-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrun_example.py
107 lines (84 loc) · 3.47 KB
/
run_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import sys
import os
import numpy as np
import cv2
import torch
from model import TASED_v2
from scipy.ndimage.filters import gaussian_filter
def main():
''' read frames in path_indata and generate frame-wise saliency maps in path_output '''
# optional two command-line arguments
path_indata = './example'
path_output = './output'
if len(sys.argv) > 1:
path_indata = sys.argv[1]
if len(sys.argv) > 2:
path_output = sys.argv[2]
if not os.path.isdir(path_output):
os.makedirs(path_output)
len_temporal = 32
file_weight = './TASED_updated.pt'
model = TASED_v2()
# load the weight file and copy the parameters
if os.path.isfile(file_weight):
print ('loading weight file')
weight_dict = torch.load(file_weight)
model_dict = model.state_dict()
for name, param in weight_dict.items():
if 'module' in name:
name = '.'.join(name.split('.')[1:])
if name in model_dict:
if param.size() == model_dict[name].size():
model_dict[name].copy_(param)
else:
print (' size? ' + name, param.size(), model_dict[name].size())
else:
print (' name? ' + name)
print (' loaded')
else:
print ('weight file?')
model = model.cuda()
torch.backends.cudnn.benchmark = False
model.eval()
# iterate over the path_indata directory
list_indata = [d for d in os.listdir(path_indata) if os.path.isdir(os.path.join(path_indata, d))]
list_indata.sort()
for dname in list_indata:
print ('processing ' + dname)
list_frames = [f for f in os.listdir(os.path.join(path_indata, dname)) if os.path.isfile(os.path.join(path_indata, dname, f))]
list_frames.sort()
# process in a sliding window fashion
if len(list_frames) >= 2*len_temporal-1:
path_outdata = os.path.join(path_output, dname)
if not os.path.isdir(path_outdata):
os.makedirs(path_outdata)
snippet = []
for i in range(len(list_frames)):
img = cv2.imread(os.path.join(path_indata, dname, list_frames[i]))
img = cv2.resize(img, (384, 224))
img = img[...,::-1]
snippet.append(img)
if i >= len_temporal-1:
clip = transform(snippet)
process(model, clip, path_outdata, i)
# process first (len_temporal-1) frames
if i < 2*len_temporal-2:
process(model, torch.flip(clip, [2]), path_outdata, i-len_temporal+1)
del snippet[0]
else:
print (' more frames are needed')
def transform(snippet):
''' stack & noralization '''
snippet = np.concatenate(snippet, axis=-1)
snippet = torch.from_numpy(snippet).permute(2, 0, 1).contiguous().float()
snippet = snippet.mul_(2.).sub_(255).div(255)
return snippet.view(1,-1,3,snippet.size(1),snippet.size(2)).permute(0,2,1,3,4)
def process(model, clip, path_outdata, idx):
''' process one clip and save the predicted saliency map '''
with torch.no_grad():
smap = model(clip.cuda()).cpu().data[0]
smap = (smap.numpy()*255.).astype(np.int)/255.
smap = gaussian_filter(smap, sigma=7)
cv2.imwrite(os.path.join(path_outdata, '%04d.png'%(idx+1)), (smap/np.max(smap)*255.).astype(np.uint8))
if __name__ == '__main__':
main()