-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathREADME.Rmd
297 lines (214 loc) · 9.77 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
title: "Visualization Quality Control"
author: "Robert M Flight"
date: "`r Sys.time()`"
output: md_document
editor_options:
chunk_output_type: console
---
# Visualization Quality Control
A set of useful functions for calculating various measures from high-feature datasets and visualizing them.
In addition to internal documentation, the package is also documented heavily [here](https://moseleybioinformaticslab.github.io/visualizationQualityControl/).
This package combines my needs for visualizing sample-sample correlations using heatmaps, and novel quality control measures that apply to different types of -omics or high-feature datasets proposed by [Gierlinski et al., 2015](https://dx.doi.org/10.1093/bioinformatics/btv425), namely the `median_correlation` and `outlier_fraction` functions.
## Installation
### Dependencies
* `ComplexHeatmap`, for generating the heatmaps.
* `dendsort`, for reordering samples in heatmaps.
* `ICIKendallTau`, for calculating Kendall-tau with missing values.
These should get installed automatically.
It is recommended to install `BiocManager` first so Bioconductor dependencies are installed automatically.
```
install.packages("BiocManager")
```
### This Package
This package can be installed from the MoseleyBioinformaticsLab r-universe as it is not yet on CRAN.
```r
options(repos = c(
moseleybioinformaticslab = 'https://moseleybioinformaticslab.r-universe.dev',
BiocManager::repositories()))
install.packages(c("ICIKendallTau", "visualizationQualityControl"))
```
## Examples
These examples show the primary functionality. We will apply the visualizations
to a two group dataset. However, all of the functions are still applicable to datasets with more than two groups. The examples below are for a dataset where there has been a sample swapped
between the two groups (i.e. there is a problem!). If you want to see how the
visualizations compare between a **good** dataset and a **bad** dataset, see the **quality_control** vignette.
```{r setup, echo = FALSE}
knitr::opts_chunk$set(warning = FALSE, message = FALSE, fig.width = 8, fig.height = 5,
fig.path = "man/figures/")
```
```{r example_data}
library(visualizationQualityControl)
library(ggplot2)
library(ggforce)
data("grp_cor_data")
exp_data = grp_cor_data$data
rownames(exp_data) = paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) = paste0("s", seq(1, ncol(exp_data)))
sample_info = data.frame(id = colnames(exp_data), class = grp_cor_data$class)
exp_data[, 5] = grp_cor_data$data[, 19]
exp_data[, 19] = grp_cor_data$data[, 5]
sample_classes = sample_info$class
```
### Visualize PCA Component Scores
```{r do_pca}
pca_data = prcomp(t(exp_data), center = TRUE)
pca_scores = as.data.frame(pca_data$x)
pca_scores = cbind(pca_scores, sample_info)
ggplot(pca_scores, aes(x = PC1, y = PC2, color = class)) + geom_point()
```
To see how much explained variance each PC has, you can calculate them:
```{r show_variance}
knitr::kable(visqc_score_contributions(pca_data$x))
```
### visqc_heatmap
Calculate sample-sample correlations and reorder based on within class correlations.
We recommend a transform agnostic correlation like Kendall-tau that can also handle missing data when necessary.
Here we use the {ici_kendalltau} function from our [ICIKendallTau](https://moseleybioinformaticslab.github.io/ICIKendallTau/) package.
```{r correlation}
rownames(sample_info) = sample_info$id
data_cor = ICIKendallTau::ici_kendalltau(exp_data)
data_order = similarity_reorderbyclass(data_cor$cor, sample_info[, "class", drop = FALSE], transform = "sub_1")
```
And then generate a colormapping for the sample classes and plot the correlation heatmap.
```{r colormapandheatmap}
data_legend = generate_group_colors(2)
names(data_legend) = c("grp1", "grp2")
row_data = sample_info[, "class", drop = FALSE]
row_annotation = list(class = data_legend)
library(viridis)
suppressPackageStartupMessages(library(circlize))
colormap = colorRamp2(seq(0.3, 1, length.out = 50), viridis::viridis(50))
visqc_heatmap(data_cor$cor, colormap, "Correlation", row_color_data = row_data,
row_color_list = row_annotation, col_color_data = row_data,
col_color_list = row_annotation, row_order = data_order$indices,
column_order = data_order$indices)
```
### median_correlations
```{r median_correlations}
data_medcor = median_correlations(data_cor$cor, sample_info$class)
ggplot(data_medcor, aes(x = sample_id, y = med_cor)) + geom_point() +
facet_grid(. ~ sample_class, scales = "free_x") + ggtitle("Median Correlation")
ggplot(data_medcor, aes(x = sample_class, y = med_cor)) +
geom_sina() +
ggtitle("Median Correlation")
```
### outlier_fraction
```{r outlier_fraction}
data_outlier = outlier_fraction(exp_data, sample_info$class)
ggplot(data_outlier, aes(x = sample_id, y = frac)) + geom_point() +
facet_grid(. ~ sample_class, scales = "free_x") + ggtitle("Outlier Fraction")
ggplot(data_outlier, aes(x = sample_class, y = frac)) +
geom_sina() +
ggtitle("Outlier Fraction")
```
### determine_outliers
We can combine the median correlations and outlier fractions into a single score and then examine the distribution of scores to look for outliers.
