-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinfer.py
40 lines (33 loc) · 1.42 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from model_zoo.inferer import BaseInferer
import tensorflow as tf
import cv2
from os import listdir
from os.path import join
import numpy as np
tf.flags.DEFINE_string('checkpoint_name', 'model.ckpt-178', help='Model name')
tf.flags.DEFINE_string('test_dir', 'tests/', help='Dir of test data')
class Inferer(BaseInferer):
def prepare_data(self):
test_dir = self.flags.test_dir
items = sorted(list(listdir(test_dir)))
items_path = list(map(lambda x: join(test_dir, x), items))
test_data = list(map(lambda x: self.process_image(x), items_path))
test_data = np.asarray(test_data)
self.items = items
return test_data
def process_image(self, image_file):
image = cv2.imread(image_file, 0)
image = cv2.resize(image, (48, 48))
image_data = np.reshape(np.asarray(image), (48, 48, 1)).astype(np.float32)
image_data /= 255.0
return image_data
if __name__ == '__main__':
emotion_cat = {0: 'Angry', 1: 'Disgust', 2: 'Fear', 3: 'Happy', 4: 'Sad', 5: 'Surprise', 6: 'Neutral'}
inferer = Inferer()
logits, preds = inferer.run()
for item, logit, pred in zip(inferer.items, logits, preds):
result = emotion_cat[pred]
print('=' * 20)
print('Image Path:', item)
print('Predict Result:', emotion_cat[pred])
print('Emotion Distribution:', {v: round(logit[k], 3) for k, v in emotion_cat.items()})