data < 0)] = 0

grp_class = rep(c("grp1", "grp2"), each = 10)

grp_exp_data = list(data = all_data, class = grp_class)