-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
56 lines (45 loc) · 1.61 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import streamlit as slt
import pickle
import pandas as pd
import requests
def fetch_poster(movie_id):
response = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=03c2d7e377556f8bf80642f566eed214&language=en-US'.format(movie_id))
data = response.json()
return "https://image.tmdb.org/t/p/w500/" + data['poster_path']
movies_dict = pickle.load(open('movies_dict.pkl','rb'))
df = pd.DataFrame(movies_dict)
similarity = pickle.load(open('similarity.pkl','rb'))
def recommend(movies):
movie_index = df[df['title'] == movies].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
suggested_movies = []
suggested_movies_poster =[]
for i in movies_list:
movie_id = df.iloc[i[0]].movie_id
suggested_movies.append(df.iloc[i[0]].title)
suggested_movies_poster.append(fetch_poster(movie_id))
return suggested_movies, suggested_movies_poster
slt.title('Movie Recommedation Page')
selected_movie_name = slt.selectbox(
'Select the movie',
df['title'].values
)
if slt.button('recommend'):
suggestions ,posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = slt.columns(5)
with col1:
slt.text(suggestions[0])
slt.image(posters[0])
with col2:
slt.text(suggestions[1])
slt.image(posters[1])
with col3:
slt.text(suggestions[2])
slt.image(posters[2])
with col4:
slt.text(suggestions[3])
slt.image(posters[3])
with col5:
slt.text(suggestions[4])
slt.image(posters[4])