```{r determine_outliers}
out_samples = determine_outliers(data_medcor, data_outlier)
ggplot(out_samples, aes(x = sample_id, y = score, color = outlier)) +
geom_point() +
facet_wrap(~ sample_class, scales = "free_x") +
ggtitle("Outliers Score")
ggplot(out_samples, aes(x = sample_class, y = score, color = outlier, group = sample_class)) +
geom_sina() +
ggtitle("Outliers Score")
```
Here we can see the outliers by their combined score.
**However**, in this case we don't actually want to remove the samples.
In this example, what actually happened was that two samples got their `sample_class` wrong.
And we can see that by going back to the **correlation heatmap**, that this is the case by the high correlation values observed with the other class of samples.
### Correlation that Includes Missing Values
When there are missing values (either NA, or 0 depending on the case), we can use the information-content-informed Kendall-tau.
This works under the assumption that **most** missing data in -omics is because samples have values that fall below the detection limit.
Because of this, missingness actually contributes **some** information that can be incorporated in the correlation.
The package [ICIKendallTau](https://moseleybioinformaticslab.github.io/ICIKendallTau/) provides this correlation measure.
Lets add some missingness to our data.
```{r}
exp_data = grp_cor_data$data
rownames(exp_data) = paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) = paste0("s", seq(1, ncol(exp_data)))
```
```{r add_random_missingness}
make_na = rep(FALSE, nrow(exp_data))
s1_missing = make_na
s1_missing[sample(length(make_na), 20)] = TRUE
s2_missing = make_na
s2_missing[sample(which(!s1_missing), 20)] = TRUE
exp_data2 = exp_data
exp_data2[s1_missing, 1] = NA
exp_data2[s2_missing, 1] = NA
```
```{r cor_random_missingness}
cor_random_missing = ICIKendallTau::ici_kendalltau(exp_data2)$cor
cor_random_missing[1:4, 1:4]
```
```{r cor_random_missingness_noweight}
cor_random_missing_nw = ICIKendallTau::ici_kendalltau(exp_data)$cor
cor_random_missing_nw[1:4, 1:4]
```
What happens if we make the missingness match between them? That counts as information?
If the feature is missing in the same samples, that is
worth something?
```{r cor_same_missingness}
exp_data = grp_cor_data$data
rownames(exp_data) = paste0("f", seq(1, nrow(exp_data)))
colnames(exp_data) = paste0("s", seq(1, ncol(exp_data)))
exp_data[s1_missing, 1:2] = NA
cor_same_missing = ICIKendallTau::ici_kendalltau(exp_data)$cor
cor_same_missing[1:4, 1:4]
```
Here we can see that the correlation between sapmles S1 and S2 has actually increased over the random missing case.
## Fake Data Generation
Some fake data is stored in `grp_cor_data` that is useful for testing the `median_correlation`
function. It was generated by:
```{r fakedata, eval=FALSE}
library(fakeDataWithError)
set.seed(1234)
s1 = runif(100, 0, 1)
grp1 = add_uniform_noise(10, s1, 0.1)
model_data = data.frame(s1 = s1, s2 = grp1[, 1])
lm_1 = lm(s1 ~ s2, data = model_data)
lm_1$coefficients[2] = 0.5
s3 = predict(lm_1)
s4 = add_uniform_noise(1, s3, 0.2)
grp2 = add_uniform_noise(10, s4, 0.1)
grp_class = rep(c("grp1", "grp2"), each = 10)
grp_cor_data = list(data = cbind(grp1, grp2), class = grp_class)
```
```{r fakedata2, eval=FALSE}
library(fakeDataWithError)
set.seed(1234)
n_point = 1000
n_rep = 10
# a nice log-normal distribution of points with points along the entire range
simulated_data = c(rlnorm(n_point / 2, meanlog = 1, sdlog = 1),
runif(n_point / 2, 5, 100))
# go to log to have decent correlations on the "transformed" data
lsim1 = log(simulated_data)
# add some uniform noise to get lower than 1 correlations
lgrp1 = add_uniform_noise(n_rep, lsim1, .5)
# add some uniform noise to everything in normal space
sim1_error = add_uniform_noise(n_rep, simulated_data, 1, use_zero = TRUE)
# and generate the grp1 data in normal space
ngrp1 = exp(lgrp1) + sim1_error
# do regression to generate some other data
model_data = data.frame(lsim1 = lsim1, lsim2 = lgrp1[, 1])
lm_1 = lm(lsim1 ~ lsim2, data = model_data)
# reduce the correlation between them
lm_1$coefficients[2] = 0.5
lsim3 = predict(lm_1)
# and a bunch of error
lsim4 = add_uniform_noise(1, lsim3, 1.5)
# create group with added error to reduce correlation from 1
lgrp2 = add_uniform_noise(10, lsim4, .5)
# add error in original space
nsim4 = exp(lsim4)
sim4_error = add_uniform_noise(10, nsim4, 1, use_zero = TRUE)
ngrp2 = exp(lgrp2) + sim4_error
# put all data together, and make negatives zero
all_data = cbind(ngrp1, ngrp2)
all_data[(all_data < 0)] = 0
grp_class = rep(c("grp1", "grp2"), each = 10)
grp_exp_data = list(data = all_data, class = grp_class)
```